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- 1 Introduction; What is Diffraction?

. .

This talk is intended as a re-introduction and generalization of simple and

ancient ideas on diffraction for a generation of physicists trained mainly for the

study of hard collision processes.

Diffraction is shadow physics; hence it is most important when opaque objects

collide. Elastic scattering of hadrons at high energies is the most immediate -

example. But the subject is much more subtle. Inelastic diffraction exists as well,

as anticipated long ago by Good and Walker! as a consequence of the composite

nature of hadrons. If, in a peripheral collision of hadrons, part of the wave-function

of the projectile is attenuated more than the rest, then the internal wave function

of the outgoing projectile no longer is the ground-state eigenfunction. Therefore,

excitations will exist, even in “shadow” processes.

Because there are many kinds of diffractive processes, and because there is not

a uniform terminology on what is meant by the word “diffractive,” it is appropriate

to start with definitions of what at least I mean by it:

-..

A process is diffractive ij and only ij there is a large rapidity gap in the

final-state phase space which is not exponentially suppressed.

Some elaboration of this definition is clearly needed. The final-state phase space

variables implied in the definition are the lego-variables: 2 (pseudo) -rapidity q,

azimuthal angle ~, and transverse momentum pt. “Large” will mean much greater

than 2, at least 4“ to 6 units of rapidity. “Non-exponentially suppressed” means

that the probability of finding the gap in the final state is not a strong function

of gap width, when the remaining contents of the lego plot are held fixed. Let us

elaborate more on this last point:

In general, when a rapidity gap exists, the frame of reference can be chosen so

that q = O is in the middle of the gap. Then all collision products are divided into

either left-movers or right-movers; all of whose production angles are very small.

There are no “wee” hadrons produced. So the above statement “non-exponentially

suppressed” means that in the diffraction process

a+ b- A+B, (1)
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where a, A move to the right and b, B move to the left, the cross section

dOab({A}, {B}, S)

drAdrB
(2)

does not fall as a power ofs, with s m e‘~. (In the above definition, {A} and {B}

stand for sets of internal phase-space variables of systems A and B, and drA, drB

their differential phase-space volumes.
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Figure 1. Examples of diffractive processes: (a) single diffractive dissociation, (b) double
diffractive dissociation, (c) double Pomeron exchange.

Some familiar examples of diffractive processes are shown in Fig. 1. The

description of these processes, especially the two-body processes, can be made

either with emphasis on the s-channel or the t-channel. An s-channel description

tends to be more like classical optics, and typically uses optical-model concepts?

We will emphasize this view later. The t-channel descriptions typically utilize the

theory of complex angular momentum, Regge-pole theory$ developed in the 1960s.

While Regge theory nowadays is somewhat unfashionable, there is no reason,

either theoretical or experimental, for its neglect. Indeed, since its foundations are

-- built on the general properties of renormalizable local field theory, the emergence
--
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of QCD as the appropriate description of strong interactions argues even more

strongly for the relevance of Regge-pole concepts to the phenomenology.

If one tries to express the energy dependence of a candidate rapidity-gap

process as a power of s

do.~(A, B,s)

()

a

drAdrB
x F=(A) ~ Fb(B) (3)

it is natural (just as in deep-inelastic scattering) to take moments of the amplitudes

with respect to the s variabl~i. e. introduce Mellin transforms and study the

properties of the scattering amplitude in the transform space. If one describes the

process in terms of exchange in the t-channel of a particle of spin J, the amplitude

would depend upon s like (s/i)~. To see this, write

If one works out the kinematics to find cos Ot one finds, for massless particles

2s
coset=l+T

with unessential complications for more general cases. Thus as s ~ 00,

(4)

(5)

(6)

Therefore one can expect the asymptotic s dependence of scattering amplitudes

will be related to the angular momentum of the objects exchanged in the t-channel.

When these objects are composite, the theoretical consequences are very beau-

tiful. One considers together the set of orbital excitations with the same number

of nodes in their radial wave functions. A good example in real life is the set of

resonances which comprise the p-meson and its radial excitations:

3s1(770), 3P2(1320), 3D3(1690) , . . . (7)

Since the radial wave equation for this set of resonances can in principle be solved

for non-integer angular momentum (only the strength of the centrifugal barrier

term /(/ + 1)/R2 is affected), the mass of this set of resonances maybe considered

as a continuous (indeed analytic) function of J (or vice versa). The function

J = J(M2) is called the Regge trajectory of this set of resonances:-..
--
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With some nice mathematics (Watson-Sommerfeld transform), it then follows

that the exchanges of this set of resonances has a dependence on s, at given t,

which is just given by the Regge trajectory J(M2 ) extended from timelike M2 to

spacelike t. An example is given in Fig. 2. The most important feature is that

high spin exchanges no longer lead to severe cross-section growth at high energy.
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Figure 2. Chew-Frautschi plot of J versus M 2 for a meson trajectory, for the Donnachi~
Landshoff “soft Pomeron,” and for the BFKL perturbativeor hard Pomeron, discussedin Section
2.

