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1. Introduction

This chapter introduces the reader to the motion of electrons1 in a storage ring,
and to the connection between electron beam dynamics and the properties of synchrotron
radiation.

The system of magnetic lenses that guides and focuses an electron beam is called
the lattice . The choice of a lattice for a synchrotron radiation source is, arguably, the
single most important decision in the history of a project. The lattice determines the
emittance of the electron beam, the brightness of the photon beam, the beam lifetime, the
quality of the experimental conditions, the number of insertion devices that can be
accommodated in the straight sections, and the size and cost of the accelerator. The best
choice of lattice is not a straightforward affair, involving complex performance and cost
trade-offs, and a certain amount of intuition and subjectivity. The various types of
lattices, and future directions in lattice design, will be covered, however briefly, in this
review.

Synchrotron radiation is emitted from the bending sections of the electron
trajectory and in the straight sections, where insertion devices might be installed (see
Chapter 12). From the source points the radiation is channeled into a beam line for
experimental use. The lattice and the electron beam energy define the trajectory and,
together with the natural divergence of the radiation, the size and divergence of the
source.

After a broad overview in Section 2, the magnetic forces acting on the electrons
and the associated differential equations of motion are discussed in Section 3. The
solutions of the equations are given without derivation; the method of solution is
outlined, and references for deeper studies are given.

Section 4 shows how the dynamics of electron motion in magnetic lattices and the
emission of radiation define the beam emittance. Examples of lattices for machines in
operation or under construction are given in Section 5. Throughout this chapter, the
electrons are assumed to be ultra-relativistic.

* Work supported by the Department of Energy contract DE–AC03–76SF00515. SSRL is funded by the
Department of Energy, Office of Basic Energy.

+ Chapter 2 of Synchrotron Radiation Sources: a Primer, H. Winick, ed., World Sci. Pub. Co.
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2. Overview of Electron Dynamics  in  a Storage Ring

2.1. The Storage Ring

A storage ring accumulates and stores electrons that have been pre-accelerated
and transported from an Injection System (see Chapter 3). The electrons are injected and
stored in packets called bunches, which are held together in the direction of motion by the
bunching effect of the radio-frequency system (see Chapter 4). The latter also provides
the energy lost by radiation and, if acceleration is needed, the energy gain required by the
particles to keep in step with the magnetic field

The electrons circulate inside a doughnut-shaped chamber, in which a high
vacuum is maintained, delimited by metallic walls (see Chapter 8). The chamber is
surrounded by magnets alternating with empty, or drift, spaces. The magnets curve the
electron trajectories (dipole field) and keep them close together in the plane perpendicular
to the direction of motion (quadrupole field).

2.2. Collective and Individual Motion, Frame of Reference.

Figure 1 gives simplified top and cross sectional views of electron bunches,
frozen in time, circulating in a vacuum chamber surrounded by magnets. The picture is
much out of proportion. The circumference of a ring is on the order of 50–250 m for UV
and soft x-radiation sources (beam energy: 0.5–3.0 GeV) and 800–1500 m for hard x-ray
sources (6–8 GeV). The bunch length is on the order of centimeters or smaller. Tens to
hundreds of bunches may circulate in a storage ring.

The motion2 of the electrons is described in a reference system with an azimuthal
axis tangent to the orbit, and the transverse horizontal (x) and vertical (y ) coordinates,
lying in the plane perpendicular to the orbit (indicated in Fig. 2). The azimuthal
coordinate s  is the independent variable, and is the distance along the orbit from a
reference point so. Lattice designers and orbit scientists spend much of their time
studying the functions     x s x s dx ds y s y s( ) ′( ) = ( ) ′( ),  ,  ,   and .

The trajectory of an individual electron in a storage ring is qualitatively shown in
Fig. 2. It consists of oscillations around an orbit that closes on itself after one revolution,
appropriately called the closed orbit . The oscillations are called betatron oscillations and
take place in both the horizontal and vertical planes. The orbit has horizontal and vertical
components.3 In an accelerator with neither vertical bends nor magnetic errors or
misalignments, the orbit lies in the horizontal plane (x-s  in Fig. 2), and the vertical closed
orbit is zero everywhere. This ideal situation does not occur in practice, and there always
is an orbit component in the vertical plane.
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Fig.2 Descriptive view of the closed orbit and a betatron

oscillation. The open section is meant to emphasize that the

betatron oscillation is not closed.
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A large number of electrons (1010 or more per bunch) oscillate around a closed
orbit with all possible phases and amplitudes. The amplitudes are within a given range
defined by the transverse size of the vacuum chamber or, as explained in Section 3, by the
maximum stable amplitude.

Not all the particles in a bunch have the same energy. Due to the quantum
emission of radiation, there is a distribution of energies. To each energy, there
corresponds a closed orbit, around which off-energy particles execute betatron
oscillations.

2.3. Lattice Definition

The lattice of a storage ring is defined to be the sequence of magnetic lenses
designed to insure that electrons circulate for a period of several hours (corresponding to
billions of revolutions) while maintaining the appropriately small dimensions of the
beam. The former is requisite to guarantee the users long periods of uninterrupted
emission of radiation, the latter to provide a small and hence bright source of light.

The magnetic properties of the lattice, together with the electron energy,
determine the transverse size and divergence of the beam which, after convolution with
the divergence of the radiation (see Chapter 14), define the photon beam size.

3. Equations  of Motion and Solution

3.1. Basic Magnetic Elements In a Lattice

The basic lattice of a storage ring consists of a sequence of dipole (bending) and
quadrupole (focusing or defocusing) magnets joined by field-free regions, or drift spaces.
The sequence closes on itself to allow the electrons repeated revolutions around a
determined reference orbit and within a confined region around this orbit.

The bending magnets are characterized by a magnetic field that is perpendicular to
the direction of motion and is uniform in the region occupied by the beam (see
Chapter 5). A bending magnet causes a charged particle to follow a circular trajectory
along its length. Straight trajectories are joined by sections of circles. The bending
magnets are positioned in such a way that there exists a trajectory that is a closed curve
that satisfies given geometrical constraints. An electron on this trajectory repeats its
motion every revolution. This trajectory is the closed orbit , already introduced in
Section 2.2. In the absence of magnetic, alignment, and other imperfections, it is also the
ideal (or design, or reference) orbit. The beam lines are positioned to receive the light
emitted from, and are centered tangential to, the closed orbit in the bending magnets and
insertion devices.

