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ABSTRACT

The dynamic aperture caused by persistent-current nonlinear field errors is an important concern
in the design of superconducting hadron storage rings. The HERA proton ring is the second
superconducting accelerator in operation. In this lecture note, its measured dynamic aperture is
compared with that inferred from comprehensive tracking studies. To understand the difference
between prediction and measurement, a semi-analytical method is developed for evaluating
transverse diffusion rates due to various processes, such as modulational diffusion or sweeping
diffusion. This analysis makes use of parameters for high-order resonances in the transverse
phase space, which are obtained by normal-form algorithms using differential-algebra software.
The semi-analytical results are consistent with the measurements, and suggest that the actual
dynamic aperture is caused by an interplay of tune modulation and nonlinear magnetic fields.
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1. Introduction

1.1. Motivation

The HERA proton ring at DESY in Hamburg is the second large superconducting storage ring
in operation. It was expected, and it has been partly verified in the first years of its operation,
that the beam lifetime and performance of this storage ring will be limited by single particle
nonlinear beam dynamics.

The persistent-current nonlinear field errors, the time-dependence of which proved to be
harmful in the first superconducting accelerator, the Fermilab Tevatron, are potentially more
dangerous for HERA due to the larger ratio of the maximum dipole field to the field at injection
Bmax/Binj which is about 20, compared to 6 for the Tevatron. At the injection energy of 40 GeV
the relative size of the nonlinear field errors is significantly increased. In addition the size of the
injected beam is also larger. Therefore the impact of the persistent-current induced field errors
on the dynamic aperture is a question of considerable concern.

Consequently, strong effort has been devoted to detailed magnet measurements,1 a
dedicated local correction scheme,2 comprehensive simulation studies,3, 4 a reference magnet
system allowing permanent control of the time dependence of the dipole and sextupole field
errors, and to the invention of special magnet ‘massage’ cycles to achieve reproducibility.
Following this recipe it has proved possible to inject a proton beam into HERA with a reasonable
lifetime of about ten hours.5 Nevertheless there is evidence for a dynamic aperture limitation
inside the physical aperture.

1.2. Outline

The structure of this note is as follows. In Section 2 techniques of tracking data analysis
are described with special emphasis on the Lyapunov-exponent method. In the remainder of
Section 2 the dynamic aperture deduced from the simulation studies is compared with the
one actually measured in HERA. It is shown that inclusion of a realistic tune modulation in
the simulation leads to better agreement with the observations. Section 3 is devoted to an
overview of various effects that tune modulation can have on a single resonance island. Some
sources of tune modulation in a storage ring are discussed, and estimates of the corresponding
modulation frequencies and amplitudes are presented in Section 4. Parameters of several
high-order resonances in HERA are calculated in Section 5 by means of differential-algebra
techniques and Lie-algebraic methods. Section 6 describes a semi-analytical approach based on
these parameters to determine the transverse diffusion rates caused by modulational diffusion
and sweeping diffusion. The results are summarized and some conclusions are drawn in Section 7.
More details and additional information may be found in Refs. 6, 7.

2. Analysis of Tracking Data and Expected Dynamic Aperture

The dynamic aperture is defined as the border in phase space inside which particle motion is
stable for a sufficiently large number of turns around the storage ring. For superconducting
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hadron colliders the aperture can be strongly limited at injection energy due to the field errors
caused by persistent currents in the magnets. In HERA the minimum time needed to inject 210
bunches is about 20 minutes, corresponding to 6 · 107 turns. Tracking studies with the present
computer systems fall short of this number of revolutions by almost a factor 100. There are two
possible approaches to overcome this problem:

• The tracking data for a smaller number of turns are analysed in such a way as to detect
potentially unstable trajectories, which may result in a particle loss after a much longer
time period. A promising approach of this category is based on a calculation of Lyapunov
exponents and the determination of the border between regular and chaotic motion, which
can be viewed as a good estimate for the actual dynamic acceptance. Here 103−104 turns
are usually sufficient to yield fairly accurate results.

• The employed model of the accelerator is simplified. For instance the complete storage ring
can be replaced by a Taylor map representation.8 Such a Taylor map can easily be extracted
from a standard tracking code with the methods of differential algebra.9 In order to avoid
artificial emittance growth in the simulation,10 the Taylor map must be modified by some
symplectification scheme, for instance by performing a kick factorization.11 Following this
approach a gain in computational speed by a factor 10–20 is possible.12 It is evident that
the Taylor map tracking can also be analysed with respect to chaotic motion, thereby
further reducing the required computing time.

We now discuss the Lyapunov-exponent method in more detail.

2.1. Lyapunov Exponent

The Lyapunov exponent characterizes the rate of divergence of initially close trajectories and
provides a sensitive measure of local instabilities in phase space. For regular motion the distance
d in phase space between two tracks grows linearly with the number of turns N . When averaged
over long periods of time,

d(N) ∝ N.

Chaotic motion is characterized by an exponential growth of this distance:

d(N) ∝ eλN ,

where λ is called the Lyapunov exponent (see for instance Ref. 13). Its formal definition is

λ ≡ lim
N→∞

lim
d(0)→0

1

N
ln
d(N)

d(0)
, (1)

and it is independent of the measure of d, i.e., the value of λ does not depend on the choice
of metric for the phase space.14 It should be noted that the Lyapunov exponent λ is zero for a
regular trajectory.

A general particle trajectory is described by the six canonical coordinates x, px, z, pz, σ,
and η.15 Here x and z are the horizontal and vertical displacements from the design orbit, σ
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is the longitudinal distance from the bunch center, and η the relative energy deviation. The
canonically conjugate momenta to x and z are denoted by px and pz, respectively. In linear
approximation the six-dimensional phase space coordinates after N turns are related to the
initial values through the N-turn Jacobian matrix JN :

JN ≡
∂(x, z, σ, px, pz, η)N
∂(x, z, σ, px, pz, η)0

. (2)

The limit of vanishing initial distance d(0)→ 0 in Eq. (1) can be performed exactly,14 leading
to an alternative expression in which the Lyapunov exponent is given in terms of the largest
eigenvalue EVN,max of the Jacobian matrix JN :

λ ≡ lim
N→∞

λN ≡ lim
N→∞

1

N
ln |EVN,max|. (3)

The modulus of the largest eigenvalue EVN,max shows the same behavior as a function of N as
the distance d(N). That means, for a regular trajectory a linear increase with the number of
turns is observed, and for chaotic motion the eigenvalue increases exponentially.

At this point it is appropriate to review some basic concepts of accelerator physics.16, 17

The equations of motion can be solved exactly for a model of the storage ring consisting only of
dipoles, quadrupoles, and drift spaces, hereafter referred to as a ‘linear storage ring’. Without
coupling between the three planes of motion, a particle performs a betatron oscillation of the
form

y =
√
εyβy(s) cos(φy(s) + φy 0), (4)

where y denotes either the horizontal or the vertical displacement with respect to the reference
orbit, and the coordinate s is the path length along that orbit. The linear storage ring is
completely characterized by the beta function βy(s), which is a periodic function

βy(s) = βy(s+ C),

C being the circumference of the ring. This function not only describes the s-periodic part of
the oscillation amplitude in Eq. (4), but it also determines the derivative of the phase function
φy(s):

dφy(s)

ds
=

1

βy(s)
. (5)

Hence the number of betatron oscillations per turn, called Q-value or tune, is given by

Qy =
1

2π

∮ 1

βy(s)
ds. (6)

One of the two constants of integration, εy and φy 0, in Eq. (4), namely the initial phase φy 0, is
of no particular importance. The second, εy, describes the s-independent part of the oscillation
amplitude. At a fixed value of s the particle trajectory is restricted to an ellipse in the y-py-plane,
whose area F is related to εy by

F = πεy. (7)
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The quantity εy is called single-particle emittance and is quoted in units of mm mrad. It equals
twice the action variable Iy:

εy = 2Iy ≡ 2 · 1

2π

∮
pydy (8)

In a linear storage ring the single-particle emittance εy defined by Eq. (4) or (7) is a
constant of motion. The real storage ring is not linear, and the actual particle trajectories
deviate from the solution to Eq. (4). Nevertheless, because this deviation is small over short
periods of time, it is still fruitful to use the linear solution as a parametrization in the tracking
analysis. In the presence of nonlinearities, εy calculated according to Eq. (4) does not stay
constant, but can increase (or decrease) slowly as a function of time. Because the divergence
from the linear solution depends strongly on the starting value of εy itself, the particles inside a
bunch will suffer different changes of εy. In general, the increase of the average value of εy over
the beam distribution differs strongly from the increase experienced by a particle, say, at one or
at two standard deviations.

The emittance εy of a single trajectory, used throughout this thesis, is defined by Eq. (4)
and should be understood simply as a measure of the squared horizontal or vertical oscillation
amplitude normalized so as to be independent of the position around the ring. Very often we
will quote the sum ε ≡ εx + εz, called the total transverse emittance.

Occasionally we also refer to the two-sigma beam emittance, which is the emittance of a
particle trajectory enclosing 86% of the beam in phase space. The two-sigma beam emittance
will be denoted by the symbol ε̄ and is to be distinguished from the single-particle emittance ε
defined before, which refers to an arbitrary trajectory.

In the case of a linear storage ring the difference of the phase φy between two nearby
trajectories as a function of the number of turns is a constant, because the local phase advance
is given by 1/βy(s) for all particles. In a nonlinear system the phase advance depends on the
amplitude, and the phase distance |φy, 1 − φy, 2| grows at least linearly in time.

The use of the Lyapunov method in the postprocessing analysis of tracking data rests on
the following observations and hypotheses:

1. The divergence between two particles, as observed in cartesian coordinates, is mainly
information on the phase distance and not on the amplitude evolution. It is therefore
advantageous to consider only the phase separation (1

2

∑
y=x,z(φy, 1−φy, 2)2)

1
2 , respective to

its three-dimensional generalization, instead of the strongly oscillating cartesian distance
between two trajectories.

2. The eigenvalue behavior and the phase divergence are almost identical (Figs. 1a and b, and
2a and b). This implies that two-particle-tracking already gives very accurate results and
that a sufficiently small initial distance had been chosen, the limitation in this quantity
being given by rounding errors.

3. Considerable improvement can be achieved by investigating the phase distance in a suitably
‘normalized’ coordinate frame, in which all phase space deformations up to a specific
order have been removed. For regular motion the distance between two particles in the
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Figure 1: Regular trajectory in a HERA-like FODO cell for 5,000 turns: a) maximum eigenvalue,
b) phase distance between two nearby particles, c) phase distance between two nearby particles in
normal-form coordinates.55

normalized coordinates evolves almost free of any disturbing oscillations (Figs. 1b and
c), whereas for strongly chaotic trajectories the transformation to new coordinates has
virtually no effect (Figs. 2b and c). The increased sensitivity for detecting barely chaotic
particles by this method is documented in Fig. 3.

4. Particles with positive Lyapunov exponents experience an emittance growth on a longer
time scale. Hence an exponential phase separation indicates a long-term amplitude increase
and possible final particle loss. This is the main reason for the use of Lyapunov exponents
in tracking studies and has been confirmed for all cases under consideration. An example
is shown in Fig. 4.
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Figure 2: Chaotic trajectory in a HERA-like FODO cell for 5,000 turns: a) maximum eigenvalue,
b) phase distance between two nearby particles, c) phase distance between two nearby particles in
normal-form coordinates.55
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Figure 3: Barely chaotic trajectory in a HERA-like FODO cell: a) phase distance between two nearby
particles for 30,000 turns, b) phase distance between two nearby particles for 5,000 turns, c) phase
distance between two nearby particles in normal-form coordinates for 5,000 turns (the change of the
slope indicates chaotic motion).55
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Figure 4: Lyapunov exponent for a regular and a chaotic trajectory in HERA and the corresponding
emittance evolution: a) and b) lnλN as a function of lnN for 10, 000 turns at starting amplitudes of
11.9 mm and 13.5 mm (β = 76 m), respectively, with ∆p/p = 10−3; c) and d) transverse emittance
εx+ εz over 120, 000 revolutions for the same two trajectories. Each dot represents the maximum value
during 200 turns.
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2.2. Effect of the Persistent-Current Field Errors

Comprehensive tracking calculations have been performed to study the effect of magnetic field
errors on the dynamic aperture of HERA at the injection energy of 40 GeV. The measured
individual multipole components up to 20-pole of all superconducting dipoles and quadrupoles
were taken into account by adding five thin, higher-order lenses to each FODO half cell. The
details and methods used in the tracking-data analysis are described elsewhere18, 19, 4 (see also
Section 2.1). The simulations provide an estimate of the dynamic aperture, defined by the onset
of chaotic particle motion.

