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Abstract

It has been observed in simtllutions of the beum-beam interaction in linear

colliders that a near eqllilibliunl pinched state of the colliding beams develops when the

disruption parameter is large ( D>> 1)[ 1]. In this state the beam transverse density

distributions are peaked at center, with long tails. We present here an analytical model of

the Maxwell-Vlasov equilibrium approached by the beams, that of a generalized Bennett

pinch[2] which develops through collisionless damping dlle to the strong nonlinearity of

the beam-beam interaction. In order to calculate the equilibrium pinched beam size, an

estimation of the rms emittance growth is made which takes into account the effects of

the initial linear rise of the foc~lsing forces, and of phase sptice mismatch during the

beam-beam collision. This pinched beam size is used to derive the luminosity

enhancement factors whose scaling as L function of D and thellnal factor A = OZ/~* is in

agreement with the simulation results, and explain the previously noted cubic relationship

between round and flat beam enhancement f~ctors. The implications for calculation of

differential luminosity, beamstrahlung spectra, and ~ssociated coherent beam-beam

radiation effects, are discussed.

* This work supported with partialsupport from Departmentof Energy DE-AC03-76SFO0515,
DE-FG03-90ER40796 and DE-FG03-92ER40693, Texas National Research Laboratory grant
FC~9308 and the Sloan Foundation grant BR-3225.



I. Introduction

The calculation of the luminosity enhancement of electron-positron linear collider

beam-beam collisions due to the mutual strong focusing, or disruption, of the beams has -

been traditionally calculated 1] by use of particle-in-cell computer codes, These

numerical calculations solve for electromagnetic fields and the motion of the particles

which generate these fields self-consistently. The emergence of near equilibrium “pinch-

confined” transverse beam profiles in the limit that the disruption parameter

(1)

. .

is much greater than unity has been noted; in this regime the beam particles undergo

multiple betatron oscillations during the collision. In the above expression OX~ are the

transverse rms beam sizes, 6, is the rms bunch length, N is the number of particles per

bunch, and y is the beam ptirticle energy normalize(i to the rest energy, and the spatial

beam distributions are assumed to be Gaussians. It is proposed here that these near

equilibrium states are approached thro Llgh collisionless damping due to mixing and

filamentation in phase space, in analogy to a similar phenomena found in self-focusing

beams in plasmas[3]. The expected luminosity enhancement obtained in this state is

calculated in- this paper. As understanding the approach to this equilibriutn entails

examining nonlinear phase space dynamics, approximations are necessary, especially

with regards to the calculation of the emittance growth induced by filamentation. A

model for this emittance growth, bused partially on O. Anderson’s tnethods which were

introduced for the study of the theory of sptice charge induced emittance growth[4], is

employed, which then allows u calculation of luminosity enhancement factors that is in

excellent agreement with the values obtained by simulation.

The equilibrium states we are presently examining are of the type known as

Maxwell-Vlasov equilibria, which are obtained by looking for a time independent

solution of the Vlasov equation descl-ibing the betim’s transverse phase space, with the

forces obtained self-consistently from the Maxwell equations using the beatn charge and
-..

current profiles. We begin -by analyzing u limiting case, that of a flat, or sheet, beam

(Ox >> a,), as these are the simplest, and most likely to be found at the interaction point
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of a linear collider. For the purpose of calculation a]ld comparison to simulations[l] the

beams are assumed to be uniform ill xand z (at least locally), and have identical profiles

in y. In this way, the model of all equilibrium state call be constlllcted.

II. Maxwell-Vlasov Equilibria

In order to describe a thermally equilibrated, self-pinched state of the beam, we

begin by writing the vertical force on an ultra-relativistic particle due to the electric and

magnetic fields of the opposing beam as

F,(y) =(1 + p’)qE, 52qEy = –8n(’’z,,jY(y’)dy’, (2)
(1

where Y, normalized by ~ Y(y)L(y= 1, describes the vertical beam spatial distribution
—m

function, and 21, = N/2 ZO,O, is the sheet beam surface charge density. We search for

separable solutions to the time independent Vlasov equation

(3)

where VY= pY1 ynl, i.c’. solutions of the form j’(>J,~}Y)= Y(y) P(pY). This form is in fact

approached in true thermal equilibrium, as c:lll be verified by substitution of a

Maxwellian momentum distribution, and this is illustrated below. 111order for this

equilibrium to be approached through phose space mixing, more than one nonlinear

vertical betatron oscillation must occur during collisioll, D, s 4Z}.,,Zl,0~ / oY > 2z. [3][5].