If the bending magnets were the only elements of the lattice, particles with spatial
coordinates different from those of the ideal orbit would move progressively away from
this orbit. Since a beam of electrons contains a distribution of particles having different
positions and angles, as well as energies, eventually the whole beam would spread out
and be lost. For this reason, focusing elements are required to keep together this
collection of particles having different coordinates. These elements are quadrupole
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magnets , and they are characterized by a magnetic field whose components are linear
functions of the x  and y coordinates.4

The components of the magnetic field of the basic lattice components, dipoles,
and quadrupoles, are:

    

B B

B

B Gx

B Gy

y

x

y

x

=
=
=
=

0

0

,

,
,

,

for dipoles,  and

for quadrupoles,

(1)

where Bo and G are constant. In a quadrupole, the field is zero at     x y= = 0 . This point
defines the magnetic axis in the azimuthal direction. A quadrupole for which a particle
away from the magnetic axis is deflected back onto(away from) it is called
focusing(defocusing). It is a consequence of Maxwell's equations that a quadrupole field
that is horizontally focusing is vertically defocusing, and vice versa. A sequence of
focusing and defocusing quadrupoles, appropriately designed, can focus the beam in both
planes. This is demonstrated in the theory of strong focusing,5  on which all modern
synchrotrons are based.

3.2. The Synchronous Orbit

For a given bending field, there is one value of the electron energy for which the
particle follows the ideal orbit. We call this the synchronous energy and the particle the
synchronous particle. The energy is given by the expression equating the centrifugal force
to the Lorentz force:

    E ecB0 0 0= ρ , (2)

where Eo is the electron energy, e the electron charge, c the speed of light in a vacuum,
Bo the bending field, and ρo the radius of curvature in the field of the dipole magnets.6

In a more commonly used, form, Eq. (2) can be written as

    E GeV B T m0 00 3[ ] = [ ] [ ]. ρ , (2a)

where GeV, T, and m denote giga-electron-volt, Tesla, and meter, respectively.

3.3. Equations of the Synchronous Orbit and Their Solutions

An electron that, at a given initial azimuthal position so, has the same energy as
the synchronous particle, but is displaced (in position or angle in the transverse
coordinates     x x y y, , ,′ ′ ) with respect to the ideal orbit, executes betatron oscillations
around this orbit. These oscillations occur in the horizontal and vertical planes and are
defined by the following differential equations of motion:

    

′′ + ( ) =
′′ + ( ) =
x K s x

y K s y
x

y

0

0

,

.
(3)

The focusing strengths Kx,y(s) are proportional to the quadrupole fields (focusing
or defocusing) and also include relatively small effects of the dipoles not discussed here.7
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Because the magnets have constant fields along the direction of motion, these
functions are dichotic (Kx,y(s)= constant = 0 in magnet-free regions, or ≠ 0 in a magnetic
field). Equation (3) was solved in the original, classical paper, in which the principles of
strong focusing were described.5

    

x s s s

y s s s

x x x x

y y y y

( ) = ( ) ( ) +[ ]
( ) = ( ) ( ) +[ ]

ε β φ φ

ε β φ φ

cos ,

cos .

0

0
(4)

Here, x and y are the transverse displacements from the closed orbit defined
earlier. The meaning of the constants εx and εy is discussed in Section 3.5, together with
the functions βx and βy. The betatron phases φx and φy are functions of the distance s
along the closed orbit, and φοx and φοy are the initial phases. The φx,y are given by

    
φ

βx y
x y

s ds
s,

,

.= ( )∫0 (5)

The motion is a pseudo-harmonic oscillator, with instantaneous amplitudes
proportional to the square root of the β-functions and instantaneous wavelength λx,y(s)
= 2π βx,y(s).

3.4. The β−Function

The reader who has been exposed to accelerator terminology will have heard the
term β−function used often. It was seen in Eq. 4 that these functions (horizontal and
vertical) are related to the maximum amplitude of the oscillations at a given location s:

x,ymax(s)= εx,yβx,y (s) . (6)

Similarly, the maximum angle of the oscillation at a location s is given by

x',y' max(s)= εx,y/βx,y(s) . (7)

The β-functions are periodic in s and follow the periodicity of the lattice. Together
with the constants ε x,y, they determine the maximum amplitude of the betatron
oscillations. The units in use are meter-radian for εx,y and meter/radian for the β-
functions. Examples of β-functions are given in Fig. 10.

3.5. The Emittance

Figure 3 shows the locus of all possible positions and angles (x,x' or y,y') of a
particle that is going around the accelerator, as it would be monitored by an observer
placed at an azimuth s. All the points fall in an ellipse whose area, it can be shown, is
equal to the constant εx,y multiplied by π. The shape and orientation of the ellipse
changes as a function of s. In an optical system without acceleration, emission of
radiation, collective effects, or horizontal-vertical coupling, εx,y remains constant as the
particle revolves around the accelerator (a consequence of Liouville's theorem). In reality,
this “constant “ is perturbed by radiation emission and acceleration, and this leads to the
statistical concepts discussed in Section 4.
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When the ellipse represents the motion of that particle in a bunch with the highest
value of εx,y is the emittance  of the beam. Its importance is immediately recognized:
multiplying by the value of the β-function at a given location and taking the square root
(Eq. 6) gives the value of the maximum amplitude of the oscillations in the beam, its
size.8

In an electron storage ring the distribution of betatron oscillation amplitudes is
Gaussian, and it is normal practice to define the emittance of the beam as the values of
the constants εx,y that are related to the standard deviation of the distribution of
amplitudes and angular divergences. The relationships are given by the expressions
(derived from Eqs. (6) and (7)),

σx = εxβx  , σy  = εyβy , (8a)

σ' x = εx/βx , σ' y  = εy/βy , (8b)

where σx ,y and σ 'x y are the distribution standard deviations of position and angle.
Table I shows the horizontal emittance of a few representative synchrotron

radiation sources. One should note how the electron beam emittance of the various
generations of storage rings has evolved towards smaller and smaller values, producing
photon beams with smaller and smaller beam sizes and divergences, i.e., brighter photon
beams.

3.6. Tunes and Resonances

3.6.1. Definition of Tunes

The numbers of horizontal and vertical betatron oscillations per ring revolution
are called the tunes and are denoted by the symbols νx and νy. From Eq. (5), the tunes
are given by
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Table I.

Facility Energy
(GeV)

Emittance
(× 10–9 meter-radian)

SRS 2.0 108
BESSY I 0.8 38
NSLS VUV 0.7 138
NSLS x-ray 2.5 102
SPEAR 3.0 135
Photon Factory 2.5 130
ALS 1.5 4
APS 7.0 8
ESRF 6.0 7
SPRING-8 8.0 7

νx,y  = 1
2 π

ds
βx,y(s)

0

C

. (9)

The integral is extended to the entire lattice length C. The tunes play an important role in
the stability of the motion. Their values vary, depending on the optics, but their integer
part is on the order of 5–15 units in UV and soft x-ray light sources. In larger, hard x-ray
machines, like for instance ESRF, they have the values 36.2 (horizontal) and 11.2
(vertical). Sometimes the symbol Qx,y is used for the tunes.

