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Abstract

We calculate the angular distribution of the lepton produced in the Drell-Yan reaction

taking into account pion bound state effects. We work in the kinematic region where one

of the pion constituents goes far off-shell, which allows us to treat the bound state problem

perturbatively. We show that the angular distribution is very sensitive to the shape of the

pion distribution amplitude. The model we discuss fits the data if we choose a two-humped

pion distribution amplitude suggested by QCD sum rules.
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Lepton pair production in hadron–hadron collisions provides a basic testing ground

for our understanding of strong interactions. Extensive experimental and theoretical work

has been done in the past two decades (for reviews see Ref. [1]). In particular, the angular

distribution of the lepton pair has been studied in detail, revealing a fatal disagreement

of the QCD improved parton model prediction [2,3] with the data [4-6]. Recently it has

been proposed that this problem may be resolved if the nontrivial structure of the QCD

vacuum induces spin correlations between the initial state partons [7]. In this letter we

pursue another way to go beyond the standard parton model picture, namely we consider

contributions to the angular distribution induced by hadron bound state effects. Our

approach is close in spirit to the higher twist model of [8,9].

The angular distribution of the µ+ in

π− +N → γ∗ +X → µ+ + µ− +X (1)

may be parameterized in general as follows:

1
σ

dσ

dΩ
∼ 1 + λ cos2 θ + µ sin 2θ cosφ+

ν

2
sin2 θ cos 2φ. (2)

Here θ and φ are angles defined in the muon pair rest frame and λ, µ and ν are angle–

independent coefficients. The naive parton model (Drell–Yan picture [10]) views the pro-

duction of the virtual photon γ∗ in (1) as originating from the annihilation of two un-

correlated constituent quarks, resulting in an angular distribution of the form 1 + cos2 θ.

This result follows simply from the fact that the virtual photon is produced transversely

polarized in the annihilation of two on-shell fermions.

In order to describe the boson transverse momentum distribution d2σ/dQ2
T one has

to take into account radiative corrections to the Drell–Yan model. The QT -distribution

has been calculated in the QCD–improved parton model to the order of O(αs) with re-

summation of the soft gluons at the leading double logarithmic accuracy (see Ref. [11] and

references therein). This approach was used in [3] to compute the angular distribution at

fixed transverse momentum. The deviations from the 1 + cos2 θ behavior were found to

be less than 5% in the range 0 < QT < 3 GeV [3]. However, the NA-10 measurements

from CERN [4] and the Chicago-Iowa-Princeton collaboration [5,6] show a quite different

behavior. In the limit where the momentum fraction x of one of the pion constituents is
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very close to 1 and for moderate transverse momenta of the muon pair, the value of λ

turns strongly negative [6], consistent with a sin2 θ distribution. This implies that in this

kinematic limit the virtual photon is produced with longitudinal polarization, rather than

transverse. Furthermore, the data [4-6] is observed to have a strong azimuthal modulation

(nonzero µ and ν in (2)), an effect which is missing in standard QCD. The Lam–Tung sum

rule [2], 1− λ− 2ν = 0, which follows from the approach used in [3] is also badly violated

by the experimental data.

One way to go beyond the standard treatment is to take into account the pion bound

state effects [8,9]. We want to treat the bound state problem perturbatively; thus we will

restrict ourselves to a specific kinematic region in which the momentum fraction x of one

of the pion constituents is large, x > 0.5. In fact, in the large x region the off-shell nature

of the annihilating quark from the projectile is crucial, and thus the operative subprocess

must involve the correlated multi-parton structure of the projectile. In effect the dominant

subprocess in the off-shell domain is π−q → µ+µ−q. We resolve the pion by a single hard

gluon exchange [12]. The main contribution to reaction (1) then comes from the diagrams

of Fig. 1a,b [8,9]. We see from diagram 1a that the ū quark propagator is far off-shell,

p2
ū = −Q2

T /(1 − xū). The second diagram is required by gauge invariance†. The leading

contribution to the amplitude M for the reaction

u+ π− → γ∗ +X → µ+ + µ− +X (3)