The solutio[l to the momentum equation

derived from separation of Eq. (3) is

-.. A’]):-- ‘(”y)=&exp(-~Y~?)

(4)

(5)
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which is the Maxwell-B oltzmann form corresponding to a thermal equilibrium. The

separation constant Iz = V?/ o; , with a: = (I~z), is inversely proportional to the

temperature of the system. The solution to the corresponding coordinate equation

(6)

derived from Eq. (3) is

This profile is the one-dimensional analogue to the Bennett profile found in a

cylindrically symmetric Maxwell-Vltisov eqLlilibrilllll[2-3j.

The separation constant IZ still remains to be calculated in this treatment. To

obtain an initial estimate, one”can use the f~ct that the distribution function at the origin

in phase space is stationary, by symmetry, that is @/dt = Oat (y, pY) = (0,0), and

therefore ~(0,0) is a constant of the motion. Assuming on initial hi-gaussian distribution

in phase space, and equating its peak density in phase space to that of the Bennett-type

profile found upon equilibration, we have

-.

rf((),()) = Y(o) f(()) = ~n: ,,7, = *a’(j’z,,
!1

We then obtain, solving directly for a,

(8)

(9)

With this relation we can now compare the luminosity that comes about by the

transition to a pinch confined Bennett-1ike state with that of the initial unpinched

Gaussian beam. At this point, we make lllowance for the fact that the beams are not

ufiiform in z and redefine% for the purpose of luminosity calculation, the surface charge

density to be its nns value
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(lo)

The luminosity enhancement due to pillcl~-collfillelnellt can be calculated by

evaluating the luminosity integrals of the two cases, assuming A,,,Y-0, t ~~,Y<1, where

Pi,, = a:,,/ &X,YNe the depth of foci in the transverse dimensions in the the interaction

region, and D,, <1. In these limits the pinching in the horizontal

negligible, and the effects of tranverse beam size variations in the absence

can be ignored. If the disruption is ignored, the llllninosity is given by

dimension is

of disruption

(11)

. .

where frcPis the bunch collision rate of the linear collider. For the pinch confined case,

the luminosity integral becomes

(12)

The luminosity enhancetnent factor, which is defined to be the r~tio of the lutninosity of

the pinch confined collisions to the undisrllpted case, is, from Eqs. 11 and 12,

H(DY, AY) =
4:o’[y’:=’’r=:[T”l

(13)

This results of the cotnputer simulation of Illminosity enhancement f~ctors by Chen and

Yokoya[ 1] is reprinted in Figure 1. Eqllution 13 clearly has too strong a dependence on

both DY and AY to model the simulation restllts correctly. This is because, even though

we have invoked emittance growth (phase space filamentation) as the mechanism behind

collisionless approach to equilibrillm, we have neglected to calculate this emittance

growth. In other words, the filamented phase space muy prod~lce behavior like that of a

smooth thermal distribution function, btlt since it is filamented, the relationship between-..
the peak in the distributionfunctioil and the emittance is no longer simply given by Eq. 8,

and our calculation is too optimistic.
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III. Emittance Growth

Assuming the vertical disruption is large, the emittance growth occurs during two

distinct times during the approuch to pinch confinelnent. The first is a “wave-bre&ing”

in phase space, where the nearly Iaminar initial focusing process ends with the advent of

focusing to the y-axis of the small amplitude bealn particles. This is very similar the

space-charge induced emittance growth in low energy focusing channels, and is analyzed

with a method developed in that field by Anderson [4]. We begin by assuming laminar

flow of beam particles pinching down under the influence of the opposing beam forces.