The predicted dynamic aperture of the HERA proton ring is shown in Fig. 5 as a function
of the amplitude of momentum oscillation ∆p/p. The dynamic aperture r is given in units of
mm and depends on the beta function β at the point of observation. In this case β is chosen
to be 76 m, the maximum value in the arcs. A quantity that is closely related to the aperture,
but is independent of the point of observation, is the dynamic acceptance Ax,z, which is defined
as the single-particle emittance of the outermost stable trajectory and is quoted in units of mm
mrad. The relation between aperture r and acceptance A is

A ≡ Ax + Az = r2/β or r ≡
√
A · 76m , (9)

where β = 76 m is the beta function value at the point, to which r refers.
The working point of Qx = 31.27 and Qz = 32.30 chosen for the investigation is close to

the actual value used in the HERA operation of 1992. In 1992 the circumferential rf voltage of
the 52 MHz system was about 70 kV, corresponding to a synchrotron frequency of 22 Hz. This
value is also used in the simulation. For a proper bucket matching between PETRA and HERA
a smaller rf voltage and synchrotron frequency are required. The design synchrotron frequency
is 14 Hz.

The dynamic acceptance expected from the threshold of chaos in the simulation studies
is A ≈ 4 mm mrad for on-momentum particles, equivalent to an aperture of 17.5 mm. The
onset of chaos is considerably reduced to about A = 1.9 mm mrad or r = 12 mm for an initial
momentum deviation of ∆p/p = 5 · 10−4, which is about the actual momentum spread of the
injected bunch.

Two effects may cause a reduction of the dynamic aperture for off-momentum particles.
Firstly, the nonlinear fields are larger on a dispersion orbit than for particles with ∆p/p = 0.
However, for a relative momentum deviation of ∆p/p = 5 · 10−4 and an average dispersion
function of about 1.5 m in the arc the orbit shift is less than 1 mm. This is much too
small to explain the reduction of aperture noticed in Fig. 5. Secondly, large synchrotron
oscillations induce a betatron tune modulation via the chromaticity of the storage ring. In
the model-calculations the corrected chromaticity is ξx = −1.3, and ξz = 0.6. Hence the
resulting tune modulation amplitude for a typical off-momentum trajectory is in the order of the
momentum spread 5 · 10−4. The observed reduction of the dynamic aperture for off-momentum
particles can mainly be ascribed to the additional tune modulation.

In agreement with this interpretation is the observation that for a circumferential rf
voltage of 2 MV (and a different working point Qx = 31.15 and Qz = 32.18) the dynamic
aperture is reduced by less than 10% in the simulation, for a particle with ∆p/p = 5 ·10−4.18 An
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Figure 5: Dynamic aperture in the arcs of the HERA proton ring expected from simulation studies
for the working point (Qx = 31.27, Qz = 32.30) and a circumferential rf voltage of 70 kV. Shown are
amplitude values r in mm, defined by the equation r =

√
β(εx + εz) with β = 76 m, as a function of

the amplitude of momentum oscillations ∆p/p. Also indicated is a range of values for the real dynamic
aperture measured in 1992. The uncertainty depicted does not refer to the error of the measurement,
which is much smaller, but to the variation observed over periods of days or weeks.

rf voltage of 2 MV corresponds to a synchrotron frequency of about 120 Hz. As will be shown
later a relatively small tune modulation frequency such as the synchrotron frequency of 22 Hz
used in 1992 is potentially much more harmful. This can be explained by high-order resonances,
which are studied in Section 5.

Also shown in Fig. 5 is the design beam size, corresponding to two standard deviations
σ, and a rough measurement of the actual dynamic aperture in the HERA proton ring. Proton
beams that are injected with large transverse oscillations have a lifetime of less than 1 hour, which
suggests that the dynamic aperture is smaller than the physical aperture. This is confirmed by
beam profile measurements with the residual gas monitors.21 These indicate that the dynamic
aperture is about 1.2 mm mrad, while the linear acceptance as measured by orthogonal orbit
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Table 1: Influence of tune modulation on the dynamic acceptance in HERA at ∆p/p = 0 and ∆p/p =
10−3. The results are obtained by simulations of the six-dimensional motion with uncompensated linear
coupling. The modulation frequency fq in Hz is related to the modulation tune Qm by fq ≡ Qmfrev,
where frev denotes the revolution frequency (frev = 47.3 kHz for HERA).

q fq in Hz acceptance in mm mrad
∆p/p = 0 ∆p/p = 10−3

0 0 4.2 1.9
0.001 10 1.5 —
0.005 10 1.5 —
0.01 10 1.2 0.9
0.005 50 1.9 —
0.01 50 1.9 0.9
0.005 600 3.1 —
0.01 600 3.1 —

bumps is between 2.3 and 3.0 mm mrad. The observed bunch lengths are always smaller than
3 m, which provides an estimate of the dynamic momentum acceptance.

2.3. Tracking Studies including Tune Modulation

According to the previous section, the measured dynamic aperture is a factor of 1.5–2 smaller
than the value expected from simulations which take into account only the nonlinear field errors.
A better agreement is obtained if a modest tune modulation is included in the model.

It is of no great importance in which way the tune modulation is added. The reduction
in acceptance is the same whether one modulates the strength of all quadrupoles or simply adds
an additional rotation with a modulated angle at the end of each turn, provided that the overall
modulation amplitude is the same.

The impact of tune modulation on the dynamic acceptance can be illustrated by the
results of two tracking studies. Table 1 shows the reduction in the dynamic acceptance
caused by a tune modulation of different frequency and amplitude. The data refer to a
simulation performed for uncompensated linear coupling (κ ≈ 0.017, where κ denotes the
minimum difference between the two betatron tunes in the case of coupling22) and with full
synchro-betatron motion. It can be seen that the sensitivity to the modulation frequency is
much stronger than the sensitivity to the modulation amplitude and that a ripple of frequency
10–50 Hz can drastically reduce the aperture over a wide range of modulation amplitudes.

The effect of a 50-Hz ripple with an amplitude of 10−4 was simulated for pure betatron
motion with different emittance ratios in the linearly decoupled accelerator (κ ≈ 0.003). The
results of this study are summarized in the two acceptance-diagrams of Fig. 6, which represent
regular, chaotic, and unstable trajectories for the non-modulated case and in the presence of
tune modulation, respectively. It can be seen that the tune modulation reduces the aperture by
about a factor of 2.
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Figure 6: Vertical versus horizontal dynamic acceptance in the case of pure betatron motion with
compensated linear coupling: a) no tune modulation, b) 50 Hz tune ripple with amplitude 10−4.
Trajectories in the hatched region of diagram b) are chaotic only in the presence of tune modulation.
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In Section 4 the actual modulation amplitudes are estimated to be as large as 10−4.
The strong effect of tune modulation on the dynamic aperture observed in the tracking studies,
therefore, calls for an analytical study of the chaos-generating process, to which the subsequent
sections will be devoted.

3. Tune Modulation

3.1. Single Resonance

Under normal operating conditions, the transverse phase space for a large proton storage ring
is covered by a web of resonance islands. Close to one of these resonances, say nQ ≈ p
for one degree of freedom, the transverse motion is approximately described by the nonlinear
Hamiltonian

H(I, φ, θ) = IQ0 + g(I) + h(I) cos(nφ− pθ), (10)

where g(I) and h(I) denote in general nonlinear functions of the action I, which are called
detuning and driving term, respectively. Of importance for HERA is the case of several isolated
weak resonances, for which g(I)À h(I). From Eq. (10), the amplitude-dependent tune is †

Q(I) = Q0 +
dg

dI
(I) ≈ φ′.

The resonance condition is fulfilled at a certain action value Ir defined by nQ(Ir) = p. If Eq. (10)
is expanded around the resonant value Ir, a further approximation is possible:

K(∆, φ̃) =
1

2

(
d2g

dI2
(Ir)

)
∆2 + h(Ir) cosnφ̃, (11)

where the new momentum and phase variables are defined by

∆ ≡ I − Ir, φ̃ ≡ φ− p

n
θ.

Equation (11) is recognized as the Hamiltonian of a nonlinear pendulum. The total width of
the pendulum separatrix is given by

∆Itot = 2∆max = 4

√√√√√
∣∣∣∣∣∣ h(Ir)d2g
dI2

(Ir)

∣∣∣∣∣∣. (12)

For small oscillations around φ̃r = π/n, Eq. (11) can be expanded up to quadratic terms,
cosnφ̃ ≈ −1 + 1

2
n2(φ̃ − φ̃r)

2. This yields the frequency at which particles inside a resonance
island oscillate around the elliptic fixed point,

QI = n

√√√√∣∣∣∣∣h(Ir)d2g

dI2
(Ir)

∣∣∣∣∣. (13)

The frequency QI is called the ‘island tune’.23

†A prime denotes the derivative with respect to theta.
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3.2. Single Resonance with Modulation

In the presence of tune modulation the Hamiltonian assumes the form

H(I, φ, θ) = IQ0 + g(I) + h(I) cos

(
nφ+

nq

Qm

sin(Qmθ + α)− pθ
)
, (14)

where q is the modulation amplitude, Qm the modulation frequency, and α an arbitrary phase.
Equation (14) differs from the Hamiltonian Eq. (10) only by the additional term nq

Qm
sin(Qmθ+α)

in the argument of the cosine. The contribution of the tune modulation to the total Hamiltonian
becomes more explicit by means of a canonical transformation from (I, φ) to (Ī , φ̄) with the
generating function

F2(Ī , φ) = Īφ+
q

Qm

sin(Qmθ + α)Ī .

The transformation is

φ̄ =
∂F2

∂Ī
= φ+

q

Qm

sin(Qmθ + α)

I =
∂F2

∂φ
= Ī

and the new Hamiltonian is then (compare also to Ref. 23)

H̄ = H +
∂F2

∂θ
= Q0Ī + g(Ī) + h(Ī) cos(nφ̄− pθ) + q cos(Qmθ + α)Ī . (15)

The last term describes the tune modulation. For this Hamiltonian we have

φ̄′ =
∂φ̄

∂θ
=
∂H̄

∂Ī
≈ Q0 +

∂g

∂Ī
(Ī) + q cos(Qmθ + α). (16)

Transforming again to the nonlinear pendulum variables

∆̄ = Ī − Īr, ¯̃φ = φ̄− p

n
θ

one obtains

K̄(∆̄, ¯̃φ, θ) =
1

2

d2g

dĪ2
(Īr)∆̄

2 + h(Īr) cosn¯̃φ+ q cos(Qmθ + α)∆̄, (17)

which is the same as Eq. (11) plus an additional term that is linear in ∆̄.

3.3. Island Width of Sidebands

Equation (14) can be expanded into Bessel functions using the Jacobi-Anger identity:23, 24, 6

cos

(
nφ+

nq

Qm

sin(Qmθ + α)− pθ
)

=
∞∑

j=−∞
Jj

(
nq

Qm

)
cos(nφ+ jQmθ − pθ + jα).
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Inserting this expansion into Eq. (14) we get the generalized resonance condition in the presence
of tune modulation,

nQ(Ijr ) + jQm − p = 0. (18)

For each fundamental resonance nQ−p = 0 a set of sideband resonances with j 6= 0 is generated.
From

Q(Ijr ) = Q0 +
dg

dI
(Ijr ) =

p

n
− j

n
Qm

and
dg

dI
(Ijr ) ≈

dg

dI
(Ir) +

d2g

dI2
(Ir) · jδI,

the distance δI between two sideband resonances is

δI ≈ Qm

nd
2g
dI2

(Ir)
. (19)

The width of the sideband separatrices is obtained by replacing h(Ir) by h(Ir)Jj(
nq
Qm

) in Eq. (12),
the formula for the non-modulated case:

∆Ijtot = 4

√√√√√
∣∣∣∣∣∣
h(Ir)Jj(

nq
Qm

)
d2g
dI2

(Ir)

∣∣∣∣∣∣. (20)

As a rule of thumb the Bessel function in Eq. (20) can have a significant value only if its argument
is larger than the order, i.e., if

nq

Qm

> j. (21)

Then the Bessel functions may be approximated by their rms values for large arguments:25

Jj(x) ≈
1√
πx
. (22)

From Eq. (20) we then get (with QI as defined in Eq. (13))

∆Ijtot ≈ 4
QI

n

(
Qm

qnπ

) 1
4 1
d2g
dI2

(Ir)
. (23)

Following Ref. 26 we expect global chaos if the distance between two sidebands δI (Eq. (19)) is
smaller than the width of the resonances ∆Ijtot, i. e., if

Qm

nd
2g
dI2

(Ir)
< 4

QI

n

(
Qm

qnπ

) 1
4 1
d2g
dI2

(Ir)
.

Therefore the condition for chaos becomes23

Q
3
4
m(nq)

1
4

QI

≤ 4

π
1
4

. (24)
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Note that Eq. (21) has been assumed in deriving Eq. (24). Figures 7a and b illustrate the
validity of Eqs. (21) and (22). For the two modulation frequencies Qm = 0.04 and Qm = 0.1
the location of the sideband resonances is depicted as a function of the modulation amplitude

q. The chosen resonance parameters n = 4, d2g
dI2

(Ir) = 1, and QI = 4
√
h(Ir) = 0.049 refer to the

phase diagram shown in Fig. 9.
In Fig. 7, the island sizes ∆Ijtot are computed by the exact expression Eq. (20). Action

values in the hatched area lie inside of some resonance island, whereas action values in the white
regions are outside of any island. Hence, if there is no white space between two sidebands,
these overlap. The centers of the sidebands are separated by δI = Qm/4. They are closer,
and resonance overlap is, therefore, more probable for the smaller modulation frequency Qm

(see Fig. 7a). The curves in Figs. 7a and b represent Eq. (21), which appears to be a good
approximation of the number of sizable sidebands. As expected, this number grows about
linearly with the modulation amplitude q.