3.6.2. Survey and Magnetic Imperfections, Linear and Nonlinear Resonances

The analysis of the motion shows9 that there are certain values of the tunes that
potentially threaten the stability of the motion. Considering for a moment the transverse
plane only (i.e. neglecting energy oscillations) they are those that satisfy the relationship

    m n px yν ν± = , (10)

where m, n, and p are integer values. Equation (10) expresses the phenomenon that, if
there are magnetic perturbations in the accelerator (unavoidable), the perturbing effect
(colloquially called the kick in accelerator jargon) can add up at each revolution, causing
the amplitude of the oscillations to grow. For this to happen, the numerical relationship of
Eq. (10) must be satisfied, otherwise the perturbations tend to cancel each other over a
sufficiently large number of turns. Since m and n can take any integer values, it appears
very difficult to find a pair of tunes values that escape Eq. (10). Fortunately, it happens
that the perturbing effect becomes weaker and weaker as the order of the resonance,
defined as the sum of |m| and |n|, becomes larger. In general, in electron accelerators, one
does not worry about resonances for which |m| + |n| > 5. This is because radiation
damping tends to neutralize the resonant amplitude growth when it and the damping rates
are of the same order (see Section 4.3).
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It is not necessary for Eq. (10) to be perfectly satisfied for a magnetic perturbation
to be felt. There is a region around a resonance line, defined by Eq. (10), where the
trajectory can be perturbed. Fortunately, this band (called stop-band width) becomes
narrower the higher the order of the resonance.

3.6.2.1. Linear Resonances, Orbit and Focusing Perturbations. The
resonances for which |n| + |m| ≤ 2 are driven by linear imperfections in the lattice. The
resonances ν x,y = integer are particularly disruptive. They are driven by magnetic
imperfections of the dipole type, by survey imperfections in the transverse locations of
the quadrupoles, and by rotational errors in the placement of the dipoles. These
resonances cause closed orbit distortions and are responsible for the movement of the
photon beam that is so disruptive to the experimentalists. The orbit distortions act like

    1
2 2νx y p, −( )  (where p is any integer) and, although the tunes are normally set at a

respectable distance from an integer value, orbit distortions can be, and are, driven at any
tune values. For this reason, dipole correctors are used to correct the orbit distortions and
are a necessary part of any accelerator (Chapter 13 is devoted to the important aspects of
orbit correction). To reduce the amplitude of the orbit distortions, tight tolerances are set
for the random relative variation of the bending field (on the order of a few times 10–4

rms), for the transverse positioning of the quadrupoles (typically 0.10–0.15 mm rms) and
for the rotation angle of the bending magnets (0.5–1.0 mrad rms),

Magnetic imperfections of the quadrupole type drive second order resonances.
They perturb the β-functions, couple the horizontal and vertical motion (see Section
3.6.2.3), and, if strong enough, may lead to an unstable lattice. The tolerances on the
variation of the field gradient (G in Eq. (1)) from quadrupole to quadrupole are specified
to limit this effect, and are typically on the order of 10–3.

3.6.2.2. Non-linear Resonances. Those resonances for which |n| + |m| > 2 are
driven by nonlinear fields, for example the two third integer resonances:

    

3
2
ν
ν ν
x

y x

p

p

=
± =

,
. (11)

They are driven by sextupoles fields that have the form

    

B S x y

B S xy
y

x

= −( )
=

2 2

2

,

,
(12)

where S is the sextupole strength, normally expressed in T/m2. Sextupole magnets are
part of any storage ring lattice because, as we shall see in Section 3.9.1, they are needed
to correct the chromatic aberrations of the quadrupoles.

Higher order resonances are driven by magnetic fields with higher order non-
linearities. For instance, octupole fields (those that have cubic dependence on the
displacement, By (x,0) = constant x3) drive fourth order resonances, for which |n| + |m| =
4. Decapole fields (quartic dependence on displacement) drive fifth order resonances, and
so on. Some resonances require a slight rotation of the magnetic axis in order to be
driven, and this often sets the survey tolerances.

At the construction stage the magnet builder requires a set of tolerances from the
accelerator physicists for the purity of the magnetic field.10 This is typically on the order
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of a few times 10–4. The subject of beam-stability in the presence of non-linear fields is
discussed further in Section 3.9.2.

Two more points need to be mentioned concerning Eq. (10). It can be shown that
only the + sign (sum resonances) on the left hand side of the equation leads to indefinite
growth in both the horizontal and vertical directions. The – sign resonances (difference
resonances) lead to a transfer of oscillation amplitudes from the horizontal into the
vertical, and vice versa, but the motion is bounded. The behavior is much like that of a
coupled pendulum, with the maximum amplitudes beating between the two directions of
transverse motion. Sum resonances are in general much more dangerous.

For a resonance condition to be established, the perturbation (dipoles,
quadrupoles, non-linear fields) must have a p-th (integer of Eq. (10)) Fourier component,
analyzed as a function of the azimuth, that is non-zero. This is the harmonic that drives
the resonance. Linear and non-linear resonances are corrected by canceling out, with
appropriate magnets, the more dangerous harmonics of the field errors.

Figure 4 shows the working diagram of the ALS storage ring.11 This is a plot of
resonance lines defined by Eq. (10), with axes given by νx and νy. The working point is
the point having the tune values as coordinates. The accelerator physicist chooses this
working point to be at a suitable distance from resonance lines. It is worthwhile to
mention the order of magnitude of the tolerable departure of the tunes from the design
(or, in an existing machine, experimentally found, optimum) values. This tolerance varies
greatly from storage ring to storage ring, but it could be as tight as 0.001 in tune.
Remember that tune values are in the tens of units. Thus, this tolerance is rather tight and
is reflected in the high stability required from the power supplies.

It is shown in Chapter 4 that, due to the restoring force of the radio-frequency
field, particles oscillate in energy, describing synchrotron oscillations. The number of
oscillations per revolution is denoted by the symbol νs (synchrotron wave number), and
is on the order of 0.01 (100 turns per oscillation period). If the three-dimensional motion
is considered (two transverse and one energy variable), then more resonances appear that
involve the energy oscillations. The extended numerological condition for resonance is

    m n k px y sν ν ν± ± = . (13)

When Eq. (13) applies, the resonance is called a synchrotron-betatron resonance.
It may be driven, for instance, when the value of the dispersion at the location of the
radio-frequency accelerating cavities is non-zero.