This assumption ignores the effects of the beams’ finite emittance. In addition, the

opposing beam is assumed to be undergoing all identical pinch, reducing the model

problem to that of calculating the behavior of a siilgle bealn. In order to recover the

relevant aspects of the tinle dependence of the initial pinching forces, we assume that the

opposing beam current, and therefore the pinching forces, rise linearly in time, as

bitt / OZ,where bl is a constant of order unity introduced to account for the uncertainty in

the rise time, The force on the bealn particles in this region of rising beam current can

then be written in terms of the enclosed opposing beam current, and

transverse displacement j = y(( = ())

t
where G(<) = jY(y)cly is a constant of the motion under the assumed

o

flow conditions. The equation of motion for the bealn particles is then

thus the initial

(14)

with K(g) = 8zr,,Xl,G(<) / y. For snlall initiul tinlp]itudes & << Oy we have

double laminar

(15)

(16)

-w-

here n, = 21, / &@Y is-the peak undisrupted betim density, and we have defined the

wave-number associated with vertical betatron nlotioll dissociated with the forces arising
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from an oncoming beam of this density. The sollltion for the small anlplitude limit of Eq.

15 is Ehus

(17)

and the small amplitude particles focus at the wave-bretiking point z},,, = [60, / b,k~]1’3.

The general solution to Eq. 15 is

(18)

At wave-bre&ing, which corresponds to one-qllarter of a beam oscillation, and after

which’the laminar flow assumption is violated, the particle positions have dependence

which has no term linear in <, which is an indication of the explosive emittance growth

which has taken place.

The growth of the syuare of the rms emittance at wave breaking can be calculated

by substitution of pal~icle positions and angles at Z,,,[,into the following expression

(19)

where bz is a constant depen(lellt only on ~~,aIIcl on the exact form of G. The total

emittance at wave-breaking is therefore, adding the initial thernlal and the nonlinear

contributions in squares, and llsing O, = r :E~~,, is given by

[1
~?/3&;,:M,,=&:,(,1+ /), --A:. (20)

This would complete the description of the relevant emittance growth if the

a~lied forces had no further time dependetlce, as the elnittance, and thus the peak beam

density and differentiui lun;inosity, quickly eyllilibrotes after wave-breaking in a system
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with constant current[3]. Bec~use the betim-beam forces must still undergo further

increase, however, there is more emittance growth due to the induced turbulence in the

beams’ transverse phase space as the netirly eqtli] ibrated beam pinches further under a

nonlinear restoring force. This has some unti]ogy to the emittance growth in a space-

charge dominated focusing channel discussed recently by BolIn[6]. The phase-space

turbulence which occurs after wave-breaking, conlbi ned with the nonlinearity and the

time ramp of the pinching forces, cause an emittance growth. This growth is not well

quantified by the rms emittance, since that WOU1(loveremphasize the contribution of the

tails of the phase space. What we are concerned with here is actually the phase space

density in the vicinity of the origin, us that is what dictates the equilibrium beam density

profile and therefore the differential luminosity. As the dilution of the peak phase space

density occurs during turbulence, the motion (iisp]ays sonle aspects of chaotic behavior.

In particular, we can expect that two neurby points in phase space will diverge

exponentially from each other (with a chtiraeteristic Lyapunov exponent) as the motion

proceeds, leading to an exponential increase in effective phase space area, or emittance.

~ This obselwation allows us to construct a simple model with which to quantify

the effective emittance growth.. The fractional rate of increase of the phase space area (the

e~nittance &Y)must be proportional to the inverse of the current rise Iellgth o;’ (how fast

the wave-number of the focusing rdmps as the beams come into collision) and also

proportional to the phase space mixing tingle occurring during a rise length,

kDaz = 0, /~;. Note that by taking L,j = ~~-’, J consttint, we have only supplied an

estimate of the thermalization length. This estimate is quite good because the thermal

spread of the liIaments of the distribution will have nearly the some effective temperature

as the original, unpinched phase space, because of the nonlinearity of the pinching forces.