The overlap criterion, Eq. (24), predicts a threshold of resonance overlap at modulation
amplitudes q ≈ 1.8 or q ≈ 0.12 for the modulation frequencies of Figs. 7a and b, respectively.
For larger modulation amplitudes no sideband overlap is expected, since the island size shrinks
as a function of q, which is described by Eqs. (20) and (22). Figure 7a shows that the sideband
resonances overlap at least up to the modulation amplitude q = 1, in agreement with Eq. (24). In
Fig. 7b, the resonances become separated beyond about q ≈ 0.1− 0.15. This value is consistent
with the prediction of Eq. (24), indicated by a straight vertical line, and thus corroborates
Eq. (22).

If the inequalities in Eqs. (21) and (24) are fulfilled, we are in the chaotic region. Here
an estimate of the ‘diffusion’ speed can be obtained in the following manner.27, 28 Starting from
the unperturbed Hamiltonian,

H(I, φ, θ) = IQ0 + g(I) + h(I) cos(nφ− pθ),

and the corresponding equation of motion for the action,

dI

dθ
= −∂H

∂φ
= nh(I) sin(nφ− pθ), (25)

we derive the increase in action (or emittance ε ≡ 2I) during a single crossing of the fundamental
resonance. Integration of Eq. (25) yields∫ I2

I1

dI

h(I)
=
∫ θ2

θ1
n sin(nφ− pθ)dθ. (26)

The integral on the right hand side can be calculated as demonstrated in Ref. 29. The main
contribution comes from the neighborhood of the ‘stationary phase’ φ0,

‡ where

∂

∂θ
(nφ− pθ)

∣∣∣∣∣
φ=φ0, θ=θ0

= 0.

‡The ‘method of stationary phase’ is described for example in Ref. 30.
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Figure 7: Location of the sideband islands with respect to the fundamental resonance as a function
of the modulation amplitude q. The island sizes ∆Ijtot are derived from Eq. (20) for the resonance
parameters n = 4, d2g/dI2(Ir) = 1, and QI = 4

√
h(Ir) = 0.049. (The corresponding phase diagram

is shown in Fig. 9.) Action values in the hatched area are inside of some resonance island. Two
sideband resonances overlap if they are not separated by a white region. The two diagrams refer to
different modulation frequencies: a) Qm = 0.04, b) Qm = 0.1. According to Eq. (24), resonance overlap
is expected only for the modulation amplitudes q < 1.8 or q < 0.12 in cases a and b, respectively.
In b, this limit is depicted by the straight vertical line. The solid curves represent Eq. (21), which
approximates the number of sizable sidebands. 18



    

A second order Taylor expansion around the phase φ0,

φ ≈ φ0 +
1

2

∂φ

∂θ2

∣∣∣∣∣
θ0

(θ − θ0)
2 ≡ φ0 +

1

2
φ′′0(θ − θ0)

2,

leads to∫ θ2

θ1
sin(nφ− pθ)dθ ≈ sinnψ0

∫ θ2

θ1
cos

{
nφ′′0
2

(θ − θ0)
2

}
dθ + cosnψ0

∫ θ2

θ1
sin

{
nφ′′0
2

(θ − θ0)
2

}
dθ ,

(27)
where, for brevity, a new phase variable ψ0 ≡ φ0 − θ0p/n has been introduced. The remaining
integrals are Fresnel integrals and can be solved. Assuming that the intervals |θ1 − θ0| and
|θ2 − θ0| are sufficiently large,29 the maximum value (as a function of ψ0) of the integral in
Eq. (27) is given by √

2π

n|φ′′0|
, (28)

and its average absolute value is √
8

πn|φ′′0|
. (29)

The average value will be used in our further discussion. Returning to Eq. (26) we find

∆Isingle ≡ |I2 − I1| ≈ nh(Ir) ·
√

8

πn|φ′′0|
, (30)

under the assumption that h(I) ≈ h(Ir) = constant. We now remember that the motion
is assumed to be chaotic. Thus the phase correlation is lost between subsequent resonance
crossings, and the action increase can be described by a random walk process. Then the mean
square uncertainty in the action after N resonance crossings grows as

(∆I)2 = N(∆Isingle)
2. (31)

Taking into account the tune modulation, the modulus of the second derivative of the phase is
replaced by its average value

|φ′′0| ≈
2

π
qQm. (32)

Since the number of resonance crossings after a time ∆t is

N = 2Qmfrev∆t, (33)

(two crossings per modulation period), we obtain

(∆ε)2

∆t
= 32

frevnh
2(Ir)

q
, (34)

where ε ≡ 2I denotes the single-particle emittance. The diffusion coefficient D ≡ 1
2
(∆ε)2/(∆t)

is inversely proportional to the modulation amplitude q and independent of the modulation
frequency Qm.
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3.4. Diffusion Rate for a Two-Dimensional Map

To examine the validity of Eq. (34) a numerical simulation is performed for a two-dimensional
map consisting of a rotation(

x
p

)
f

=

(
cos 2πQ sin 2πQ
− sin 2πQ cos 2πQ

)(
x
p

)
i

, (35)

where Q depends on the amplitude in the form

Q = Q0 +
α

4
(x2

i + p2
i )

2, (36)

and an octupolar kick
pf = pi − x3

i . (37)

The corresponding Hamiltonian is

H =
(
Q0 −

1

4

)
I +

α

3
I3 +

1

16π
I2 cos 4φ+

3

16π
I2 +

4

16π
I2 cos 2φ, (38)

with the usual definitions of I and φ:

x =
√

2I cosφ and p = −
√

2I sinφ. (39)

If the tune is close to the resonance 4Q ≈ 1 and if, furthermore, α À 1, the last two terms in
the Hamiltonian may be disregarded, and the driving term of the fourth integer resonance

h(I) =
1

16π
I2 (40)

is much smaller than the detuning function

g(I) =
α

3
I3. (41)

The case h(I)¿ g(I) is typical for a storage ring, where one stays away from strong low-order
resonances. Note that the absolute value of the detuning and driving terms can be changed by
a scale transformation. Let us choose Q0 = 0.23 and α = 1000. The condition ∂H/∂I = 0 then
leads to the resonant action value

Ir ≈
√

1

α

(
1

4
−Q0

)
≈ 4.5 · 10−3, (42)

and the elliptic fixed points are located at

xr = pr =
√
Ir ≈ 6.7 · 10−2. (43)
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Figure 8: Emittance spread for 200 chaotic trajectories of the two-dimensional maps, Eqs. (35)–(37),
as functions of the number of turns.

The island tune from Eq. (13) is

QI = 4

√
2αI3

r

16π
≈ 7.6 · 10−3. (44)

An additional tune modulation with amplitude q ≈ 0.1 and frequency Qm ≈ 6.25 · 10−3,
not too far from the island tune, destroys the resonance island chain and gives rise to global
chaos in agreement with Eq. (24). An ensemble of 200 particles is placed inside the chaotic
region with a tiny initial spread in position of 10−7. The evolution of the rms-emittance-spread
of this ensemble is shown in Fig. 8 as a function of the turn number for two different modulation
amplitudes. After a transient period of about 2,000 turns, in which the initially very close
particles lose their phase correlation, the evolution is well described by Eq. (34). In particular,
it is verified that the diffusion rate is inversely proportional to the modulation amplitude q.

3.5. Adiabatic Trapping

If the modulation frequency Qm is held constant, Eq. (24) determines a maximum value of the
modulation amplitude q, below which the motion is chaotic. Here and in the next section, a
complementary mimimum value of the modulation amplitude q is derived and justified.
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For a constant tune the position of the resonance islands is uniquely determined. If a tune
modulation is added, however, the resonance islands change their locations in phase space with
the periodicity of the modulation cycle. Provided that the frequency of the tune modulation
is sufficiently small, particles initially close to the centers of the islands move with the islands,
returning to the vicinity of their initial positions once every modulation period. In this case the
tune modulation is called adiabatic.31

The adiabatic boundary can be derived from the intuitive condition27, 28
action change rate

of island center due to
the slow tune variation

 <


action change rate

caused by the motion
around the resonance

 . (45)

The maximum change rate of the action value for the island center is obtained from the
action-dependence of the tune in the following way:

φ′r ≈ Q0 +
dg

dI
(Ir), (46)

φ′′r ≈
d2g

dI2
(Ir)

dIr
dθ
, and (47)

dIr
dθ

∣∣∣∣∣
max

=
|φ′′r |max∣∣∣d2g
dI2

(Ir)
∣∣∣ =

qQm∣∣∣d2g
dI2

(Ir)
∣∣∣ . (48)

According to Eq. (15) the action change during the motion around the resonance center is

dI

dθ
= h(Ir)n sin(nφ̄− pθ) ≈ h(Ir) · n (49)

(here it has been assumed that sin(nφ̄ − pθ) ≈ 1 for a trajectory half-way between stable and
unstable fixed points). By means of Eqs. (45), (48), and (49) the adiabaticity condition is

qQm <
d2g

dI2
(Ir) · h(Ir) · n,

or, using the island tune of Eq. (13), ∣∣∣∣∣qQm

Q2
I

∣∣∣∣∣ < 1

n
. (50)

It should be mentioned that Eq. (50) agrees with the condition that the fixed point of the 0th
sideband becomes unstable in the limit of small modulation frequency.23

3.6. Small Angle Approximation

For small oscillations around the stable fixed points the cosnφ-term in Eq. (17) can be expanded,
and the Hamiltonian is approximated § as follows:23

K(∆, φ) =
1

2

d2g

dI2
(Ir)∆

2 + h(Ir)
1

2
(nφ)2 + q cos(Qmθ + α)∆̄. (51)

§For convenience, the definition of the phase φ is changed by π/n, and the superscripts of Eq. (17) are dropped.
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In this approximation the nonlinear pendulum of Eq. (11) has been replaced by a harmonic
oscillator. From Eq. (51) we have the equations of motion

∆̇ = −hn2φ and φ̇ =
d2g

dI2
∆ + q cos(Qmθ + α).

So ∆̈ +Q2
I∆ = −qQ

2
I

d2g
dI2

cos(Qmθ + α). (52)

This is the equation of a driven harmonic oscillator. An analogous equation is satisfied by φ:

φ̈+Q2
Iφ = −qQm sin(Qmθ + α). (53)

A special solution is

φ = − Q2
m

Q2
I −Q2

m

q

Qm

sin(Qmθ + α), (54)

and

∆ = − Q2
I

Q2
I −Q2

m

q
d2g
dI2

cos(Qmθ + α). (55)

The prerequisite for this approximation has been given in Ref. 23 as

∣∣∣∣∣ qQm

Q2
I −Q2

m

∣∣∣∣∣ < 1

n
.

(56)

This can be obtained from Eq. (54), if one requires

nφ¿ 1,

on which the quadratic expansion of the cosine in Eq. (17) was based.
Equation (56) has different physical interpretations in the high and low frequency limits.

For small modulation frequencies Qm, Eq. (56) becomes identical to Eq. (50), which represents
the adiabatic boundary. In the limit of large modulation frequencies, Eq. (56) approaches
Eq. (21) for j = 1, which specifies the border where the first sideband resonance starts to be
important.