3.6.2.3. Horizontal-Vertical Coupling.  It is important to note that in Eq. (3)
horizontal and vertical motions were not coupled, i.e., the horizontal differential equation
of motion did not depend on the vertical coordinates, and vice versa. This is only true in
an ideal lattice in which the horizontal and vertical components of the magnetic field are
perfectly aligned and in absence of field imperfections (see Eq. (1)). In practice, a small
amount of coupling is always present.

Particularly important is the coupling due to a rotated quadrupole, i.e., a
quadrupole that, because of survey tolerances, is slightly (on the order of one mrad or
less) rotated around its magnetic axis. This imperfection excites the coupling resonances

νx ± νy = p. The sum resonance must be avoided. Although normally not “fatal,” special
attention is required also for the difference resonance νx – νy = p. This resonance couples
horizontal and vertical motion. Since the vertical beam emittance is only a few percent of
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Fig. 4 Tune diagram of the ALS, showing resonances of the type

m νx ± n νy = 12p, up to order 6. (The ALS has a twelve-fold

periodicity, and p is any integer.)

the horizontal one, this resonance may appreciably increase the vertical beam size and
thus reduce the brightness of the photon beam.

To combat the linear coupling effect, most storage rings are provided with rotated
quadrupoles (i.e., quadrupoles that are rotated by 45o around the magnetic axis) placed at
strategic positions to cancel the effect of the rotation errors of the lattice quadrupoles.

3.7. Effects of Insertion Devices on the Particle Motion

Synchrotron light facilities are making ever increasing use of wigglers and
undulators (see Chapter 14), to the extent that these devices are becoming significant
parts of the beam optical system. Theoretical studies,12 confirmed by experimental
observations, have shed light on the perturbations to the trajectory caused by the
magnetic field of such devices. The analytical expressions for the field are given in
Chapter 14, namely a dipole field (but rich in higher harmonic content) of alternating
polarities that imposes an oscillatory trajectory to the electrons (Fig. 5a). In the general
form13 the expressions for the field in a planar undulator are14
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cosh cosh cos ,

sinh sinh cos ,

cosh sinh sin ,

(14)

where kx2 + ky2 = k2 = (2π/l)2, and l is the length of the magnetic period.
If the poles are flat, and in the approximation that they are infinitely large, kx = 0.

Shaping the poles to provide horizontal focusing gives kx2 > 0.
The amplitudes of the orbit oscillations are, typically, on the order of a few

microns in undulators and hundreds of microns in wigglers. Figures 5a and b give an
impression of the trajectory.

The first requirement of the field is that the trajectory not be perturbed outside the
length of the insertion device (Fig. 5b). This is so in a perfectly designed and built
magnet, but inevitable field errors cause a perturbation to the orbit that, if uncorrected,
propagates around the ring. Correcting dipole magnets and beam position monitors are
normally added at the beginning and end of the insertion device to cancel any orbit
distortion. More sophisticated corrections may also be included. These corrections are
particularly important in modern light sources, in which the undulator field is often
changed during the experiment, and it is important that one insertion device does not
perturb the orbit for other users.

Even a perfectly built insertion device, however, has focusing terms that must be
accounted for in the design of the optics and contains significant non-linear components,
as implicit in Eqs. 14.

The focusing effect of insertion devices results in linear15 tune shifts. In parallel
pole devices (no horizontal focusing) the linear tune shift only occurs in the vertical
plane. This tune variation can be significant, particularly in wigglers, and must be
corrected with quadrupole magnets, preferably locally (i.e., in the same straight section
that houses the insertion device). For a given insertion device the tune shift scales
inversely with the square of the energy. For this reason it is higher in UV and soft x-ray
sources (1.5–2.0 GeV) than in hard x-ray facilities (6–8 GeV). On the other hand, larger,
higher energy facilities tend to accomodate more undulators. The tune shifts can be on the
order of 0.01–0.03 in the lower energy storage rings and a factor of 20 or so smaller in
hard x-ray sources.

The non-linear terms of Eq. 14 drive mainly third and fourth order resonances (see
Section 3.6.2.2) and cause tune dependence on the betatron amplitude; the optics designer
must make sure that they have a negligible effect on the stability of the beam.

Wigglers have stronger fields than undulators, but often also longer periods (see
Chapter 14). In wigglers the tune shifts are higher than in undulators, but the non-linear
effects are weaker, since the deflecting field of undulators has fast azimuthal variations
(short poles) that tend to enhance the non-linear components.
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3.8. Off-Energy Particle Motion, Dispersion, Beam Size, and Momentum Compaction

In this section, non-synchronous orbits, namely those of electrons having energy
different from the one defined by Eq. 2, are discussed. The off-energy dynamics is not
just of theoretical interest. It is important because, due to the quantum emission of
radiation and the action of the radio-frequency system, the particle energy fluctuates
around an average value. It is this energy fluctuation that, as we shall see, largely
determines the electron beam emittance.16

Four important functions describe the motion of off-energy particles. Two are the
dispersion , normally denoted by the symbol η, and its derivative η ' with respect to the
independent variable s . The others are the horizontal and vertical chromaticities.
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3.8.1. The Dispersion.

If the momentum of a particle changes, the bending radius in the dipoles changes
according to Eq. 2, and the closed orbit also changes. A particle whose energy differs
from the reference value follows a different orbit. The differential equations of motion
(Eq. 3) now becomes:

    

′′ + ( ) = ( )
′′ + ( ) =

x K s x
s

E
E

y K s y

x

y

1

0
0 0ρ

∆
,

.
(15)

They differ from Eq. (3) by the presence of a driving term in the x-axis and by a small
(but important, see Section 3.9) change in the focusing terms Kx and Ky. The latter
reflects the fact that a change in energy (denoted as the relative change ∆Ε/Ε0 with
respect to the synchronous energy E0) changes the focusing strength of the quadrupoles.
The term     1 0 0ρ s E E( )( )( )∆  represents the perturbation introduced by the fact that the
energy of the particle does not match the strength of the bending field, ρο(s) being the
bending radius in the dipoles of the synchronous particle with energy Eo. The vertical
plane does not have such perturbation, unless vertical bends are present in the lattice. The
function     1 0ρ s( )  follows the periodicity of the bending magnets. One of the solutions of
Eq. 15 is periodic with the lattice periodicity, i.e., satisfies the conditions x(0) = x(C),
x'(0) = x'(C), where C is the length of the orbit after one revolution and can be expressed
in terms of the dispersion η(s) and its derivative η '(s) defined as:

    

x s s
E
E

x s s
E
E

c

c

( ) = ( )

′( ) = ′( )

η

η

∆

∆
0

0

,

.
(16)

The dispersion is expressed in units of meters. Its derivative is dimensionless.
The solutions of Eq. 15 are those of the non-homogeneous and the homogenous

forms, the latter given by Eq. 4. In a general form that includes energy deviation and
betatron oscillation, the horizontal motion of an electron can be described as the sum of a
term which is a periodic function of s and of an oscillatory term:

    
x s s

E
E
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The slope, dx/ds, is given by
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with

    
α β
s

d
ds

( ) = − 1
2

.
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3.8.2. The Beam Size and Divergence.