This picture works best when the exchanged object is a bona fide two-body

bound state, in which case one gets a pure power law. (The jargon is a “pole in

the j-plane,n i.e. a pole singularity in the Mellin (or better Legendre) transform

-.. of the original amplitude. )
--
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There is an abundant body of experimental data which decisively exhibits the

validity of these ideas when applied to exchange of mesons which are “non-singlet,”

i.e. which contain non-vacuum quantum numbers such as charge or flavor:

For high energy diffractive processes, for which the exchanged object is ‘sin-

glet,n i.e. carries vacuum quantum numbers, the situation is less clear. Theoreti-

cally one does not expect a pure power of s asymptotically, but instead some kind

of logarithmic growth of the total cross section. (The jargon for this is ‘a cut in -

the j-plane.” ) However Donnachie and Landshoff6 have had great phenomenolog-

ical success assuming the exchanged object, the soft Pomeron (named in honor(?)

of I. Ya. Pomeranchuk, who contributed much to the early history of this sub-

ject), has a pure Regge trajectory J(t) which intercepts t = O at J = 1.08, with

a slope in t (or M2 ) four times less than that of the p trajectory. They also find

simplicity upon assuming that this soft Pomeron couples to constituent quarks in

a way quite similar to the photon coupling to quarks.

2 Hard Diffraction

Hard diffraction is a subject which is now only coming into existence. It has

an obvious definition:

Hard diffraction is the set oj strong-interaction diffractive processes which

contain jets in the final-state phase space.

Ingelman’ suggests a further distinction:

1. Diffractive hard scattering has jets only on one side oj the rapidity gap.

2. ‘Hard diffractive scattering has jets on both sides oj the rapidity gap.

When the distinction is not to be made, I try to remember to use the two

words “hard diffraction,” not three.

Proton Fmgment r Quark Jet
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Figure 3. Deep inelastic scattering at HERA: structure of the lego plot.-..
--
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Before giving some examples of candidate hard-diffraction processes, there

are some preliminary kinematic considerations. These have to do with where

in the phase-space one most expects the jets to occur. This is best introduced

by considering electron-proton deep-inelmtic scattering in collider mode, m now

occurring at HERA. A lego plot of a typical deep-inelastic final state is shown in

Fig. 3. Even for the generic final states which, in ~*-proton collinear frames of

reference, do not contain jets, there will be in the laboratory frame a jet along -

the direction of the struck quark. If one draws the conventional circle-of-radius

0.7 around the jet core to isolate the jet contents, and if one then constructs a

tangent to the circle as shown, then almost all reaction products lie on the side

of the tangent common to the nucleon beam fragments; g there is a rapidity gap

between the quark jet and the electron.
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Figure 4. ppscattering via 7, W exchange.

To generalize to hadron-hadron scattering, we first look at hard scattering via

photon (or W, Z) exchange. From the above discussion we expect the final state,

naively, to look like Fig. 4. The jets are separated by a rapidity gap, as before. But

probably this electroweak exchange is smothered by two-gluon exchange, where

the two gluons are a net color-singlet, thus simulating a photon.

This two-gluon exchange is the prototypical example of hard diffraction scat-

tering. We shall return to it later, but before doing so must give warning that

the factorized form of the scattering process is very naive. We have neglected all

the spectator-constituents in the projectiles; if they interact during the collision

the rapidity gap will usually be filled in. Thus any parton-level estimate of the

hard-diffraction cross-section must be multiplied by the ‘survival probability of

the rapidity gapn (1S12).

Various estimates of the quantity ( [S[2) exist ?0 But they all employ essentially

-.. the same method, which is to assume no correlations in the impact plane. With
--
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this assumption one simply weights the hard cross-section luminosity at a given

impact parameter with the transmission probability of the two projectiles at that

impact parameter. The latter quantity is measured in elastic scattering. However

the assumption of no correlation in the impact-plane is very suspect, and the

generic estimate ( 1S]2) z 0.1 for TeVatron energies may be too high}l

3 Experiments

The pioneering experiment on hard diffraction stemmed from the seminal

proposal of Ingelman and Schlein12 to meaure the ‘structure function of the

Pomeron.n They assumed that the Pomeron exchange can be regarded in a way

similar to ordinary hadron exchange. If so, it makes sense to measure its structure

function via a hard collision process. Indeed such a process can be considered to

define its structure function.
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Figure 5. The Ingelman-Schleinprocess for determiningthe Pomeron structure function.