3.7. Two Degrees of Freedom

The theory of tune modulation outlined above suits also the more general situation of resonances
for two degrees of freedom, if the appropriate replacements are made in the previous formulae.
The Hamiltonian

H(Ix, Iz, φx, φz, θ) = IxQx0 + IzQz0 + g(Ix, Iz) + h(Ix, Iz) cos(kφx + lφz − pθ) (57)

describes the effect of a single resonance kQx+ lQz−p ≈ 0. By means of the generating function

F (Īx, Īz, φx, φz, θ) = (kφx + lφz − pθ)Īx + φz Īz (58)
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new canonical variables φ̄x, φ̄z, Īx, and Īz are introduced according to

φ̄x =
∂F

∂Īx
= kφx + lφz − pθ , φ̄z =

∂F

∂Īz
= φz (59)

Ix =
∂F

∂φx
= kĪx , Iz =

∂F

∂φz
= lĪx + Īz, (60)

and the transformed Hamiltonian H̄ is

H̄(Īx, Īz, φ̄x) = (kQx0 + lQz0 − p)Īx + ĪzQz0 + ḡ(Īx, Īz) + h̄(Īx, Īz) cos(φ̄x). (61)

The barred functions ḡ and h̄ are related to the old ones by

ḡ(Īx, Īz) ≡ g(kĪx, lĪx + Īz) = g(Ix, Iz) (62)

h̄(Īx, Īz) ≡ h(kĪx, lĪx + Īz) = h(Ix, Iz). (63)

The new Hamiltonian virtually describes a system of one degree of freedom because the action
Īz is an invariant of the motion. The Īz-φ̄z-plane will, therefore, be disregarded in our further
discussion. In the remaining Īx-φ̄x-plane the motion close to the resonance is approximated by
a nonlinear pendulum similar to Eq. (11),

K̄(∆̄, ¯̃φ) =
1

2

d2ḡ

dĪ2
x

(Īx,r, Īz,r)∆̄
2
x + h̄(Īx,r, Īz,r) cos φ̄x, (64)

where we have defined the new momentum ∆̄x to be the deviation from the resonant value,

∆̄x = Īx − Īx,r. (65)

This pendulum equation is almost the same as that derived by a different approach in Ref. 32.
According to Eq. (13) the island tune of a resonance for two degrees of freedom is given by

QI,2d =

√√√√∂2ḡ(Īx, Īz)

∂Ī2
x

h̄(Īx, Īz)

=

√√√√[k2
∂2g(Ix,r, Iz,r)

∂I2
x

+ 2kl
∂2g(Ix,r, Iz,r)

∂IxIz
+ l2

∂2g(Ix,r, Iz,r)

∂I2
z

]
h(Ix,r, Iz,r), (66)

where use has been made of Eqs. (62) and (63) to convert the expression to the original variables.
As usual the total width of the resonance island is deduced from the pendulum

Hamiltonian (see also Eq. (12) ):

∆Īx, tot = 2∆̄x,max = 4

√√√√√√
∣∣∣∣∣∣∣
h̄(Īx,r, Īz,r)
∂2ḡ
∂Ī2x,r

(Īx,r, Īz,r)

∣∣∣∣∣∣∣. (67)
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The translation into the original action space with the help of the transformation in Eq. (60)
gives

∆Itot =
√

∆I2
x + ∆I2

z =
√
l2 + k2 ∆Īx, tot. (68)

Hence the total island width for two degrees of freedom is

∆Itot =
4QI,2d

√
l2 + k2

|l2 ∂2g
∂I2z

+ 2kl ∂2g
∂Ix∂Iz

+ k2 ∂2g
∂I2x
|
. (69)

Tune modulation is introduced in analogy to Eq. (15). An additional term linear in Ix,z is added
to the single-resonance Hamiltonian of Eq. (57), yielding

H(Ix, Iz, φx, φz, θ) = IxQx0 + IzQz0 + g(Ix, Iz) + h(Ix, Iz) cos(kφx + lφz − pθ) +

+q(Ix + Iz) cos(Qmθ + α), (70)

where we have assumed, for simplicity, that both tunes are modulated with the same frequency
Qm and amplitude q. Performing the same canonical transformation as above the pendulum
approximation leads to (compare to Eq. (17) )

K̄(∆̄, ¯̃φ, θ) =
1

2

d2ḡ

dĪ2
x

(Īx,r, Īz,r)∆̄
2
x + h(Īx,r, Īz,r) cos φ̄x + q∆̄x(k + l) cos(Qmθ + α). (71)

Under our assumption that both tunes are modulated with the same frequency Qm and
amplitude q, Eqs. (21),(24),(56), and (50) are still valid if one uses the general island tune
of Eq. (66) and if one replaces n by k + l. The latter substitution indicates that difference
resonances are less affected by the tune modulation than are sum resonances.

The mean emittance growth in the chaotic region close to a single resonance has been
calculated for one degree of freedom in section 3.7, Eq. (34). It can easily be generalized to two
degrees of freedom, and is then

(∆(εx + εz))2

∆t
= 32

frev(k + l)h2(Ix,r, Iz,r)

q
. (72)

Again we find that only the substitution n → k + l is required to generalize the result for one
degree of freedom.

3.8. Width of the Stochastic Layer

The effect of tune modulation as a function of resonance order, island tune, modulation
amplitude, and modulation frequency can be estimated in an alternative way. The basic
procedure, developed in Ref. 26, is to construct a discrete mapping for the motion near the
separatrix. The threshold of chaos for this map yields the width of the stochastic layer, which is
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a quantitative measure of the chaotic part of the phase space close to a resonance. Our starting
point is a Hamiltonian of the form of Eq. (71):

H(∆, φ, θ) =
1

2

d2g

dI2
∆2 − h cosφ+ q(k + l)∆ cos(Qmθ + α). (73)

The unperturbed Hamiltonian

H0(∆, φ) =
1

2

d2g

dI2
∆2 − h cosφ (74)

has stable fixed points at (φ = 2kπ,∆ = 0) and unstable fixed points at (φ = (2k+1)π,∆ = 0).
The motion on the separatrix is given by33

φsx = 4 arctan eQIθ − π, (75)

where we have used the island tune defined in Eq. (13). The change in H0 during a half period
of the oscillation can be approximated by integrating dH0/dθ ≡ [H0, q · (k+ l) ·∆ cos(Qmθ+α)]
along the separatrix trajectory, which is denoted by the subscript ‘sx’:

∆H0 ≈ h
(k + l)q

2

∫ ∞
−∞

dθ[sin(φsx −Qmθ − α) + sin(φsx +Qmθ + α)] (76)

= h
(k + l)q

2Qm

κ
∫ ∞
−∞

ds[sin(φsx − κs− α) + sin(φsx + κs+ α)] (77)

= −h(k + l)q

2Qm

κ sinα
∫ ∞
−∞

ds[cos(φsx − κs)− cos(φsx + κs)]. (78)

Here we have changed the integration variable from θ to s = θ · QI and have introduced the
dimensionless quantity

κ ≡ Qm

QI

. (79)

The integrals on the right hand side are known as Melnikov-Arnold integrals A2(κ),
A2(−κ)26, 33, 34, 35 and can be evaluated (see Ref. 6). We are then led to the following solution:

∆H0 = −hκ(k + l)q

2Qm

· (A2(κ)−A2(−κ)) · sinα. (80)

Denoting the relative energy deviation from the separatrix by w,

w ≡ H0 − h
h

,

and Eq. (80) can also be written as

w̄ = w − κ(k + l)q

2Qm

· (A2(κ)−A2(−κ)) · sinα. (81)
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A canonical variable conjugate to w is the phase α. In order to construct a map the change in α
also has to be calculated. The oscillation frequency in the vicinity of the separatrix is given by26

Q(w) ≈ πQI

ln( 32
|w|)

. (82)

Hence the change of α during a half period of the oscillation is

ᾱ ≈ α+ π
Qm

Q(w̄)
≈ α+

Qm

QI

ln
32

|w̄| . (83)

Note that the argument of the logarithm is the transformed variable w̄ and not the initial w,
which means that Eqs. (81) and (83) are applied successively. The Jacobian determinant of
either part is one, and therefore the total map is symplectic. The trace of the Jacobian matrix
for this map is calculated as

TrJ(α,w) = 2 + f
κ

|w̄| cosα, (84)

with the abbreviation

f ≡ (k + l)q

2QI

(A2(κ)−A2(−κ)). (85)

A fixed point is stable if the absolute value of the trace is smaller than 2; otherwise it is unstable.
In our case the fixed points are given by (with mr and nr being natural numbers)

|wr| = 32 · e− 2πmr
κ

αr = nrπ. (86)

If f is a positive quantity, the fixed points α = nrπ with nr even are always unstable. However
for an uneven nr instability occurs only if

|w| < κf

4
. (87)

In order to proceed further we have to insert the solution of the Melnikov-Arnold integral
A2,

26, 33, 6

A2(κ) = 4πκ
e
πκ
2

sinh(πκ)
, (88)

into Eq. (85). According to Eq. (87) the width of the stochastic layer is then written as

wsl = πκ3 (k + l)q

Qm

sinh(πκ
2

)

sinh(πκ)
.

(89)

The value of wsl is proportional to the fraction of area of the resonance island which becomes
chaotic due to the external tune modulation. For a large ratio Qm/QI ≡ κ À 1, the width of
the chaotic layer decreases exponentially as a function of the modulation frequency.
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Instead of founding our argumentation on the stability of the fixed points we can derive
the width of the stochastic layer in an alternative way. If f defined by Eq. (85) is sufficiently
small, it is possible to linearize the mapping in w (but not in α) around a resonant value wr.
Equations (81) and (83) are then transformed into

Ī = I +K sinα (90)

ᾱ = α+ Ī , (91)

where we have introduced the new variable

I ≡ −κ
(
w − wr
wr

)
(92)

and the parameter

K ≡ κf

wr
. (93)

Equations (90) and (91) constitute the ‘standard mapping’, which is of fundamental importance
in the theory of nonlinear resonances. The onset of global chaos for this mapping occurs at a
critical value K ≈ 1.26 Hence the width of the stochastic layer is approximately

|wsl| ≈ κf, (94)

which differs from Eq. (87) only by a factor of 4. In the following we will take the geometric
mean of Eqs. (89) and (94). Noting that

wI ≡
∆Isl
∆Itot

≈ 1

2
wsl, (95)

in the following we will drop all subscripts and use the symbol w (understood to be wI) for the
expression on the right hand side of Eq. (89).

It should be mentioned that Eq. (89) may be completely valid only in the limit of large
modulation frequencies, since we have ignored an oscillating term (as a function of modulation
frequency) caused by the discrete locations of fixed points in Eq. (86).26

3.9. Phase Diagrams

In the parameter space of tune modulation, areas with distinct dynamical behavior can be
graphically represented, which leads to ‘phase diagrams’ as proposed in Ref. 23. The borderlines
given by the inequalities in Eqs. (24) and (56),

Q
3
4
m(nq)

1
4

QI

=
4

π
1
4∣∣∣∣∣ qQm

Q2
I −Q2

m

∣∣∣∣∣ =
1

n
.

(96)
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describe approximate boundaries between regions with qualitatively different behavior in the
(q,Qm)-plane. The unperturbed system is defined by only two parameters, the island tune QI

and the order n of the resonance ¶. A typical phase diagram is shown in Fig. 9 (solid curves),
for the values QI = 0.049 and n = 4 of the octupole kick map studied in Section 3.10. The four
different regions in the phase diagram can be interpreted as follows:

1. At small modulation amplitudes and small modulation frequencies, the tune change is
adiabatic, and the particles are stable.

2. For small modulation amplitudes and large modulation frequencies the sideband islands
cover only a very small fraction of phase space. Thus the majority of particles are not
affected by the tune modulation. This region is characterized by ‘rapid phase oscillations’.

3. If the modulation amplitude is increased, the sideband islands gain importance. For large
modulation frequency these islands are separated from each other, and the motion is still
regular.

4. For large modulation amplitudes the sidebands start to overlap below some critical
modulation frequency, giving rise to global chaos. It is this region of the phase diagram
(in the upper left corner) where emittance growth processes and proton losses occur.

The particle loss is due to a ‘diffusion’ process in the chaotic region, which is described
by Eq. (34):

(∆ε)2

∆t
= 32

frevnh
2(Ir)

q
.

(97)

The local diffusion rate is independent of the modulation frequency.
We now propose a complementary phase diagram, which is derived from Eq. (89):

w ≡ πnq
Q2
m

Q3
I

sinh(πQm
2QI

)

sinh(πQm
QI

)

!
= w0.

(98)

The contour line w = w0, for a properly chosen constant w0, can be used to define a border
between chaotic and regular regions. Contour lines for w0 = 0.05, 0.1, 0.2, and 0.3 are shown
as dotted curves in Fig. 9. While the chaotic regions predicted by Eqs. (96) and (98) agree
approximately, there are still a few important differences:

a) Equation (96) describes a resonance-like behavior at Qm ≈ QI , whereas according to
Eq. (98), the modulation amplitude has to exceed a certain threshold to be harmful. The
prediction of Eq. (96) that an arbitrarily small modulation amplitude may cause global
chaos seems to be unrealistic.

¶As mentioned, in the more general two-dimensional case n has to be replaced by k + l.
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Figure 9: Phase diagram for the island tune QI = 0.049 and the resonance order n = 4 according
to Eq. (96) (solid curves) and contour lines using Eq. (98) with w = 0.05, 0.1, 0.2, 0.3 (dotted lines).
The small closed and open circles refer to strongly chaotic and almost undisturbed cases, respectively,
as found in simulation studies with an octupole kick map (Section 3.10). The phase space diagrams
corresponding to the circles (from left to right) are depicted in Figs. 10b–j and 13a–f.

b) The maximum response to tune modulation is either at Qm = QI from Eq. (96), or at
Qm ≈ 1.35 ·QI (maximum value of width w in Eq. (98) ).

c) The boundary of the chaotic region is defined by only one equation if one applies the
stochastic layer argumentation of Eq. (98).

The effect of tune modulation on a simple octupole kick map is examined in the next section in
order to study these questions more deeply.