Under these assumptions, a soluble approximate equation describing the emittance

growth after wave-breaking can be written,

(21)

where b~ is a constant of order unity which contains information abolit rise length and the

amplitude of the nonlinear terms in the pinch forces. As we expect the density to be well

behaved near y = O, the dominant nonlinetirity is th ye lowest term, of third order in ~.

Integrating Eq. 21 over the entire current ramp (it is easy to show that for DY>>1, the
-w-

ave-breaking distance may be igl~ore(l :,,,, << O.) gives, in combination with Eq. 20, the

final effective emittance at the en(i of the romp
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‘ [

~?13

E:,o.=&:()1+/),
1

~exp(2b~Av) .
- A;

(22)

Now there are two constants that must be determined in order to derive the full

expression for the luminosity enhancement. Using these constants as fitting parameters -

to model the simulation data, we obtain a final expression for the emittance growth

and the luminosity enhancement os

H(DV, A,,)=;

(23)

(24)

The fit to the simulation data obtained from Eq. 24 is shown in Figure 1, and as

can be seen, it is quite good. The standar(} (ieviation of the error between the data and the

fit is 1.2 percent over the rtinges Ay = {().1,().8} find D, = {1(),100},” while the maximum

error is 2.5 percent. This agreement lends strong support for the validity of the model we

have developed for the pinch-confined state observed in the simulations 1].

-.

IV. Round Beam Equilibria and Luminosity Enhancement

While the disruption enhancenlent occurring in rollnd beam (o; = o:) collisions

is not of as great interest as for flat beams, due to the emphasis of current linear collider

designs on flat beam collisions (which mitigate the coherent production of photons and

associated problems), it has been investigated thoroughly in the last decade, mainly

motivated by the need to understand the original SLC design find operation. One curious

fact which has emerged from the comparison of round versus flut beam collisions is that

the luminosity enhancement appears to sc~le as

H(D, A),,,,,,,C,s H(DY, A,);7,,,. (25)
-..

--
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It is interesting to see what J Maxwell-Vlasov analysis predicts as far as

explaining this scaling is concerned. While the full discussion of the emittance growth

process for the disruption of round beams[ 5] is beyond the scope of the present work, we

will see below that the results of such a calculation would yield similar dependence on

D and A as in the flat beam case. This said, we c~n follow the treatment of self-focused

round beam equilibria in plasma found in Ref. 2, to derive the analogue to Eq. 13 for

cylindrical symmetry . We begin by writing the Vlusov equation for this case

(26)

Assuming separable solutions, ~(),1)~ ) = R(})POJ,), the lnomentum equation and its

solution are of identical form to Eqs. 4 an(l 5, Tile ~o~~esponding coordinate equation is

~lR

[1

= _R 4t~~L~N v
“ j R(p)p[/p,

z
(27)

1. (1

where N/, is the number of be;m purticles per unit length. The solution of Eq, 27 is the

well-known Bennett profile

(28)

where U*= 2y&~INI,l-,,, and we again take the rms value of the longitudinal charge

density Nb.

The luminosity enhancement obtained in this case (leaving the phase space

dilution term &,/ &,,c,unspecified for the lnomentj, repeating the method used in deriving

Eq. 13, is

40! [1[]2D &,,[) z
~(D>A)r,)l,,./ ‘-= — —

3112 3A~ &,.
(29)

Comparison of this expression to EcIs. 13 and 24 indeed indicates that

~(~, A),.,,,,’~= ~(Dv tA;);,,,; as foun(l by silnulation.
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To illustrate this point further, we compare the simulation data to an expression of

the same form as Eq. 23, adjusting the constants and the dependence on D of the

emittance growth to obtain a best fit to the data, to obtain

(30) -

The simulation data and the predictions of Eq. 30 are shown in Fig. 2. Again, the

agreement is quite good, with an rms error which is larger than the corresponding flat

beam error by approximately three, as might be expected from the ratio of the powers of

the functional dependence in the two cases.