is obtained [12] by convoluting the partonic amplitude T (u+ ūd→ γ∗+ d→ µ+ +µ−+ d)

with the pion distribution amplitude φ(z, Q̃2),

M =
∫ 1

0

dz φ(z, Q̃2) T, (4)

where Q̃2 ∼ Q2
T /(1−x) is the cutoff for the integration over soft momenta in the definition

of φ. In the regime where Q̃2 and Q2 are compatible, one cannot use the usual probabilistic

factorization of the structure functions and the hard annihilation subprocess [13].

For the hadronic differential cross section we have

† In a physical gauge the contribution of the second diagram is purely higher twist, that

is it contains extra powers of
√
Q2
T/Q

2.
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Q2dσ(π−N → µ+µ−X)
dQ2dQ2

T dxLdΩ
=

1
(2π)4

1
64

∫ 1

0

dxuGu/N(xu)
∫ 1

0

dxū
xū

1− xū +Q2
T /Q

2
|M |2

δ(xL−xū+xu−Q2
T s
−1(1−xū)−1) δ(Q2− sxuxū+Q2

T (1−xū)−1)+{u→ d̄, ū→ d}. (5)

Here Qµ is the four-momentum of γ∗ in the hadronic center of mass system, xu(ū) is

the light-cone momentum fraction of the u(ū) quark and Gu/N is the parton distribution

function of the nucleon. The longitudinal momentum fraction of the photon is defined as

xL = 2QL/
√
s and it should be noted that its maximum value, xmax

L = 1−s−1(Q2 +2 Q2
T )

is slightly less than 1. The second term on the right hand side of (5) is the same as the first

one with quark flavors interchanged. This term gives the contribution from the nucleon

sea. In Fig. 1c we show a typical contribution to the hadronic cross section.

We note that no primordial or intrinsic transverse momenta have been introduced.

The single gluon exchange is the only source of QT in the model discussed. We also

neglected the quark masses and the mass of the projectile which are small compared to Q̃.

In analogy to eq. (2) we parameterize the angular distribution as follows,

Q2dσ

dQ2dQ2
T dxLdΩ

(
Q2dσ

dQ2dQ2
T dxL

)−1

=

3
4π

1
λ+ 3

(1 + λ cos2 θ+ µ sin 2θ cosφ+
ν

2
sin2 θ cos 2φ), (6)

where the angular distribution coefficients λ, µ and ν are now functions of the kinematic

variables xL, Q2
T /Q

2 and Q2/s.

We work in the Gottfried-Jackson frame where the ẑ axis is taken to be the pion

direction in the muon pair rest frame and the ŷ axis is orthogonal to the π−N plane. With

some algebra, using eqs. (4)-(6), we arrive at the following expression for λ, µ and ν,

λ(x̃, Q2
T /Q

2) = 2N−1

{
(1 − x̃)2

[
(Im I(x̃))2 + (F + Re I(x̃))2

]
−4Q2

T /Q
2x̃2F 2 +Q4

T /Q
4x̃2F 2

}
, (7)

µ(x̃, Q2
T /Q

2) = −4N−1
√
Q2
T /Q

2Fx̃

{
(1− x̃) [F + Re I(x̃)] +Q2

T /Q
2x̃F

}
, (8)
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ν(x̃, Q2
T /Q

2) = −8N−1Q2
T/Q

2x̃(1− x̃)F [F + Re I(x̃)] , (9)

where

F =
∫ 1

0

dz
φ(z, Q̃2)

z
, (10)

I(x̃) =
∫ 1

0

dz
φ(z, Q̃2)

z (z + x̃− 1 + iε)
, (11)

and

N(x̃, Q2
T /Q

2) = 2
{

(1− x̃)2
[
(Im I(x̃))2 + (F + Re I(x̃))2

]
+4Q2

T /Q
2x̃2F 2 +Q4

T /Q
4x̃2F 2

}
. (12)

The variable x̃ acts to resolve the distribution amplitude much like the Bjorken variable

resolves the structure functions,

x̃ ≡ xū
1 +Q2

T /Q
2

=
1
2
xL +

√
x2
L + 4s−1(Q2 +Q2

T )
1 +Q2

T /Q
2

. (13)

The factors 1/z in eq. (10), (11) come from the gluon propagators and the factors 1/(z +

x̃− 1± iε) arise from the quark propagator of Fig. 1b.