3.10. Octupole Kick Map

The two-dimensional map that we want to study consists of a rotation(
x
p

)
f

=

(
cos 2πQ sin 2πQ
− sin 2πQ cos 2πQ

)(
x
p

)
i

(99)
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and an octupolar kick
pf = pi − x3

i . (100)

The equivalent Hamiltonian is

H(x, p, θ) =
1

2
Q(x2 + p2) +

1

4
x4δ(θ). (101)

Action and angle variables I and φ are introduced by the usual relations

x =
√

2I cosφ and p = −
√

2I sinφ. (102)

Near the fourth integer resonance 4Q ≈ 1 the total Hamiltonian is approximated by

H(I, φ̃) ≈
(
Q− 1

4

)
I +

3

16π
I2 +

1

16π
I2 cos(4φ̃). (103)

We readily identify the characteristic quantities

g(I) =
3

16π
I2 (104)

h(I) =
1

16π
I2 (105)

n = 4. (106)

Choosing Q = 0.23, the resonant action value is Ir = 4π(1
4
−Q) ≈ 0.25, and the island tune is

approximately

QI = n

√
d2g

dI2
(Ir)h(Ir) ≈ 0.049. (107)

The phase diagram of this situation is shown in Fig. 9. We investigate two special cases.
First, we examine the behavior for the comparatively small modulation amplitude q = 0.002.
Figure 10 presents phase space diagrams for ten different modulation frequencies. Each diagram
shows six different trajectories plotted once every modulation period (stroboscopic plot). The
corresponding positions in the phase diagram are indicated by the lower row of circles in
Fig. 9. It is evident from the diagrams that the small angle boundary of Eq. (96) considerably
underestimates the size of the chaotic region: The second part of Eq. (96) predicts chaos only
in the very small range 0.045 < Qm < 0.053. However, chaotic trajectories occupy large
phase-space areas for roughly 1

4
QI < Qm < 4QI . These limits would be described by Eq. (98)

with w0 ≈ 0.01 as can be seen from Fig. 11 depicting the stochastic width of Eq. (98) as a
function of the modulation frequency. The stochastic width w is maximal at Qm ≈ 0.066 and
thus is in a region which should be regular according to Eq. (96).

Another point of interest is the border derived from the resonance overlap criterion
of Eq. (24). We choose the modulation amplitude q = 0.05, which is larger than the value
q∗ ≈ 0.033 at the intersection of the two phase boundary lines in Eq. (96). Figure 12 shows the
width of the stochastic layer as a function of the modulation frequency for this value of q.
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Figure 10: Phase space diagrams of six trajectories for the octupole kick maps of Eqs. (99) and (100)
with a tune modulation amplitude q = 0.002; each diagram corresponds to a different modulation
frequency Qm: a) no modulation b) Qm = 0.005, c) Qm = 0.01 ≈ 1

5QI , d) Qm = 0.02, e) Qm = 0.04,
f) Qm = 0.05 ≈ QI , g) Qm = 0.06, h) Qm = 0.1, i) Qm = 0.2 ≈ 4QI , and j) Qm = 0.5.
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Figure 11: Width w of the stochastic layer, Eq. (98), for the simple octupole kick maps of Eqs. (99)
and (100), with a modulation amplitude q = 0.002, as a function of the modulation frequency Qm.
The open and closed circles refer to the almost undisturbed and to the strongly chaotic phase space
diagrams in Figs. 10b–j, respectively.

In Fig. 12 the chaotic width w becomes too large at modulation frequencies close to the
island tune for the predicted value to be accurate. Since the stochastic layer extends to both sides
of the separatrix, only half of it lies inside the resonance island. A reasonable upper limit for the
parameter w is therefore 2, which would describe a situation in which the complete resonance
island is chaotic. Hence the range of validity of Eq. (89) is restricted in a self-consistent way to
values of w smaller than 2. Far from the separatrix it is no longer possible to approximate the
motion by integrating along the separatrix, which was the basic assumption.

Figure 13 shows phase space diagrams for six different modulation frequencies and a
constant modulation amplitude q = 0.05. Due to the larger value of q, chaotic particles are lost
almost immediately, which leads to a somewhat distinct appearance of the phase space diagrams
as compared to Fig. 10. The change from chaotic to regular motion occurs at about Qm ≈ 0.25.
In view of Fig. 12, this threshold could be described by Eq. (98) with w0 ≈ 0.1, whereas the
first part of Eq. (96) predicts the border of global chaos already at Qm ≈ 0.133. The six cases
examined in Fig. 13 are represented by the upper row of circles in the phase diagram, Fig. 9. It
may be concluded that Eq. (98) represents the border of the chaotic region at least as accurately
as Eq. (96).

The reader may have noticed, from Figs. 10–13, that in many cases the fraction of the
resonance island destroyed by the tune modulation agrees with Eq. (98) only within a factor
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Figure 12: Width w of the stochastic layer, Eq. (98), for the simple octupole kick maps, Eqs. (99)
and (100), with a tune modulation amplitude q = 0.05, as a function of the modulation frequency Qm.
The open and closed circles refer to the almost undisturbed and to the strongly chaotic phase space
diagrams in Figs. 13b–f, respectively.

5–10, where the deviations are both towards too high and too low values. Therefore, it is
desirable to estimate the magnitude of the deviation to be expected for a typical resonance in
HERA and thus of the error in the results of Section 2.

It has been pointed out36 that Eqs. (96) and (98), describing alternative borders in a
phase diagram, can be expressed in terms of two quantities, a ‘scaled’ modulation amplitude
q̃ ≡ nq/Qm and a ‘scaled’ modulation frequency Q̃m ≡ κ ≡ Qm/QI . Simulations provide strong
evidence that the degree of chaos is indeed characterized by the two universal parameters q̃ and
Q̃m and does not depend on the actual values of n and QI . Assuming parameters representative
for HERA (see Section 2), here labeled by the superscript H,

nH = 10,

QH
I ≈ 2 · 10−4,

QH
m ≈ 10−3,

qH ≈ 10−4,

the scaled parameters are q̃H ≈ 1 and Q̃H
m ≈ 5. The phase space diagram of Fig. 13d corresponds

to nearly these values, namely to q̃ ≈ 1 and Q̃m ≈ 4. For this case, Fig. 12 predicts a chaotic
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Figure 13: Phase space diagrams of six trajectories for the octupole kick maps, Eqs. (99) and (100),
with a tune modulation amplitude q = 0.05; each diagram corresponds to a different modulation
frequency Qm: a) Qm = 0.05 ≈ QI , b) Qm = 0.1, c) Qm = 0.125, d) Qm = 0.2, e) Qm = 0.25 ≈ 5QI ,
and f) Qm = 0.5.

region whose size is about 40% of the undisturbed island. From comparison of the phase space
diagrams in Figs. 13d and f, about 60–70% of the island is actually destroyed in Fig. 13d.
The island tune QI for most of the resonances in HERA is smaller than the assumed value
QH
I ≈ 2 · 10−4. Fortunately, for a larger ratio QH

m/Q
H
I the error of Eq. (98) decreases. This is

illustrated by Fig. 13e, for which the stochastic width is about 15%, in good agreement with
Fig. 12. It may, therefore, be expected that, in the results for HERA presented in Section 2,
the error of w is not larger than a factor of 2.
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4. Modulation Amplitudes

4.1. Origin of Power Supply Ripple

A major source of tune modulation in a storage ring is magnetic field modulations caused by
voltage ripple of the magnet power supplies. The voltage ripple is partly due to the design of
the rectifiers and partly due to technical imperfections.

The superconducting correction coils in HERA are fed by switched mode power supplies
(chopper). These are built as converters on the basis of a pulse width modulation and are driven
at a frequency of 14 kHz.37 Due to the very high frequency, their effect on the beam dynamics is
negligible, provided that the fractional part of the betatron tune is not too close to the driving
frequency of the power supplies, which corresponds to Qm ≈ 0.296.

For magnets or magnet chains which are operated at a current higher than 360A, rectifiers
with thyristor bridges are used. The main superconducting circuit is fed by a 24-pulse 4-bridge
silicon controlled rectifier (SCR). The expected fundamental ripple frequency is 12 kHz for
a perfect balance of the bridge circuit. Due to imbalances between individual bridges and
thyristors, and due to capacitances to ground all harmonics of the fundamental frequency, 50 Hz
are found in the voltage spectra of the SCRs.

4.2. Simple Model of the Main Circuit

In the HERA ring all superconducting dipoles and quadrupoles are powered in series.
Consequently, a current ripple in the main circuit changes the focusing strength of the
quadrupoles as well as the deflecting dipole field. A change in the dipole field leads to a shift
in energy and beam orbit. In the arcs the corresponding shift of the tune is compensated by
the simultaneous change of the quadrupole strengths. Independent power supplies feed the
normal-conducting quadrupoles in the straight sections. Therefore the compensation of the
dipole and the quadrupole field variations is not perfect, and a net tune modulation results.

To illuminate the relation between power supply ripple and tune modulation, a simplified
model of a current ripple ∆I

I
cos(ωripplet) with constant amplitude and phase along the

superconducting magnet chain is considered. Three effects contribute to the effective tune
modulation, namely

1. the absolute change of the momentum,

2. the orbit change at the position of the sextupoles,

3. the change of the focusing strength of the quadrupoles.

For a low-frequency ripple, ωripple ¿ ωsync, the energy of the particles follows the change in
the external field. The revolution frequency stays constant because the radio frequency in the
cavities is not changed. Hence the change in the velocity is compensated by a change in the
path length, and we have

∆C

C
=

∆v

v
=

1

γ2

∆p

p
,
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where γ is the relativistic γ ≡ (1− v2

c2
)−

1
2 . The relative change in the orbit length is

∆C

C
=

1

γ2
tr

(
∆p

p
− ∆B

B

)
.

In this section the ripple of the guide field ∆B
B

is assumed to be equal to the current ripple
∆I
I

. The transition energy γtr is the nominal energy at which the change in path length exactly
compensates for the change in velocity for off-momentum particles. For HERA its value is
γtr ≈ 27.7. The last two equations lead to

∆p

p
=

γ2

γ2 − γ2
tr

∆B

B
. (108)

If there were no sextupole coils in the ring, the absolute change in momentum would give rise
to a tune modulation amplitude qI via the natural total chromaticity ξtotnat.:

qI = ξtotnat.
∆p

p
= ξtotnat.

γ2

γ2 − γ2
tr

∆B

B
, (109)

the chromaticity ξ being defined as the change in tune ∆Q per relative momentum deviation,

ξ ≡ ∆Q

∆p/p
. (110)

The ‘natural’ chromaticity ξnat. is caused by the variation with momentum of the quadrupole
focusing strength. It can be expressed as an integral of the quadrupole strength K in units of
m−2 times the beta function β around the ring,

ξtotnat. ≡ −
1

4π

∮
Kβ ds.

Sextupole correction coils and sextupole field errors in the superconducting magnets provide a
second contribution to the overall chromaticity, which is of opposite sign. The effective sextupole
strength around the ring is adjusted such that the total chromaticity

ξtot = ξtotnat. +
1

4π

∮
mDβ ds (111)

is close to zero, m being the sextupole strength in units of m−3 and D the dispersion function.
Hence the horizontal orbit shift in the sextupoles, given by

x = D

(
∆p

p
− ∆B

B

)
= D

γ2
tr

γ2 − γ2
tr

∆B

B
,

causes a modulation amplitude qII , which can be written as

qII = −ξtotnat.
γ2
tr

γ2 − γ2
tr

∆B

B
. (112)
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It is convenient to decompose the total natural chromaticity into two parts,

ξtotnat. = ξstraightnat. + ξarcnat., (113)

by means of which the effect of the warm quadrupoles in the straight sections is separated from
that of the superconducting quadrupoles in the arcs. The modulation of the focusing strength
of the superconducting quadrupoles leads to a modulation amplitude qIII ,

qIII =
1

4π

∫
arc
Kβ ds

∆B

B
= −ξarcnat.

∆B

B
. (114)

Adding Eqs. (109), (112), and (114) the total modulation amplitude q becomes

q = |qI + qII + qIII | = |ξstraightnat. |∆B
B

for ωripple ¿ ωsync. (115)

For frequencies larger than the synchrotron frequency, ωripple À ωsync, the momentum is
approximately constant ∆p ≈ 0. Hence, in this case, there is no contribution to the modulation
amplitude of the form qI from Eq. (109). The horizontal orbit change is simply

x = −D∆B

B
,

and qII in Eq. (112) has to be replaced by

qIV = ξtotnat.
∆B

B
, (116)

while qIII from Eq. (114) also applies to a high-frequency ripple. The total tune modulation
amplitude

q = |qIII + qIV | = |ξstraightnat. |∆B
B

for ωripple À ωsync (117)

is the same as for a low-frequency ripple (Eq. (115)).
In the HERA proton ring the natural chromaticities at injection energy are about

ξtotnat. = ξarcnat. + ξstraightnat. ≈ −40, ξarcnat. ≈ −30, and ξstraightnat. ≈ −10. (118)

In our simple model, the relation between current ripple and tune modulation amplitude is

q ≈ |ξstraightnat. | · ∆B
B
≈ 10 · ∆B

B
. (119)

The amplitude of the 150-Hz field ripple measured in the reference dipole magnets is ∆B/B ≈
1.4 ·10−6 and corresponds to a tune modulation amplitude q ∼ 1.4 ·10−5, according to Eq. (119).
In reality the amplitude of the current ripple is not constant around the ring, and the overall
modulation amplitude q is a factor of 3–4 larger (see next section).