The process is shown in Fig. 5 along with the event pattern in the lego plot.

The experiment was done 13 at the CERN SP~S; the recoil proton was tagged

with a “Roman pot” detector inserted very near the beam far downstream of

the collision point. The diffracted system, which was required to contain dijets,

was detected in the UA2 calorimeters. The experiment yielded a remarkable

result. While the a priori estimates of the structure function were typically soft, N

(1 – Z)s, or mesonic14 (actually q~) N (1 – Z)l, the experimenters saw evidence for

a ‘super-hardm Pomeron, with 3070 of the structure function being concentrated

near x = 1, like 6(1 – x) or possibly (1 – x) ‘1. A possible interpretation of this
-.. result will be sketched in the next section.--
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A similar example of hard diffraction is emerging from HERA, where deep-

inelastic final states are seen which contain a leading dijet in the photon frag-

mentation region and nothing else visible, i.e. a rapidity gap toward the proton

direction~s If interpreted w the process

Pomeron + photon + jet + jet (8)

the interpretation will again probably require a ‘superhard” gluon component

within the Pomeron.

Finally, the DO collaboration at the Fermilab TeVatron has searched for ra-

pidity gaps betwmn jet pairs, as described in the previous section. The data16 is

shown in Fig. 6. While the results appear encouraging that a non-exponentially

suppressed rapidity gap has been observed, the DO collaboration quotes only an

upper limit. Thus far, only calorimetric information has been utilized, and their

difficulties in cleanly defining nothing preclude a stronger statement. Eventually

tracking information should be available to provide a more incisive conclusion.

4 The s-channel viewpoint

As we have seen, the Regge-pole approach has created a heritage of looking

at diffractive processes from a i-channel viewpoint. In addition, the work of many
17

theorists, especially Lipatov and his associates 18 on the asymptotic behavior at

short distances expected from perturbative QCD, also relies on a t-channel point

of vie-w: Roughly speaking, the summation of gluon-ladder exchanges leads to a . -

strong growth with energy of parton-parton scattering cross-sections at fixed t as

s ~ m. Typically the behavior of the total cross-section (related to the absorptive

part of the forward scattering amplitude) is

‘PQCD(S)“ &
or in deep-inelastic scattering

(9)

-..
--

.-
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Figure6. Probability of finding arapidity gap between jet pairs versus gap width; data16
from the DO collaboration at the Fermilab collider.

with the intercept of this “BFKL Pomeron” given by

(11)

This behavior is consistent with what is being observed at HERA.

But even for this situation, an s-channel point of view appears to be very

useful. In what follows, we do not enter into the ramifications of the BFKL

Pomeron, but only look at its starting point, two-gluon exchange.

Let us return to our example of small-angle parton-parton scattering via single

gluon exchange. At this level there will be no rapidity gap because color has

been exchanged. Exchange of a second gluon, however, can provide the color
-.. neutralization. --
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To estimate all this, it is emiest 19 to work in impact-parameter space, not

transverse-momentum space. The original one-gluon ‘Coulomb” amplitude is,

‘The Fourier transform of 1/q2 is a logarithm, so one h~

T(b)* a. log bR

with R some screening radius, evaluation of which

turbation theory.

(13)

goes beyond the realm of per-

The virtue of impact space is that at high energy the impact parameter is

conserved during the collision process—it is essentially the classical limit of angu-

lar momentum. Thus the absorptive part of the two-gluon exchange amplitude is

easily calculated via unitarity:

ImT(b) = IT(6)12 N a: log2 bR . (14)

This contains a log and dominates the real amplitude. The ratio to the lowest

order amplitude is also as log

a(2g color singlet)
-.

0( lg color octet)

The constant just consists of

ratio does not depend upon

bR. So, since a. N log–l, we have

N a: log2 bR = (constant) . [1 + O(aS)] . (15) ,

color factors, n’s, etc. and is about 0.1. Since the

impact parameter, the same result will survive a

Fourier-transform back to transverse-momentum space. This implies20 that the

fraction of two-jet events with a rapidity gap between them will be given in this

simple approximation

independent of pt and

by

0(2jet, gap)
N 0.1 ([s[2)s 0.01

a(2jet, no gap)
(16)

of width of the gap. Indeed this result is even independent
-..

of whether the objects which scatter are quarks or gluons.