Having introduced a function for the motion of off-energy particles, we are in a
position to generalize the beam size and divergence expressed by Eqs. (6) and (7). Those
equations ignored the contribution of the spread in energy that is always present in a
beam. Like the distribution of betatron amplitudes, the distribution of the energy spread is
Gaussian. If <∆E> is the root-mean-square of the energy deviation, and, as is normal
practice, the emittance εx also defines the rms of betatron amplitudes, then, since these
quantities are uncorrelated, they contribute quadratically to the overall beam size:
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(19)

Typically, the relative energy spread is on the order of 10–3, and the dispersion is
measured in meters. One meter dispersion gives a contribution of 1 mm to the beam size.
For comparison, an emittance of 5x10–9 meter-radians at a location at which βx is, say,
10 m, gives a beam size of 0.22 mm. This is one of the reasons why insertion devices are
normally located in “dispersion-free regions” where η = η' = 0, or is at least very small.

3.8.3. The Momentum Compaction Factor

Let us now introduce a quantity that is of fundamental importance for the
longitudinal motion. This parameter is the momentum compaction . It is a measure of how
the time taken by the particle to complete one turn in the accelerator varies with energy.
In high-energy electron accelerators the velocity of the particle is nearly constant with
energy, and the revolution time is determined by the longer (or shorter) path a higher
(lower) energy particle has to travel. Only the curved sections contribute to a lengthening
of the orbit with energy, and higher energy particles have a larger bending radius. The
momentum compaction factor is defined as

    
α c

T T
E E

= ∆
∆

0

0

,  (20)

where ∆E is the energy difference from the synchronous energy Eo, and To is the
revolution period of the synchronous particle. The momentum compaction is determined
by the properties of the lattice. In fact, it is the average of the dispersion in the bending
section divided by the average machine radius.17 The stronger the focusing, the lower this
value α c is. An approximation often used is α c ≈     1

2νx . The small value of the
momentum compaction function in synchrotron radiation sources has important
implications for the longitudinal motion (see Chapters 4 and 12).
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3.9. Chromaticity Correction and Dynamic Aperture

The focusing (or defocusing) action of the quadrupoles is inversely proportional
to the particle energy. In analogy with optical lenses, this effect is called a chromatic
effect . It leads to a dependence of the tunes on energy. This dependence is measured by
the horizontal and vertical chromaticities, ξx and ξy:

    
∆ ∆ ∆ ∆ν ξ ν ξx x y y

E
E

E
E

= =
0 0

, , (21)

where the ∆νx,y are the shifts in tunes from those of the synchronous particle and are
caused by a change in energy     ∆E E0 .

Because the focusing action decreases with energy, the uncorrected chromaticities
are negative numbers. Corresponding to a spread in energy within a beam of particles,
Equation (21) implies that a spread in tunes follows, and this may have adverse effects if
it results in crossing resonance lines (Section 3.6.2). Sextupole magnets, non-linear
elements already introduced in Eq. (12), are used to correct the chromaticities. Most
accelerators operate with zero or slightly positive chromaticities. The next section gives a
simple treatment of how sextupoles are used to control the chromaticities.

3.9 1. How Sextupoles Correct the Chromaticities

Consider the field of a sextupole magnet (Eq. (12)):

    

B S x y

B Sxy
y

x

= −( )
=

2 2

2

,

.

If a particle is off-energy, its horizontal displacement x consists of two terms: a betatron
oscillation xβ and an orbit shift xE (Eq. (17)). The vertical displacement is a pure betatron
oscillation yβ. The field seen by the particle can be decomposed into the components of
the displacements
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y E
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= + + −
= +
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β β β

2 2 22

2 2

Sx x

Sx y
E
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,

.
(22)

The terms in bold in Eq. (22) have the form of a quadrupole field, a field that is
linear in the betatron displacements xβ and yβ. The “strength” of the quadrupole is 2 S xE,
and is proportional to the particle energy via its closed orbit displacement xE. This fact is
utilized to offset the (linear) energy dependence of the focusing strength of the
quadrupoles. Figure 6 shows the quadratic dependence of the horizontally deflecting
field.

Since the horizontal and vertical machine chromaticities are both negative, but the
equivalent quadrupole of Eq. (22) has opposite focusing and defocusing effects in the
horizontal and vertical axes, two families of sextupoles are required, both placed in
dispersive regions. The horizontally correcting sextupoles are located in regions in which
the horizontal β-function is high and the vertical β-function is low. The converse is true

for the vertical chromaticity correcting sextupoles. Since, from Eq. 16, xE = η(s) ∆E
Eo

, it is
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convenient, in order to reduce the sextupoles strength, to place the sextupoles at locations
where the dispersion is high.

Equation (22) indicates that, besides the “useful” terms (in bold characters) that
correct the chromaticities, unwanted, non-linear terms crop-up that perturb the motion.
Some storage rings include more than two families of sextupoles, the additional families
being used to neutralize some of the resonances create by the unwanted terms of Eq. 22.

3.9.2. The Dynamic Aperture Problem

Sextupoles are non-linear elements, and, while they correct for the linear part of
the chromatic aberrations, they can also disrupt the motion and cause particle loss. Low
emittance lattices are characterized by strong sextupoles, and the problem of the dynamic
aperture is one of the most important design issues.

The dynamic aperture is defined to be the maximum betatron oscillation that can
be sustained in the accelerator for a sufficient number of turns. In electron storage rings,
the time scale is on the order of the damping time (see Section 4.2).

The amplitude may be limited by the transverse size of the vacuum chamber
(physical aperture), or by the perturbing effect of the non-linear fields (dynamic aperture).
The problem of determining the maximum stable amplitude of the oscillations in the
presence of non-linear perturbations is not amenable to an exact mathematical solution.
The dynamic aperture limit is estimated by computer simulation of the motion of the
particles in the presence of the non-linear field of the sextupoles and other perturbing
non-linearities, like those caused by magnetic imperfections. It is desirable to design a
lattice and chromaticity correction sextupoles such that the maximum amplitude of the
betatron oscillations is determined by the physical aperture of the chamber, and not by the
non-linear perturbations.