It is difficult to relate the observed field ripple to the voltage ripple at the power supply.
For example, using Ltot ≈ 24H the estimate ∆U = ωLtotI

∆B
B

results in ∆U ≈ 8V . In contrast,

the power supply specifications allow a maximum ripple amplitude of only 2 Volts.38 Direct
measurements at the power supply show that the actual ripple amplitude is even smaller, on the
order of 150 mV.39 Thus an RL-circuit is not an adequate model to describe the superconducting
magnet chain.
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Figure 14: Tune modulation amplitude at injection energy as a function of the ripple frequency for a
voltage ripple of 1 V at the power supply.40

4.3. Transmission Line Characteristics

In order to properly estimate the actual effect of the magnetic field ripple, the transmission line
characteristics of the superconducting magnet string have to be considered. For every ripple
frequency a wave pattern builds up along the magnet chain. The corresponding current ripple
amplitude at each position in the ring can be computed from the measured 4-pole parameters
of dipole and quadrupole magnets. As far as the contribution to the overall tune modulation
is concerned the ripple effects in different quadrupole and sextupole magnets partially add and
partially cancel each other.

In Fig. 14 the tune modulation amplitude expected for a harmonic power supply voltage
ripple of amplitude 1 V is shown as a function of the ripple frequency.40 The amplitude of the
50-Hz ripple was measured to be about 50 mV, which, according to Fig. 14, translates into a tune
modulation amplitude of q ∼ 3 · 10−5. The 150-Hz voltage ripple of 150 mV gives rise to a tune
modulation of amplitude q ∼ 5 · 10−5. The large enhancement of the effect of a power supply
ripple between 0 and 300 Hz, illustrated by Fig. 14, is related to standing wave resonances of the
magnet string, which occur at frequencies as low as 15.6 Hz. According to model calculations41

the eigenmodes of the transmission line may be excited during the ramp. Such an excitation
has not yet been measured.

4.4. Shielding by the Beam Pipe

The inside of the cold HERA beam pipe is coated with a copper layer of thickness d = 10µm at a
radius r = 27.5 mm. This layer provides most of the shielding, which can be calculated by solving
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Maxwell’s equations with the appropriate boundary conditions.42, 43 The frequency-dependent
skin depth is given by

δ(f) =
1√

πfµ0σ
. (120)

The ‘shielding factor’ Q̃ ≡ Binside/Boutside is defined to be the ratio of the magnetic field inside
the beam pipe to the field a great distance from it, which is assumed to be homogeneous.
Introducing the two abbreviations

k(f) ≡ 1 + i

δ(f)

K(f) ≡ k(f) · (r − d) ,

the shielding factor can be written in complex form as42, 43

Q̃(f) =

[
cosh(k(f) · d) + 0.5

[
K(f) +

1

K(f)

]
· sinh(k(f) · d)

]−1

. (121)

In Fig. 15a the absolute value of Q̃(f) is plotted in the frequency range 0–15 kHz assuming a
conductivity σcopper ≈ 4 · 109 1

Ωm
at liquid helium temperature.44 At 150 Hz, the attenuation

factor is only 0.8.
The warm sections of the beam pipe are not coated by copper, but consist of 2-mm-thick

stainless steel with a conductivity of σ ≈ 3 · 106 1
Ωm

.44 At the position of the interaction-region
quadrupoles (QR10,QR14) the average beam pipe radius is r = 29.5 mm. Figure 15b shows
that in the frequency range of interest, between 0 and 600 Hz, the warm beam pipe provides
virtually no shielding.

4.5. Ground Motion Effects

A tune modulation of low frequency can be caused by ground waves and mechanical vibrations
of the magnets. The amplitude of the beam oscillations due to these effects and the impact on
collision alignment in HERA have been the object of vigorous investigations.45 One may suspect
that a part of the low-frequency beam oscillations results in a harmonic tune modulation due
to an orbit change at the position of the sextupoles. For instance, assuming a root-mean-square
orbit displacement in the arc of xrms = 0.05 mm caused by mechanical quadrupole vibrations, a
rough estimate of the resulting modulation amplitude is

qvibration ≈ |ξnat.|
Q− {Q}

Q

xrms

D
√
Nquad

, (122)

where D is the average dispersion function (about 1.5 m), Nquad the number of quadrupoles,
ξnat. ≈ −40 the natural chromaticity, and Q− {Q} the fractional part of the betatron tune Q.

The factor (Q − {Q})/Q accounts for the oscillatory character of the closed orbit
distortions. Over every full betatron wavelength the accumulated tune shift is zero, because
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Figure 15: Shielding factor |Q̃| as a function of frequency in Hz for the HERA beam pipe: a)
cold beam pipe with d = 10µm copper plating, b) warm beam pipe consisting of d = 2mm
stainless steel.
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orbit displacements of opposite sign in a sextupole compensate for each other. Thus in a first
approximation only the fractional part of the tune, which corresponds to an incomplete closed
orbit oscillation, gives rise to a tune shift. For a typical working point ofQ ≈ 31.3 the suppression
factor is about 0.3/31 ≈ 10−2. The square root of the number of quadrupoles (Nquad ≈ 200)
enters in Eq. (122) if there is no correlation between the individual magnets. A typical number
is q = 10−6, which is a factor of 100 smaller than the modulation amplitudes due to power
supply ripple. The dominant frequencies are in the range 2–20 Hz.45

4.6. Synchrotron Oscillations and Nonzero Chromaticity

The effect of synchrotron motion and nonzero chromaticity may to first order be approximated
by the accompanying tune modulation in the transverse phase space. A typical modulation
amplitude is q ≈ 2 · 10−4 (assuming a relative energy deviation δ ≈ 2 · 10−4 and a chromaticity
ξ ≡ ∆Q/∆p

p
≈ 1). The synchrotron frequency of about about 20 Hz corresponds toQm ≈ 4·10−4.

5. Analysis of High-Order Resonances

By a suitable combination of normal-form and factorization processes the parameters of all
resonances kQx + lQz = p up to eleventh order can be evaluated inside the dynamic aperture of
HERA. The basic procedure consists of two steps.46 First, a four-dimensional truncated Taylor
map of eleventh order is extracted from a tracking code by the methods of differential algebra.9

Second, differential-algebra based normal-form transformations and Lie-algebraic factorizations
are performed,46, 47 which bring the map into a particularly simple form. An overview of
differential algebra and of normal-form methods is given in Ref. 6.

An eighth order normal-form transformation for a model of the HERA proton ring still
shows considerable deviations from tracking, which indicate that the order 8 is too low. For
instance the tune dependence on amplitude is not well reproduced for emittances of about 4 mm
mrad (see Fig. 16). However, small resonance denominators prevent a ninth order normal-form
transformation from converging in the whole amplitude range of interest. A possible way out
is to normalize the map M up to eighth order and subsequently to rewrite the remainder as a
Dragt-Finn factorization,48 or, in other words, to apply first order perturbation theory in the
eighth order normal-form coordinate frame. The original map M is then cast into the following
form:

M = A−1e:−2πQI+t3(I)+...+t8(I):e:f9(I,φ): . . . e:f11(I,φ):A+O(12), (123)

where the tn and fn are polynomials of degree n in xk =
√

2Ik cosφk, and pk = −
√

2Ik sinφk.
‘A’ denotes the eighth order normal-form transformation. The detuning is deduced from the
approximate Hamiltonian

Happrox = A−1
[
QI − 1

2π
{t3(I) + . . .+ t8(I)+ < f9(I, φ) + . . .+ f11(I, φ) >φ}

]
. (124)

Tune curves obtained by this method and those from an eighth and an eleventh order
normal-form analysis are compared with the tracking data in Fig. 16. Here and in the following,

42



   

Figure 16: a) Horizontal tuneQx as a function of the starting amplitude xstart (βx = 28.5 m, zstart = 0),
b) vertical tune Qz as a function of the starting amplitude zstart (βz = 3.8 m, xstart = 0). In both
diagrams, the maximum amplitude corresponds to an emittance of about 4 mm mrad.

the amplitude values refer to the interaction point, where the horizontal and vertical beta
function of the injection optics are βx ≈ 28.5 m and βz ≈ 3.8 m, respectively. The horizontal
axis in Fig. 16 gives the starting amplitude at this point, the total scale corresponding to an
emittance of 4 mm mrad. The initial angles x′ and z′ are chosen to be zero.

In Fig. 16 the divergence of the eleventh order normal-form analysis and the shortcoming
of an eighth order normalization are clearly evident. The combination of a normal-form
transformation and a subsequent Dragt-Finn factorization leads to a substantial improvement
and reproduces the amplitude-dependent tunes up to the threshold of chaotic motion.

In order to verify the convergence ofA−1, the transformation can be directly applied to the
tracking data. This is illustrated in Fig. 17 for a trajectory with an initial emittance εx ≈ 0 mm
mrad and εz ≈ 4 mm mrad. Shown are the usual phase space projections and those in eighth- and
ninth-order normal-form coordinate frames. In the coordinates transformed up to eighth order,
the motion in both planes is almost perfectly decoupled and more circular. The finite width of
the circle in the horizontal normal-form plane (Fig. 17c) is caused by nonlinear terms of order
higher than 8 and can only be removed by increasing the order of the transformation. A ninth
order normal-form transformation, however, diverges strongly in the vertical plane (Fig. 17f),
when the transformed coordinates become extremely large.

To identify the relevant high-order resonances the amplitude-dependent tunes are
depicted in a tune diagram together with the resonance lines. This is done for three different
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Figure 17: Tracking data for HERA at an initial emittance εx = 0 mm mrad and εz ≈ 4 mm mrad;
a and b) original horizontal and vertical plane, c and d) horizontal and vertical plane normalized to
eighth order, e and f) horizontal and vertical plane normalized to ninth order. Note the different scale
in diagram f.
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Table 2: Characteristics of high-order resonances in HERA as a function of starting amplitudes x and
z for the working point (Qx = 31.27, Qz = 32.30). At the point of observation x = 11 mm or z = 4
mm corresponds to an emittance of about 4 mm mrad.

x z Resonance ∂2g/∂I2
x ∂2g/∂Ix∂Iz ∂2g/∂I2

z h QI
0.000 2.720 −3Qx + 6Qz = 100 0.5 · 10−2 −0.4 · 10−2 0.26 · 10−3 0.2 · 10−10 2 · 10−6

0.000 2.780 6Qx − 2Qz = 123 0.5 · 10−2 −0.4 · 10−2 0.29 · 10−3 0.13 · 10−14 1.9 · 10−8

0.000 2.800 9Qx + 2Qz = 346 0.5 · 10−2 −0.4 · 10−2 0.30 · 10−3 0.14 · 10−23 6.1 · 10−13

0.000 2.840 3Qx + 4Qz = 223 0.55 · 10−2 −0.4 · 10−2 0.32 · 10−3 0.13 · 10−9 2.3 · 10−6

0.000 3.960 8Qx + 3Qz = 347 0.8 · 10−2 −0.57 · 10−2 0.18 · 10−1 0.33 · 10−20 2.9 · 10−11

4.290 0.000 7Qx − 3Qz = 122 0.33 · 10−2 −0.27 · 10−2 −0.71 · 10−4 0.9 · 10−12 5 · 10−7

6.105 0.000 −4Qx + 7Qz = 101 0.31 · 10−2 −0.22 · 10−2 −0.17 · 10−3 0.3 · 10−16 2 · 10−9

7.150 0.000 11Qx = 344 0.30 · 10−2 −0.20 · 10−2 −0.19 · 10−3 0.11 · 10−7 6.3 · 10−5

5.720 2.080 7Qx − 3Qz = 122 0.39 · 10−2 −0.24 · 10−2 −0.27 · 10−3 0.16 · 10−6 2.2 · 10−4

6.490 2.360 −4Qx + 7Qz = 101 0.39 · 10−2 −0.21 · 10−2 −0.36 · 10−3 0.31 · 10−6 2.24 · 10−4

8.415 3.060 11Qx = 344 0.38 · 10−2 −0.13 · 10−2 −0.62 · 10−3 0.77 · 10−7 1.9 · 10−4

working points in Fig. 18. Shown is the change of the tunes when the initial emittance is varied
between zero and εx = εz = 4 mm mrad. Also represented in the figure are all resonance lines
through order 11. For the three working points, it is possible to identify 11, 6, and 11 resonances
of order 7 to 11, which are crossed by the tune, if the starting emittance is changed continuously
from 0 to 4 mm mrad along the three lines εx = 0, εz = 0, and εx = εz.

The detuning and driving terms ∂2g/∂I2 and h can also be determined by the
normal-form analysis. They are evaluated for all resonances crossed in Fig. 18. In Table 2
the results are listed for one of the working points. A compilation of the resonance-parameters
for all three working points is given in Refs. 6 and 7.

According to Table 2 an island tune of 2 · 10−4 and a resonance order n = 10 may be
considered typical for large amplitudes. The corresponding phase diagram is depicted in Fig. 19.
It is evident that tune modulation frequencies above 50 Hz (Qm > 10−3) should be harmless
from a sideband-overlap point of view.