In contrast to Refs. [9] and [14] we did not omit terms O((1 − xū)Q2
T /Q

2) and

O((1− xū)−1 Q4
T/Q

4) and of higher orders. The nucleon distribution function Gq/N does

not appear in (7)-(9); thus only the pion distribution amplitude φ(z, Q̃2) has to be specified.

Before doing so we give some technical comments on our calculation.

We note that the internal quark line of Fig. 1b can go on-shell. The amplitude M of

equation (4), however, is always regular due to the z-integration [14] for realistic choices of

φ(z, Q̃2). This also can be read off from (11). The fact that the internal line goes on-shell

does not cause a Sudakov suppression since our diagrams are the lowest order contribution

of an inclusive process. In other words gluon emission to the final state will occur in

the higher order corrections. Only when xū approaches unity, where gluon emission is

prohibited by kinematics, the Sudakov suppression will arise.

Our model and the parton model are not complementary, but rather different approx-

imations to the Drell-Yan process. The diagrams of Fig. 1a,b give the whole leading order

contribution in the specific kinematic region of large enough xū, xū > 0.5 [9]. This is so

because the gluon exchange is the resolution of the pion bound state and not a radiative

correction.
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Now we can present our final results for λ, µ and ν for different choices of the pion

distribution amplitude φ(z, Q̃2). We find in general that the values of µ and ν are very

sensitive to the choice of φ(z, Q̃2) which we always take to be positive, symmetric, i.e.

φ(z, Q̃2) = φ(1 − z, Q̃2), and normalized,
∫ 1

0
dz φ(z, Q̃2) = 1. Thus we will not restrict

ourselves to the simplest case of φ(z) ∼ δ(z − 1/2) considered in [9].

This sensitivity can be illustrated for the special case of x̃ = 0.5 for which Re I =

−2F . From eqs. (7)-(9) we get,

λ(x̃ = 0.5, Q2
T/Q

2) =
1 + 4π2a2 − 4Q2

T /Q
2 +Q4

T/Q
4

1 + 4π2a2 + 4Q2
T /Q

2 +Q4
T/Q

4
, (14)

µ(x̃ = 0.5, Q2
T /Q

2) =
2
√
Q2
T /Q

2 (1 −Q2
T/Q

2)
1 + 4π2a2 + 4Q2

T/Q
2 +Q4

T /Q
4
, (15)

ν(x̃ = 0.5, Q2
T /Q

2) =
4 Q2

T/Q
2

1 + 4π2a2 + 4Q2
T/Q

2 +Q4
T /Q

4
, (16)

where a ≡ φ(z = 0.5)/F.

From these formulas we see that µ and ν in this case are not suppressed only if a is a

sufficiently small number. This is true for the so-called two-humped distribution amplitude

[15] which has a dip around z = 0.5. On the other hand, the choice of a convex distribution

amplitude, e.g. the asymptotic one, φ(z) = 6z(1 − z), will always produce suppressed µ

and ν at x̃ = 0.5.

We return now to our general results, eqs. (7)-(9). In Fig. 2 we plot λ, µ, ν and

2ν − (1− λ) versus xū for
√
Q2
T /Q

2 = 0.25 for different choices of φ(z, Q̃2) together with

the data of Ref. [5]. For the two-humped distribution amplitude we have chosen the

evolution parameter Q̃2 to be effectively ∼ 4 GeV2. The solid line is the result for the

two-humped φ(z) where powers of (Q2
T /Q

2)n/2 were dropped for n ≥ 3 in eqs. (7)-(9). We

note that corrections to our model may induce such terms, thus the difference between the

dashed and the solid lines should be viewed as the uncertainty of our predictions. We also

show the data points of Ref. [5] averaged in the intervals 4.05 <
√
Q2 < 8.55 GeV and

0 <
√
Q2
T < 5 GeV.