Two aspects the emittance growth physics in round beams can be dedllced from

the fit obtained from Eq. 30. The first is that the D dependence of the emittance growth

is slightly stronger for round beams. This is due to the f~ct that the time dependence of

the beam-beam pinching force is stronger than the cllrrent rise (the dependence assumed

in Eq. 14) in the round beam case. For round beams the force, again assuming laminar

flow, is proportional to the enclosed cl]rrent, but it is also inversely proportional to the

radius of the particle undergoing the pinch, which obviously becomes smaller during the

pinch.

The other notable featllre implied by Eq. 30 is thut the exponent for the emittance

growth due to phase space dilution after initiul wdve-breaking is a f~ctor of three larger

than found in the flat beam case. This fi~ctor is present because of the same geometric

factors relating current density and pinching forces which produce the difference in

exponents in Eq. 25, and is a measure of the coefficient of the nonlinear focusing term

producing the phase space dilution. To i]lustr~te this point, we expand the focusing forces

corresponding to the flat beam

where aY = a-’, and round beam

-..

(31)

(32)
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equilibria. The quantities UYand a ~re related to the thermal scale (Debye) lengths which

indicate the distances over which the spotial distributions fdll off quadratically from their

peak value in the flat and round beanl e~luilibrio, respectively. Expanding the equilibrium

profiles for small amplitude, we have

[!1]
~

flat beams,
/1/,(()) 1– ~

(IY
/1,,E

[ ()]

(33).
~

/?,,(()) 1– 2 ~ round beams.
Cl

We can see that, by defining the beanl boundary in ternls of its quadratic density

variations, a / m is equivalent to ([,. Now, the phase space dilution rate is proportional

to the relative difference in the betutroll tLille with timplitude, which is linearly dependent

on the coefficient of third order focusing ternls[7 J in EcIs. 31 and 32. TIIUSthe e-folding

distance for the emittance growth, taking into uccount the relationship between the beam

boundaries, should be approxiinately u F~ctor of 3/2 larger in the round beam case. When

the emittance growth term is scluared, this produces the fi~ctor of three difference in the

exponents found in Eqs. 24 and 30 for the growth of &z.

V. Conclusions

-.
This approach to understanding beam-beanl collisions can be used to perform

more ac”curate estimations of rtidiative (beamstrahlung) energy losses, and the differential

luminosity spectrum[8]. In addition, a good physicul model for the distribution functions

of the beams as they undergo collision is a necessary sturting point for an improved

analysis of the transverse instabilities 1][9] (especially the kink instability) of the

colliding beam system. An tinalogoLls investigation of the transverse two-stream

instabilities of slab beams in overdense p]asmos has been recently performed by

Whittum[lo]. His methods may be straightforwardly adopted for analyzing the beam-

beam kink instability. The methods introduced here will also be extended to the study of

quasi-flat beam collisions 11], where the horizontal disruption may be non-trivial, in a

future work.
-..

--
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In conclusion, we have introduced a model of the luminosity enhancement due to

beam-beam disruption in a lil~eor collider by examining the transverse equilibria (the

pinch-confined states observed in simultition) which are approached collisionlessly

through phase space mixing in the limit of large disruption. Simple aspects of the

nonlinear dynamics involved have been employed to obtain the scaling, as a function of

the disruption parameter D and thermal factor A, of pinch confined beam densities and

luminosity enhancements. This model gives quantitatively very good agreement with

computational simulations, and explains some important details of the relationship

between round and flat beam luminosity disruption enhancement observed in these

simulations.

---
--
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Figure Captioils

Figure 1. The results of particle-in-cell sim~llation (plotted symbols) of luminosity

enhancement in flat beam collisions, taken froln Ref. 1, along with fit obtained by

Maxwell-Vlasov equilibrium analysis derived expression, Eq. 24.

Figure 2. The results of particle-in-cell simultition (plotted symbols) of luminosity

enhancement in round beam collisions, taken from Ref. 1, along with fit obtained by

Maxwell-Vlasov equilibrium analysis derive(l expression, Eq. 30.
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