The dynamic aperture is often plotted in a graph that depicts the maximum
amplitudes of the vertical betatron oscillations that are stable as a function of the
maximum stable horizontal amplitudes. Figure 7 shows the dynamic aperture of the
Advanced Light Source (ALS), as computed for the Conceptual Design Report.18
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The dynamic aperture is sensitive to the degree of symmetry of an accelerator,
high periodicity usually being associated with a larger dynamic aperture. Unfortunately,
even in a machine designed with high periodicity, the regular lattice pattern is broken by
magnetic imperfections, orbit errors, and the presence of different types of insertion
devices in the straight sections. Figure 7 shows the dynamic aperture of the ALS lattice in
which the only non-linear elements are the chromaticity sextupoles (“without errors”
curve). The maximum stable amplitudes are reduced when magnet misalignments and
field imperfections are included in the computation.

4. Emission of Radiation and the Equilibrium Emittance

4.1. Emission of Radiation, Damping Times and Equilibrium Emittance

A charged particle on a curved path emits radiation. In a storage ring, the orbit is
curved in bending magnets and insertion devices. The radiation is emitted in the direction
tangential to the direction of the motion and is concentrated in a narrow cone with an
apex angle of about a milliradian (see Chapters 1 and 14).

The emittance (horizontal or vertical) is not defined by the characteristics of the
beam upon injection into the storage ring. Instead, after characteristic times, called the
damping times  (horizontal and vertical), the beam size and angular spread are determined
by the lattice and the emission of radiation. In other words, the beam loses all memory of
its previous dynamical history. The equilibrium emittance is the result of a balance
between an anti-damping mechanism that tends to increase the beam size and a damping
process that tends to reduce it.

If there is a transient perturbation (power supply, residual gas effects, fast
magnetic kicks, etc.), the value of the emittance settles back to equilibrium after a
damping time.
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4.2. Antidamping of Betatron Oscillations

Consider an electron that follows a horizontal betatron oscillation around the
closed orbit defined by its energy (Eq. (17)). Suppose that, at a given azimuthal position
s, the electron emits a photon. The photon can be emitted anywhere within a cone of
aperture 1/γ centered around the tangent of motion (where γ is the ratio of the particle
energy to its rest energy). Since the effect of this angular aperture is small compared to
the average perturbation19 we are justified in modeling the photon as if it were emitted
tangential to the motion.

Figure 8 shows the trajectory of an electron emitting a quantum of energy ∆E at a
point at which its betatron amplitude and angle are x and x' with respect to the closed
orbit relevant to its energy E0.

Since the emission occurs in the direction of the particle momentum, there is no
change in displacement or slope following the emission of radiation. The particle energy,
however, changes by an amount –∆E. The closed orbit associated with the new energy,
Eo – ∆E, is now different, as shown in Fig. 8. After the emission of radiation, the particle
trajectory is different from the one it would have followed if, hypothetically, no radiation
emission had taken place. The motion is still described by the sum of periodic (closed
orbit) and oscillatory terms (Eqs. 17 and 18), but the coordinates of the closed orbit are
now those relevant to the new energy. Since the position and angle of the particle have
not changed following the emission of radiation, and since Eqs. 17 and 18 are still valid,
the amplitude and angle of the betatron oscillation must change.

A rigorous description of the statistical nature of the phenomenon17,19 reveals that
the quantum nature of the radiation emission leads to an increase of the betatron
oscillation amplitudes of the ensemble of particles.

It is intuitive, and it can be rigorously shown, that the greater the amplitude of the
oscillations are greater, the greater the value of the dispersion and its derivative at the
location where the radiation is emitted.

Fortunately, this is not the whole story, as another phenomenon takes place that
tends, instead, to decrease the amplitude of the betatron oscillations. This is discussed in
the next section.
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4.3. Damping of Betatron Oscillation

It is shown in Chapter 4 that the radio-frequency accelerating system restores the
energy that the particles lose due to the emission of radiation. We have also mentioned
that the radiation is predominantly emitted in a direction which is tangent to the direction
of motion. For a particle executing betatron oscillations (horizontal or vertical), the
radiation is emitted at an angle with respect to the closed orbit (Fig. 8). A particle loses
part of its transverse momentum (px or py) if, in the course of the betatron oscillations,
there are components of the momentum in the x or y direction. The electric field of the
radio-frequency accelerating system restores the momentum in the direction of the ideal
orbit, and thus tends to “align” the electrons in the direction of this orbit.

The overall effect is a transfer of momentum from the horizontal and vertical
oscillations into the azimuthal direction, causing a reduction of the horizontal and vertical
betatron amplitudes.

4.4. The Horizontal Emittance

The horizontal emittance of the beam in a storage ring is determined by the
equilibrium between the two actions described in Sections 4.2 and 4.3, namely the
antidamping effect  of the quantum emission and the damping  effect of the restoring radio-
frequency field. Apart from collective effects and other perturbing factors, the emittance
is completely determined by the energy, bending field, and lattice functions.

Once the beam is injected into a storage ring, it takes some time for the emittance
to settle to the equilibrium value. This time depends on the rate of emission of radiation
and is usually on the order of a few milliseconds. It is referred to as the betatron damping
time . This time plays an important role in the injection process (see Chapter 3).

4.5. The Vertical Emittance

In a machine for which the bending occurs only in the horizontal plane, the
vertical motion is privileged, since it experiences the damping effect of the radio-
frequency field, but not the antidamping effect of the quantum emission of radiation.
Without vertical bending there is no vertical dispersion. Theoretically, the vertical
emittance should be almost zero in a storage ring with no vertical bends. In practice, the
vertical emittance is small but finite, due to several factors, for instance vertical bends are
present due to quadrupole misalignment and associated correction magnets, horizontal-
vertical betatron coupling caused by quadrupoles that are rotated, due to the limitations of
survey accuracy, around their magnetic axis.

Most electron storage rings are characterized by a very small vertical/horizontal
emittance ratio, on the order of 0.01–0.03. The synchrotron light spot looks like an ellipse
with a much larger horizontal axis.

Sometimes it becomes necessary to intentionally increase the coupling, and the
vertical beam size, in order to reduce the charge density when intra-beam scattering (see
Chapter 12) is important.
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4.6. Design Criteria For Synchrotron Light Sources

Let us now qualitatively discuss how the horizontal emittance depends on the
lattice characteristics. For a given energy, the energy loss per turn to synchrotron
radiation is inversely proportional to the bending radius (Chapter 1). This energy loss
increases the amplitude of the horizontal betatron oscillations via the anti-damping
mechanism discussed in Section 4.2. We have also seen that this increase is greater, the
greater the dispersion and its derivative at the location where the radiation is emitted.