Figure 20 shows the island width ∆εtot ≡ 2∆Itot, computed from Eq. (69), as a function
of the emittance ε ≡ εx + εz, for the resonances of order 7–11 listed in Table 2 and in Ref. 6.
The resonance width is approximately parametrized by

∆εtot ≈ 2 · 10−4 · ε4 · (mm mrad)−3. (125)

In Fig. 21 the absolute width of the stochastic layer w ·∆Itot in mm mrad (Eqs. (69) and
(98) ) is represented as a function of the modulation frequency for a typical high-order resonance
in HERA (tenth resonance in Table 2). The modulation amplitude q = 10−4 assumed can for
instance be caused by power supply ripple.

Figure 22 is the same as Fig. 21 apart from the larger value of the modulation amplitude
q = 10−3, which could be due to synchrotron oscillations and a nonzero chromaticity. The design
synchrotron frequency of 14 Hz is close to the maximum width of the dotted curve (see Eq. (98)).
For this fairly large value of q it becomes important that the relative width w, computed from
Eq. (98), has an upper limit of about 2. As mentioned in Section 3.10, this limit is related to the
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Figure 18: Diagram of the amplitude-dependent particle tunes for the HERA proton ring and of all
resonance lines up to order 11. The tunes are obtained by the combined eighth order normal-form
analysis and eleventh order Dragt-Finn factorization. The numbered dots are tunes for special values
of the starting emittances: 1) εx = 0 , εz = 0; 2) εx = 0 , εz = 4 mm mrad; 3) εx = 4 mm mrad, εz = 0;
4) εx = 4 mm mrad, εz = 4 mm mrad. The connecting lines correspond to a continuous variation of the
initial emittances between these values. The squares, circles and triangles refer to the working points
(Qx = 31.27, Qz = 32.30), (Qx = 31.27, Qz = 32.295), and (Qx = 31.27, Qz = 32.29), respectively.
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Figure 19: Phase diagram for the island tune QI = 2 · 10−4 and the resonance order n = 10 according
to Eq. (96) (solid curves) and contour lines from Eq. (98) for w = 0.05, 0.1, 0.2, and 0.3 (dotted curves).
This diagram represents a typical high-order resonance at injection energy in HERA.
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Figure 20: Island width ∆εtot ≡ 2∆Itot, Eq. (69), as a function of the resonant single-particle emittance
ε ≡ εx + εz in units of mm mrad, for the resonances of order 7–11 listed in Table 2 and in Ref. 6.
The closed squares, circles, and triangles refer to the three different working points of Figure 18. The
dotted curve represents Eq. (125).
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Figure 21: Absolute width of the stochastic layer w ·∆Itot in units of mm mrad according to Eqs. (69)
and (98) as a function of the modulation frequency Qm for a typical eleventh order resonance in HERA.
This resonance (tenth entry of Table 2) is crossed at an emittance value of ε = εx+ εz ≈ 2.95 mm mrad
and has an island tune QI ≈ 2.24 · 10−4. The modulation amplitude q = 10−4 is characteristic of the
effect of power supply ripple (see Section 4).
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Figure 22: Absolute width of the stochastic layer w ·∆Itot in units of mm mrad for the same resonance
as in Fig. 21, assuming the larger modulation amplitude q = 10−3. A modulation amplitude like
this could be caused by synchrotron oscillations and nonzero chromaticity. The dotted curve depicts
Eq. (98). The solid curve is obtained by regarding 2 as an upper limit for w, which corresponds to the
complete destruction of the resonance island (see also Section 3.10).

complete destruction of the resonance islands. If, for each modulation frequency, the minimum
of Eq. (98) and 2 is chosen as the value of w, we get the solid curve in Fig. 22.

6. Diffusion Rates

6.1. Semi-Analytical Approach

In this section we describe a semi-analytical scheme, which allows the evaluation of macroscopic
(i.e., measurable) diffusion rates and appears as a promising alternative to, if not substitute for,
conventional tracking studies. The basic ingredients of this scheme are

• a set of parameters of isolated, high-order resonances,

• local diffusion rates in the chaotic layer close to a single resonance, and
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• a method to combine the local diffusion rates at each resonance into a macroscopic
‘global’ diffusion rate, which may be compared with experimental measurements.

In Section 5 parameters of high-order resonances were computed for the same detailed
model of HERA that is employed in the tracking studies.6 These parameters may be used to
calculate local diffusion rates.

Previously several mechanisms have been proposed to explain the transverse particle
transport (‘diffusion’) observed in circular accelerators and numerically verified for simple
Hamiltonian systems, which approximately describe the motion in the vicinity of a resonance.
Among these mechanisms are Arnold diffusion,26, 33 modulational diffusion,49, 33 resonance
streaming,50, 51 and the strong diffusion across the chaotic layer, which is formed around the
separatrix of each resonance.27, 28

The local diffusion processes as well as the diffusion due to gas scattering may be described
by a Fokker-Planck equation in the action variable.26, 33, 49, 6 If the motion is Hamiltonian (and
also in the case of gas scattering) the Fokker-Planck equation reduces to a diffusion equation
with action-dependent coefficients.33, 6

We will assume that a diffusion equation also characterizes the macroscopic behavior
over regions much larger than the width of the chaotic layer. Such a description was applied
successfully to parametrize the beam profile evolution in the Fermilab Tevatron52 and is routinely
employed to analyze the transverse drift rates measured with the HERA collimator system.54

Most proton storage rings are operated close to the coupling resonance Qx−Qz = p (p integer),
and in this case it appears sufficient to consider a diffusion equation in the total transverse
action I ≡ Ix + Iz of the form

∂f

∂t
=

∂

∂I

(
D(I)

∂f

∂I

)
. (126)

According to Fokker-Planck theory, the diffusion coefficient D(I) in Eq. (126) is related to the
squared action change per time interval by the simple formula6

D(I) =
1

2

〈
(∆I)2

∆t

〉
, (127)

and the mean action growth rate < ∆I > /∆t satisfies〈
∆I

∆t

〉
=

d

dI
D(I). (128)

Here, the bar indicates the mean over a particle ensemble, and square brackets denote an average
over macroscopic regions of phase space.

A convenient way of approximating the ‘global’ diffusion coefficient D(I) in Eq. (126) is
to average the diffusion inside the chaotic layer over the region between two adjacent resonance
islands. This averaging takes into account the fluctuating changes and drifts of the machine
parameters which are unavoidable in real accelerators. These parameters’ drifts also give
rise to the ‘sweeping diffusion’, which will be discussed in Section 6.4. Alternative ways of
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deriving a global diffusion rate from the local diffusion coefficients are conceivable, but the
strong amplitude-dependence of the macroscopic diffusion rates is almost completely due to the
amplitude-dependence of the local rate and barely depends on the exact manner of calculating
the global rate from the local diffusion coefficients.

To provide a self-contained treatment, we start by recalling some values of dynamic
aperture, physical aperture, and beam sizes in HERA (compare to Section 2). Here, the values
are quoted in terms of action rather than single-particle emittance.

During its commissioning in 1991/92 the dynamic acceptance of the HERA proton ring
was measured to be about Idyn. acc. ≈ 0.5 − 0.8 mm mrad, where the uncertainty refers to
fluctuations over periods of days or weeks and not to the accuracy of the measurement. Hence the
dynamic aperture is not very large when compared with the beam size (two standard deviations)
Ibeam ≈ 0.25 mm mrad.

In 1992, the physical acceptance, as determined by orthogonal orbit bumps was about
twice as large as the dynamic acceptance, Iphys. acc. ≈ 1.2 − 1.5 mm mrad. The dynamic
acceptance predicted by tracking is even larger, I ≈ 2 mm mrad, when only the effect of
multipole errors is considered. The latter value was determined by the Lyapunov exponent
method33, 55 and refers to the onset of chaotic particle motion in phase space which is supposed
to yield a conservative estimate of the dynamic aperture. However, when, in addition to the
nonlinear field errors, a realistic tune modulation (of amplitude q ≈ 5 · 10−5 at a frequency of
50 Hz) is also included in the model, chaotic trajectories are found close to the actual dynamic
aperture. It is, therefore, interesting to evaluate diffusion rates in the region between I ≈ 0.5
mm mrad and I ≈ 4 mm mrad.

The whole analysis has to be understood as an example. Some of the calculated diffusion
rates may be accurate only to within a factor of 10 or 100. This accuracy is adequate for
this application since the diffusion rates for distinct processes will differ by up to 35 orders of
magnitude, and, furthermore, their amplitude-dependence will be quite different too.

6.2. Chaotic Fraction of Phase Space

In Fig. 23 the absolute width of the chaotic layer wsl∆Itot is depicted for each resonance, again
as a function of the action I. For about half of the resonances of Fig. 20 the stochastic width
is zero. In Fig. 23, zero or very small values are not shown. It is interesting to note that the
stochastic width wsl is nonzero only at action values larger than I0 ≈ 0.8 mm mrad. This I0
represents a threshold for tune-modulation induced diffusion, independent of the exact details of
the diffusion mechanism, and its value is in remarkable agreement with the dynamic acceptance
measured of Idyn. acc. ≈ 0.5− 0.8 mm mrad.

As a measure of the harmfulness of different tune modulation frequencies for a storage
ring such as HERA we introduce a ‘sensitivity function’ Γ as follows. The product of the total
island width and the width of the stochastic layer is summed over all relevant resonances and
normalized to the total action range. More specifically, the sensitivity is defined by (compare
also Eqs. (69) and (89) )

Γ(Qm, q) ≡
∑

all resonances i

∆I itot · wi(Qm, q)/Itot
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Figure 23: Absolute width of stochastic layer ∆Itot · wsl as a function of the resonant action, for the
resonances of Ref. 6. A tune modulation amplitude of q ∼ 5 · 10−5 at a frequency Qm ∼ 10−3 is
assumed. The curve represents the parametrization wsl ·∆Itot ≈ 10−4I5(mm mrad)−4.

=
∑

all resonances i

(
Qm

QI,i

)2 sinh
(
πQm
2QI,i

)
sinh

(
πQm
QI,i

)
√
l2i + k2

i (li + ki)4πq∣∣∣l2i ∂2gi
∂I2z

+ 2kili
∂2gi
∂Ix∂Iz

+ k2
i
∂2gi
∂I2x

∣∣∣ 1

Itot
, (129)

where the subscript ‘i’ denotes the individual resonances. The function so defined measures the
fraction of phase space that becomes chaotic due to the tune modulation. It depends on the
modulation frequency Qm and on the modulation amplitude q.

Figure 24 shows the chaotic fraction of phase space for a modulation frequency q = 10−4,
where the sum in Eq. (129) was extended over all resonances through eleventh order identified
between I = 0 and I ≈ 4 mm mrad.6, 7 The sensitivity to tune modulation is highest for
modulation frequencies between 5 and 50 Hz. Chaotic trajectories may cover about 10% of the
phase space in the presence of a 50-Hz power supply ripple. For frequencies above 100 Hz the
effect of the tune modulation is negligible.

6.3. Modulational Diffusion

For small modulation frequency Qm and large amplitude q, tune modulation causes a strongly
chaotic band of overlapping sideband resonances. Particles inside such a modulational layer
are driven along the resonance contour and may reach large amplitudes. As we shall see, the
calculation of the local diffusion rate for this ‘modulational diffusion’ involves an average over
the modulational layer, since after some time a particle has sampled all action values inside
that layer. A subsequent averaging of the local rate over larger regions of the phase space
gives the macroscopic diffusion coefficient. The resulting diffusion rate exceeds that for ordinary
‘thin-layer’ Arnold diffusion,33, 49 which is discussed in Ref. 7, by many orders of magnitude.
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Figure 24: Chaotic fraction of phase space Γ (see Eq. (129)) as a function of the modulation frequency
for a constant modulation amplitude q = 10−4.

Two conditions have to be fulfilled in order to generate modulational diffusion. First,
several strong sidebands are required. The number of large sidebands is roughly given by
(2 |k + l| q/Qm + 1). Tune modulation is, for instance, caused by current ripple in the main
superconducting circuit (due to power supply ripple).6 In that case q ≤ 5 · 10−5, |k + l| ≈ 3–11,
and Qm ∼ 10−3, so that at the most the two first order sideband resonances may become sizable.

Usually, synchrotron motion is included in the tracking simulation and here leads to
a reduction of the dynamic acceptance for off-energy particles. The onset of strong chaos,
determined from tracking data by the Lyapunov exponent method (Section 2), is reduced to
Idyn. acc. ≈ 1.7 mm mrad for particles performing synchrotron oscillations of amplitude ∆p/p ≈
5 · 10−4 (which corresponds to about 2 standard deviations of the momentum distribution) and
chromaticity ξx,z ≡ ∆Qx,z/

∆p
p
≈ 1. For comparison, the dynamic acceptance for particles of

constant energy ∆p/p = 0 is found at Idyn. acc. ≈ 2.1 mm mrad. As typically computed in
the simulation, 10,000 turns cover only four synchrotron oscillation periods, such that the total
effect of modulational diffusion cannot be seen in the tracking.