In Fig. 3 the same quantities are shown versus
√
Q2
T for xū = 0.6 and

√
Q2 = 6 GeV.

The data points in this case are averaged over intervals 4.05 <
√
Q2 < 8.55 GeV and

0.2 < xū < 1 and taken from Ref. [5]. All the data points were averaged over the intervals
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defined above in Ref. [5]. We would rather prefer to use the unaveraged data which are

not available. The use of the averaged over xū data in Fig. 3 forced us to fix the value

xū = 0.6 for our theoretical prediction which is rather low for our model and pushes it to

the limits of its applicability.

Finally we would like to comment on the limitations of our model and corrections to

it. The bound state effects considered here should have received a truly non-perturbative

treatment. We have restricted ourselves to a perturbative approximation to the problem.

This approximation makes sense only at large enough x which we have chosen to be > 0.5.

The contribution of more than one hard gluon exchange will be suppressed by powers of

αs in this case. The contribution of soft gluons to the pion bound state is taken into

account in the evolution of the distribution amplitude. The higher Fock states of the pion

are expected to be suppressed when x is large enough [12]. The pion and the nucleon are

not treated symmetrically in our model, namely the nucleon bound state effects are not

taken into account since in the kinematic region we consider, xū is always large and xu

is always small. Gluon emission to the final state will first contribute to the evolution of

the parton distribution functions. Hard gluon emission is suppressed by powers of αs. No

attempt of a systematic inclusion of higher order or mass effects was made.

The coefficient functions λ, µ, and ν at large x > 0.5 are very sensitive to the shape

of the projectile’s distribution amplitude φ(z, Q̃2), the basic hadron wavefunction which

describes the distribution of light-cone momentum fractions in the lowest-particle num-

ber valence Fock state. Measurements of meson form factors [12] and other exclusive

and semiexclusive processes [16] at large momentum transfer can only provide global con-

straints on the shape of φ(z, Q̃2); in contrast, the angular dependence of the lepton pair

distributions can be used to provide local measurements of the shapes of these hadron

wavefunctions. Detailed measurements of the angular distribution of leptons as a function

of both x and QT for the reactions Hp → `+`−X for the whole range of fixed target

beams H = π,K, p̄, p, and n will open up a new window on the structure of hadrons at

the amplitude level.

Our analysis shows that the broad, two-humped, distribution amplitude for the pion

which was obtained within the context of QCD sum rules [15] can account for the main

features of the data. In contrast, narrow momentum distributions, characteristic of weak
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hadronic binding, predict the wrong sign for the observed azimuthal angular coefficients µ

and ν.
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Figure Captions

Fig. 1: Diagrams (a) and (b) give the leading contribution to the amplitude of reaction (4).

Diagram (c) gives a typical (one out of four) contribution to the cross section (6).

Fig. 2: The angular distribution coefficients λ, µ and ν and the Lam–Tung combination,

2ν − (1 − λ), in the Gottfried-Jackson frame, versus xū for
√
Q2
T /Q

2 = 0.25. The

dotted line corresponds to φ(z) = δ(z − 1/2), the dashed-dotted line corresponds to

the asymptotic φ(z) = 6z(1 − z) and the dashed line shows the results for the two

humped distribution amplitude, φ(z) = 26z(1− z)(1− 50/13 z(1− z)). The solid line

is the result for the two-humped φ(z) where powers of (Q2
T /Q

2)n/2 were dropped for

n ≥ 3 in eqs. (13)-(15). The data points (averaged as explained in the text) are taken

from Ref. [5].

Fig. 3: The same quantities as in Fig. 2 are shown. versus
√
Q2
T for xū = 0.6 and√

Q2 = 6 GeV.
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