The rate of energy loss is proportional to the fourth power of the particle energy
(Chapter 1). It can be shown that this leads to a dependence of the emittance on the
square of the energy, for a given lattice.

Based on these factors, the main criteria that dictate the design of low emittance
synchrotron radiation lattices are:

1) A large bending radius to reduce the rate of energy loss by radiation. A large
bending radius leads to larger rings. High energy storage rings for hard x-ray
machines like the APS and the ESRF must have larger circumferences to achieve
emittances comparable to low energy machines for UV and soft x-ray production.

2) A small value of the dispersion function and its derivative where the radiation is
emitted (bending magnets and insertion devices). This requires large bending radii
and/or strong focusing lattices to keep the value of the dispersion small. The new,
3-rd generation, sources, with their design emphasis on small emittance, are, in
fact, characterized by strong focusing lattices.

There is a limit on how strongly focusing a lattice can be made. This is the subject of the
next section.

4.7. Strong Focusing Lattices

We saw in the previous section that low emittance lattices require that the
dispersion function and its derivative be kept small. The dispersion is created by the
(bending magnets) excitation of a driving term on the right hand side of Eq. (15). This
driving term is due to the fact that the energy does not match the design value defined by
Eq. (2). According to Eq. (3), this perturbation propagates like a harmonic oscillator until
it senses another perturbation by a bending magnet, and so on.

One way to keep the dispersion low is to have a large bending radius, with many
short bending magnets. This approach leads to rather large accelerators. It has been
proposed as a method to reduce the emittance limit of third generation light sources.20

The recent wave of third generation light sources (ALS, APS, ESRF, SRRC,
ELETTRA, etc.) has chosen to reduce the amplitude of the dispersion function by
increasing the focusing action of the lattice, given by the term Kx(s) in Eq. (2). This is
achieved by increasing the strength of the quadrupoles and by spacing them close
together.
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5. Characteristics of Lattices For Synchrotron Radiation Sources

5.1. General Considerations

The basic building block of a lattice is the cell . This is a sequence of magnetic
elements characterized by certain requirements and by the fact that the lattice functions
(β-function, dispersion, their derivatives, etc.) have the same values at the beginnings and
ends of the cells. If this is the case, then one can build a lattice by aligning the cells one
after another always repeating the lattice functions with one exception: the more unit cells
from which one builds a lattice, the smaller the bending radius of the dipoles must be,
since the total bending angle in the ring (2 π) is unchanged. This leads to a strong, cubic
dependence  of the emittance on the number of cells. Remembering that the emittance acts
like the square of the energy yields the following important expression for the horizontal
emittance:

    
εx

c

k
E
N

=
2

3 , (23)

where E and Nc are the electron energy and the number of identical cells, respectively.
The constant k depends on the type of cell.

The first task of a lattice designer is, then, to build a cell. When this task is
accomplished, the designer has to decide on the periodicity  of the accelerator, i.e., how
many cells to build into the lattice.

5.2. The Cell

In designing a cell, the lattice designer must keep several considerations in mind.
If the goal of the accelerator is to achieve as small an emittance as possible, the designer
will need to keep the dispersion function as small as possible in the bending magnets.
Fig. 9 depicts a simplified cell, two bending magnets with a quadrupole in between.
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If the quadrupole strength is chosen judiciously, a dispersion function that has
coordinates η=η '=0 at the beginning of the cell ends up with the same coordinates at the
end of the cell. The bending magnets create the dispersion (due to the fact that particles of
different energy are subject to different deflections). To prevent it from growing too
large, the dipoles must be kept short and the quadrupole placed as close as possible to the
magnets. This in turn requires strong quadrupole strengths, increases the chromatic
aberrations, requires stronger sextupoles, and creates potential dynamic aperture
problems.

The other requirement to be kept in mind is the need to inject the beam into the
storage ring. This is discussed in Chapter 3. We mention here that the injection process
requires special elements (fast kicker magnets and a septum magnet). The cell must
include sufficient free space to accommodate these elements along with special optics
requirements to be considered.

The presence of straight sections (free of magnetic elements) to accommodate
insertion devices is an essential feature of the new generation of light sources. The length
of the sections depends on the length of the insertion devices and on possible limitations
on the circumference of the ring. In most third generation storage rings the length varies
between 3 and 7 meters. One of the reasons for the upper limit is the need to prevent the
β-function from growing too large. Symmetry considerations show that the β-function
has a minimum in the middle of a straight section (waist). Away from the waist, where β
=β∗ , the function grows as

    
β β

β
* *

* .= + s
2

(24)

Why does one keep the β−function from growing too large? There are two
reasons: 1) beam size (Eq. (6)), with the associated hardware requirements of larger
aperture, more costly magnets, etc., and 2) the fact that chromatic aberrations and
sensitivity to survey errors become more important as the β-functions in the quadrupoles
increase. In future light sources, these limitations could be overcome if focusing
(horizontal and vertical) could be introduced in the magnetic fields of insertion devices.
This would open up the possibility of installing very long undulators.

It has been common practice in 3-rd generation light sources to design the optics
of the cells such that the dispersion and its derivative are zero in the straight sections.
This approach minimizes the beam size and divergence, as shown in Eq. (19). A non-zero
dispersion in the field of wiggler magnets also leads to an emittance increase, according
to the mechanism described in Section 4.2. In both cases the result is a reduction of
photon beam brightness.

The process of determining the magnet strengths and positions to satisfy design
conditions for the lattice functions is called matching . Often, to match the dispersion and
its derivative to achieve zero values in the straight sections requires ingenuity and cost
trade-offs in the number of quadrupoles and their strengths. Recently, the need for a
rigorous zero value of the dispersion in the region of the insertion devices has come under
scrutiny, and has been challenged as a too high a price to pay for a relatively small
improvement in beam quality.21
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5.3. Types of Cells

In this section the types of cells most commonly used for synchrotron light
sources are reviewed22 and critiqued, together with indications for future directions.

5.3.1. The FODO Cell

The simplest of the cell layouts is the so called FODO structure. Its name stands
for Focusing-Drift-Defocusing-Drift. Fig. 10a shows the version built at the Daresbury
SRS2 facility. The drift spaces may contain bending magnets or, in some cases, be left
empty for dispersion matching purposes. Straight sections for insertion devices can be
accommodated by special insertion optics matched to a sequence of FODO cells.

This type of cell is inherited from high energy accelerators, where it is commonly
used. The Photon Factory (Tsukuba) adopted FODO cells for the regular part of the
lattice, as did the Daresbury Light Source. FODO optics are also the choice of the Duke
University FEL Storage Ring and of damping rings for linear colliders, which share many
design criteria with synchrotron light sources.