11
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So the main message is that from both the theoretical and experimental point

of view, it is easiest to estimate (and measure!) the ratio of the process with

rapidity gap present to the same process with no rapidity gap. We conjecture

that in fact

moving jets

this procedure generalizes. Suppose the final state consists of left-

{A} and right-moving jets {B}. Then the conjecture is that

~~d~~ (gap)= (constant). (1S12) ‘oAB (no gap) .
drAdrB

(17)

The constant should again be roughly 0.1 but maybe somewhat different, because

inelastic, not elastic, unitarity will be utilized. The strategy for the proof (not yet

completed) is again to

1.

2.

3.

4.

Use the large N. approximation to simplify the color-counting.

Fourier-transform to impact space.

Use (inelastic) unitarity to estimate the absorptive part of the color-singlet

two-gluon exchange.

Argue that the result is valid over a large enough range of impact parameters

to allow the Fourier transform to momentum space to be done without

disrupting the result.
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Figure 7. A generalized Ingelman-Schlein process.

Now let us interpret this s-channel result from the t-channel point of view.

We suppose that there exist no snags in the proof, and consider the generalized

Ingelman-Schlein process shown in Fig. 7. It is a little simpler to analyze than

the real experiment because all essential parts of the process can be considered

at the parton level. We see that, since the ratio of the Pomeron-exchange cross-
-..

section to the-single-gluon-exchange cross-section does not depend on kinematic

12
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. .

- parameters, the Pomeron acts as if it were a single gluon?l Thus we reproduce

the s-channel results (to logarithmic accuracy) by assuming the structure function

of the Pomeron is

Fg(z) = (constant) . ([S12) 6(1 – z) (18)

or perhaps

~~(x) = (constant) . (1S12) (1 – Z)-l (19) -

which to logarithmic accuracy is the same thing. Note that this parton distribution

is unusual not only for its singular z-dependence but also for its normalization,

which cent sins the factor (IS12), something especially dirty and nonperturbative.

From this point of view, one cannot hold out much hope that in general the

t-channel “hard Pomeron” is a simple object. In a most interesting and impor-

tant paper~2 Collins, Frankfurt and Strikman argue that the feature of a singular

z-distribution in the Pomeron structure function is not unreasonable; their argu-

ments for this are not dissimilar from what we present here. But they go on to

argue that the familiar property of factorization will not hold in general, so that

there will not be a unique definition of the parton distribution inside a Pomeron,

good for all hard processes. They in particular discuss an interesting example of

deep-inelastic electroproduction of dijets, with p; large compared to the Pomeron

t. Under these circumstances, the cross-section without gap is suppressed by a

factor t/P$, owing to the smallness in space (W p~l ) of the q~colordipole created

by the photon relative to the resolution scale t ‘1/2. This suppression mechanism

acts on the second gluon exchanged as well, leading to a factor t/p~suppression in

the ratio of the process with rapidity gap to that without the gap. An important

lesson is that the rule we have conjectured, Eq. (16), will have exceptions when

more than one distance (or pt ) scale is operative in the dynamics.

5 Summary Remarks

On the level for which we have considered the “hard Pomeron,” namely, simple

two-gluon exchange, the physics is extremely simple when viewed in thes channel.

To logarithmic accuracy, one of the two gluons carries most of the momentum

transfer. The other adds a “Coulomb phase’ to the amplitude. In QED the

- “- Coulomb-phase contribution is at high energy innocuous (at low energies it makes

13
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. .

Keplerian orbits!). In QCD it is not innocuous because of color; color-singlet

exchange occurs first in the second order. Nevertheless, it allows the Pomeron =

gluon picture to be credible at this level.

When BFKL iterations are added to make the two-gluon exchange into a lad-

der, the situation is still most easily described in the s channel and the importance
23

of the ‘Coulomb- phasempoint of view survives a variety of complications.

But the most dramatic consequence of the BFKL iterations is the strong -

s-dependence which is generated, an extra s‘.4 behavior of parton-parton in-

teractions at fixed large t. This means eventually that even partons become

black?4 When the energies are reached such that black partons collide and are

opaque relative to each other, there may well occur really new strong-interaction

phenomena—phenomena too novel for theorists to anticipate?5 At that point the

purely e~perimental study of strong interactions will become extremely interesting.

I think that in the long run the study of hard diffraction may well take a

place of importance relative to soft diffraction analogous to the importance of

deep-inelastic processes relative to elastic electron-proton scattering, or other such

exclusive processes. It is worth a great deal of theoretical and experimental at-

tention.

-.-
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