FODO lattices are easily tuned and well understood. More recent third generation
low emittance sources, however, have shied away from this concept. One of the reasons,
in the author's view, is the engineering compactness of the design required to achieve a
small emittance and the difficulty in providing sufficient space for radiation ports at
bending magnets.

5.3.2. The Double-Bend Achromat (DBA)

Rina Chasman and Ken Green of Brookhaven National Laboratory proposed for
the National Synchrotron Light Source (NSLS) a cell specifically designed for
synchrotron radiation sources.23 In various forms, it has become very popular. The NSLS
x-ray ring version is shown in Fig. 10b. It consists of two bending dipoles separated by a
single quadrupole. In other designs, a doublet may replace the single quadrupole. The
straight section contains quadrupoles to match the β-functions. The dispersion is zero in
the straight sections, increases  as  it goes through the  dipoles, and is focused by the
middle quadrupole(s). The Chasman-Green lattice is compact and economizes the
number of magnets. The dispersion in the bending sections can be kept small (as
demanded by a low emittance optics) by using short dipoles and keeping the space
between dipoles to a minimum. This ingenious layout has served the scientific
community well. Examples of light sources employing the Chasman-Green lattice are the
NSLS (Brookhaven) VUV and x-ray rings, MAX at Lundt, NIJI III at SUMITOMO
Industries (Japan), HISOR (Hiroshima), LSU CAMD (Louisiana University), the
proposed LNLS facility in Campinas, and others.

Its drawbacks, for very small emittance applications, are represented, in the
author's view, by the limited length of the region where the dispersion is non-zero and by
the small decoupling24 between the horizontal and vertical β−functions. This may lead to
strong sextupole requirements, and the dynamic aperture may be a problem for very low
emittance rings. It is also rather limited in tunability.25
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Fig.10 Types of lattices at various facilities. The symbols signify: E = particle energy (GeV), Ns =
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The problem of the compactness of the Chasman-Green cell and the restricted
area where sextupoles can be placed may be overcome by enlarging the region between
the two dipoles (Fig. 10c, ELETTRA version). Typically, three to four quadrupoles
between the dipoles (instead of one or two as in a simple Chasman-Green layout) give
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higher dispersion and more decoupling between horizontal and vertical β-functions. The
benefits are weaker sextupoles (as implied by Eq. (22)), an improved dynamic aperture,
more space for diagnostics, and an overall more flexible lattice. This cell is known as
“Enlarged Chasman-Green,” although the distinction between a simple Chasman-Green
and an enlarged version is often a matter of subjective definition.

The Enlarged Chasman-Green lattice is particularly suitable for hard x-ray
facilities, and is used in the ESRF, APS, and SPRING-8 facilities. It was also chosen for
SuperAco, ELETTRA, BESSY II, MAX II, and the proposed SOLEIL and SIBERIA 2
designs.

5.3.3. The Triple Bend Achromat (TBA)

In the Triple Bend Achromat, a third bending magnet is symmetrically placed
between two outer ones. The addition of the third dipole has the advantage that the
bending radius may be increased, since more magnets contribute to the total bending.
This reduces the dispersion in the dipoles and makes it easier to achieve a low emittance.
This lattice, shown in Fig. 10d in the ALS version, has good tunability, particularly if a
pair of quadrupoles (rather than one) is placed on each side of the center dipole. The TBA
was the choice of the BESSY I and Hefei facilities and, later, was adopted by the ALS
and SRRC. In the ALS and the SSRC the dipoles have a vertically focusing gradient
superimposed on the bending field. This “combined function” magnet helps to reinforce
the vertical focusing and also reduces the horizontal emittance by decreasing the
horizontal damping time.26 The latter can be shown by analyzing the emission of
radiation in a superimposed quadrupole-dipole field, where the orbit of an electron with
an excess of energy is in a lower bending field and therefore radiates less.27 ELETTRA, a
double-bend-achromat structure, also utilizes combined function dipoles.

Higher energy rings (ESRF, APS) have avoided using combined function
magnets, mostly because the strong gradient that is required makes the construction
difficult.

5.3.4. Other Types of Lattice

This brief discussion does not presume to cover the whole variety of lattices for
synchrotron radiation sources.28

A few interesting new concepts have emerged in recent times. The proposed SLS
facility at PSI29 (Villigen, Switzerland) introduces two very long straight sections (18 m)
for long undulators, in addition to four, 7-m-long ones. The SLS lattice layout departs
from the more conventional types described above. An interesting new feature is the
incorporation of six superconducting magnets that act as wavelength shifters, extending
the versatility of the facility (1.5–2.1 GeV energy) to the hard x-ray region of the
spectrum (up to 50 keV photons).

SINBAD, a 700 MeV proposed ring at Daresbury, also introduces two very long
(14 m) straight sections for novel insertion devices. The other Darebury facility (3 GeV)
under consideration for construction is DIAMOND, a Triple-Bend-Achromat in which
the central dipole is superconducting.
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The lattice for the proposed 3 GeV Light Source ROSY30 in Rossendorf
(Germany) also departs from the conventional FODO, DBA, and TBA. The basic cell
consists of five bending magnets (three with 20o and two with 15o bending angles). The
bending magnets are of the combined function type (vertically focusing), allowing a more
compact machine and further reduction of emittance. The ring consists of four achromats.

One of the concepts proposed to overcome the problem of the small dispersion,
strong sextupoles, and dynamic aperture of low emittance light sources utilizes combined
function magnets that include bending, quadrupole, and sextupole components for
chromaticity correction.20 With distributed sextupole fields a very small dispersion is
permissible, while still maintaining a large dynamic aperture. The small dispersion is
achieved using long magnets with large bending radius. A remarkably small emittance of
0.7 nanometer-radians at 6 GeV was computed for a ring consisting of 262 FODO-like
cells using only combined function magnets. The length of each cell is about 1.8 m.

The possibility of creating and sustaining very short (sub-picosecond) bunches in
storage rings has received attention recently. A storage ring operating in this manner
would be very attractive for high-energy physics colliders, and there are also experiments
in synchrotron radiation that would greatly benefit from such a machine. The theoretical
feasibility and design criteria for such lattice have been investigated,31 and the results are
encouraging. This lattice is designed such that particles of different momenta have the
same (or nearly the same) revolution period, leading to very short bunches.

Finally, we conclude this brief review by remarking that not all synchrotron
radiation sources need to be large or of high energy. In addition to the compact machine
designed for lithography applications (not included in this chapter) the 240 MeV SURF II
machine at the National Bureau of Standards is a small, 5-m-circumference storage ring.
It consists of a single magnet that bends and focuses the beam. It was converted into a
storage ring in 1973 from a 180 MeV synchrotron.32
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