Clearly, a normal-form analysis in the full six-dimensional phase space would offer
additional insight. Extraction of an eleventh order Taylor map in the four-dimensional transverse
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Figure 25: Ratio of resonance width and separation of zeroth and first sideband resonances (see
Eq. (130)) as a function of the action, for the resonance parameters listed in Ref.6, 7. A tune modulation
of q ≈ 5 · 10−5 and Qm ≈ 10−3 has been assumed which is characteristic for power supply ripple. For
ratios larger than 1, resonance overlap is expected.

phase space, however, requires the maximum storage (about 48 Mbytes) available on the IBM
9000-720 at DESY. We will, therefore, approximate the effect of synchrotron motion and nonzero
chromaticity by the accompanying tune modulation in the transverse phase space. A typical
modulation amplitude is q ≈ 2 · 10−4 (assuming a relative energy deviation δ ≈ 2 · 10−4 and
chromaticity ξ ≡ ∆Q/∆p

p
≈ 1). The synchrotron frequency corresponds to Qm ≈ 4 · 10−4. The

total number of strong sidebands is then of the order 4–12.
The second condition for modulational diffusion, besides the large size of the sidebands,

is that the sidebands do have to overlap. The overlap condition for power supply ripple can be
written (see Section 3)

∆Īx,tot

δĪx
≡
∣∣∣∣∣J0

(
(k + l)q

Qm

)∣∣∣∣∣
1
2

+

∣∣∣∣∣J±1

(
(k + l)q

Qm

)∣∣∣∣∣
1
2

 QI

Qm

2 ≥ 1, (130)

which translates into
QI ≥ 3.4 · 10−4. (131)

Figure 25 shows the expression on the left hand side of Eq. (130) plotted as a function of the
resonant action value, for the case of power supply ripple. The overlap condition is fulfilled only
for the outermost resonances, at which strong chaos is observed (in the tracking) even in the
absence of tune modulation. There are several resonances at action values between I ≈ 1 mm
mrad and I ≈ 4 mm mrad for which the sideband overlap is almost fulfilled (but even for
q = 10−4 it is not).
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Figure 26: The left hand side of the inequality, Eq. (132), as a function of the action, for the resonance
parameters listed in the appendix (dots). A tune modulation q ≈ 2 · 10−4 and Qm ≈ 4 · 10−4 has been
assumed which may be caused by synchrotron oscillation and nonzero chromaticity. For ratios larger
than 1, resonance overlap is expected.

For modulation due to synchrotron oscillation and chromaticity more sideband resonances
(up to about twelve) are large, and the overlap condition for these sidebands can approximately
be written as (see Section 3)

∆Īx,tot
dĪx

=
4

π
1
4

QI

|k + l| 14 q 1
4Q

3
4
m

≥ 1, (132)

where the Bessel functions of Eq. (20) have been replaced by their rms-values for large arguments.
The inequality in Eq. (132) corresponds to

QI ≥ 1.5− 2 · 10−4. (133)

Hence in the case of synchrotron oscillations the overlap occurs for a smaller value of the island
tune QI . In Fig. 26 the expression on the left hand side of Eq. (132) is depicted as a function of
the resonant action value for tune modulation caused by synchrotron oscillations. The overlap
condition is fulfilled for about half of the resonances.

The resulting diffusion rate can be calculated following Refs. 33 and 49. As a starting
point, for k 6= 0 we choose the Hamiltonian

H(∆̄x, φ̄x, Īz, φ̄z, θ) =
1

2

∂2g

∂Ī2
x

∆̄2
x + h cos φ̄x + q∆̄x(k + l) cosQmθ

+κI
1
2
x,rI

1
2
z,0 cos

(
1

k
φ̄x −

l

k
φ̄z +

p

k
θ −mθ − φ̄z + χ0

)
+ ĪzQz0, (134)

where ∆̄x ≡ Īx − Īx,r is the deviation from the resonant value and χ0 an initial phase.
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To estimate the rate of diffusion, we have supposed in Eq. (134) that the driving term
hcoupl(Ix, Iz) of the main coupling resonance Qx −Qz = m (m = −1 for HERA),

hcoupl(Ix, Iz) = κI
1
2
x I

1
2
z cos(φx − φz −mθ + χ0), (135)

gives rise to the pump diffusion along Īz. The parameter κ corresponds to the minimum distance
of the measured tunes as a function of nominal tunes22 and is of the order κ ≈ 0.005.

The stochastic modulational layer extends over all overlapping sideband resonances,
which can lead to a significant diffusion rate. In order to calculate it, the Hamiltonian may
be decomposed into two parts:

Hacross(∆̄x, φ̄x, θ) =
1

2

∂2g

∂Ī2
x

∆̄2
x + h cos

(
φ̄x +

q (k + l)

Qm

sinQmθ

)

Halong(Īz, φ̄z, θ) = ĪzQz0 + κI
1
2
x,rI

1
2
z,0 cos

(
1

k
φ̄x(θ)−

l

k
φ̄z +

p

k
θ−

−mθ − φ̄z + χ0

)
, (136)

where the change of φ̄x due to Hacross drives the motion along the stochastic layer via Halong.
Canonical perturbation theory can be used to derive φ̄x.

33 In zeroth order

Hacross,0 =
1

2

∂2g

∂Ī2
x

∆̄2
x, (137)

which gives

∆̄x,0 = const.,

φ̄x,0 = (∂2g/∂Ī2
x) ∆̄x,0θ. (138)

To first order in h the angle φ̄x is

φ̄x =
∂2g

∂Ī2
x

∆̄x,0θ + h
∑
n

Jn
(
q(k+l)
Qm

)
(
nQm + ∆̄x,0

∂2g
∂Ī2x

)2 sin

(
∂2g

∂Ī2
x

∆̄x,0θ + nQmθ

)
. (139)

The argument of the cosine in Halong may now be written

φ(θ) ≡ 1

k
φ̄x(θ)−

l

k
φ̄z − φ̄z +

p

k
θ −mθ + χ0

≈ 1

k

∂2g

∂Ī2
x

∆̄x,0θ − (Qx0 −Qz0 −m)θ + χ0 +

+
h

k
RJλ(λ)

1(
λQm + ∆̄x,0

∂2g
∂Ī2x

)2 sin

(
∂2g

∂Ī2
x

∆̄x,0θ + λQmθ

)
. (140)
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Here, λ ≡ |k + l| q/Qm, and we have replaced Jn
(
q (k+l)
Qm

)
of Eq. (139) by the typical value

Jλ(λ) ≈ 0.5. R denotes an ‘effective’ number of resonances (we will assume R ≈ (2λ+ 1), that
is, R ≈ 3 in the case of power supply ripple, and R ≈ 4–12 for synchrotron oscillations). The
change of Halong during the time T ≡ Θ/(2πfrev) is about

∆Halong =
∫ Θ

−Θ

∂

∂θ
Halong dθ

= κI
1
2
x,rI

1
2
z,0

[
cosφ(Θ)− cosφ(−Θ)−

(
1 +

l

k

)
Qz0

∫ Θ

−Θ
sinφ dθ

]

≈ −κI
1
2
x,rI

1
2
z,0

(
1 +

l

k

)
Qz0

∫ Θ

−Θ
sinφ dθ, (141)

and the integrand in Eq. (141) is

sinφ(θ) =
∑
j

Aj(∆̄x,0) sin

[(
1

k

∂2g

∂Ī2
x

∆̄x,0 − (Qx0 −Qz0 −m)+

+j
∂2g

∂Ī2
x

∆̄x,0 + jλQm

)
θ + χ0

]
, (142)

where

Aj(∆̄x,0) ≡ Jj

h
k

R(
λQm + ∆̄x,0

∂2g
Ī2x

)2Jλ(λ)

 . (143)

The diffusion rate in Iz is now obtained by averaging over the width of the modulational layer
2∆̄x,0,max = 2λQm/| ∂g∂Ī2x |:

49, 33

Dz = lim
Θ→∞

〈
2πfrev(∆Halong)

2

2Q2
z0(2Θ)

〉
∆̄x,0, χ0

= lim
Θ→∞

〈
2πfrev

4Θ

κ2Ix,rIz,0

2 λQm
| ∂2g
∂Ī2x
|

∫ λQm/| ∂
2g

∂Ī2x
|

−λQm/| ∂
2g

∂Ī2x
|
d∆̄x,0

(
1 +

l

k

)2

·

·
∫ +Θ

−Θ
dθ′′ sinφ(θ′′)

∫ +Θ

−Θ
dθ′ sinφ(θ′)

〉
χ0

, (144)

where the integration over θ′′ yields a delta function∫ ∞
−∞

dθ′′ sinφ(θ′′) =
∑
j

Aj(∆̄x,0) sinχ0
2π(

1
k

+ j
)
∂2g
∂Ī2x

·

·δ
∆̄x −

(Qx0 −Qz0 −m)− jλQm(
1
k

+ j
)
∂2g
∂Ī2x

 . (145)
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The integration over ∆̄x,0 in Eq. (144) is readily performed:

Dz =
π2frevκ

2Ix,rIz,0
(
1 + l

k

)2

λQm

< sin2 χ0 >χ0 ·

·
∞∑
j=l̃

1(
1
k

+ j
)A2

j

Qx0 −Qz0 −m− jλQm(
1
k

+ j
)
∂2g
∂Ī2x

 1

2Θ

∫ Θ

−Θ
dθ′, (146)

and after averaging over χ0 we obtain the approximate result

Dz ≈
π2frev

2

κ2Ix,rIz,0
(
1 + l

k

)2

λQm

(
1
k

+ l̃
) J2

l̃

[
h

k3

RJλ(λ)(1 + l̃k)2

(Qx0 −Qz0 −m+ λ
k
Qm)2

]
, (147)

where j = l̃, with

l̃ = integer part

{
1

2

[
−1

k
+
Qx0 −Qz0 −m

λQm

]}
, (148)

is the dominant term in the sum over j of Eq. (146). The total transverse diffusion rate is given
by

Dmod. local =

 l
k

∂2g
∂I2z

+ ∂2g
∂Iz∂Ix

∂2g
∂I2x

+ ∂2g
∂Ix∂Iz

− 1

2

Dz. (149)

For k = 0, l 6= 0 the diffusion rate is

Dmod. local = Dx ≈
π2frev

2

κ2Ix,rIz,0

λQm

(
1
l
+ l̃
)J2

l̃

[
h

l3
RJ1(1)(1 + l̃l)2

(Qx0 −Qz0 −m+ λ
l
Qm)2

]
, (150)

where

l̃ = integer part

{
1

2

[
−1

l
+
Qx0 −Qz0 −m

λQm

]}
. (151)

The macroscopic diffusion coefficient to be compared with observations differs from the
local coefficient Dmod. local of Eq. (149) or (150), since the storage ring parameters (and hence
the parameters in the Hamiltonian) drift slowly, as is evident from drifts of the tunes, of the
beam orbit etc. over periods of minutes or hours. It may be suspected that these changes of
parameters are mainly due to temperature effects in the magnets and the power supplies.

The parameter drifts cause a motion of the resonance islands across the phase space.
If we denote the mean change of the machine tune per unit time by Q̇, the rate at which the
position of the island changes is about

(
∆I

∆t

)
island−drift

≈ Q̇

∂2g/∂I2
. (152)
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Figure 27: Diffusion coefficient Dp.s.r.
mod. (I) due to modulational diffusion caused by power supply ripple

(assuming there are three overlapping sidebands), as a function of the action, for the resonances listed
in the appendix (dots). A separation of tunes (Qx0 − Qz0 − m) ≈ 0.005 is assumed. The curve
represents the parametrization Dp.s.r.

mod. (I) ≈ 5 · 10−11I25 (mm mrad)−23 s−1. Note the large value
Dp.s.r.
mod. (I) ≈ 106 (mm rad)2 s−1 for the single resonance at I ≈ 1.2 mm mrad which is not covered

by this parametrization.

Typically the tune changes at least by 10−4 during 1 hour. The corresponding action change is
roughly 0.1 mm mrad (see Fig. 16). Hence the islands alter their positions at a minimum rate(

∆I

∆t

)
island−drift

≈ 3 · 10−5 mm mrad s−1. (153)

In a first, rough approximation, the motion of resonance islands in phase space leads
to an averaging of the diffusion coefficient, describing the motion in the chaotic domain of
overlapping sideband resonances over the region between two adjacent fundamental resonances.
The ‘macroscopic’ diffusion coefficient at the ith resonance is then

Dmod.(Ii) ≈
2
√
k2
i + l2iR δĪx

Ii+1 − Ii−1

Dmod. local,i(I)

≈
2
√
k2
i + l2i Ri QmDmod. local,i∣∣∣k2 ∂

2g(Ix,r,Iz,r)
∂I2x

+ 2kl ∂
2g(Ix,r,Iz,r)
∂IxIz

+ l2 ∂
2g(Ix,r,Iz,r)

∂I2z

∣∣∣ (Ii+1 − Ii−1)
, (154)

where we have divided by the sum of the half-distances and the two adjacent resonances
(Ii+1 − Ii−1)/2, and R is the approximate number of relevant sidebands.

The diffusion rate of Eq. (154) evaluated for power supply ripple is shown in Fig. 27 for
(Qx0 −Qz0 −m) ≈ 0.005 and linear coupling strength κ ≈ 0.005. Note that an overlap of only
three sideband islands has been assumed for each resonance, and that even this modest overlap
may not occur, as indicated by Fig. 25.
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Figure 28: Diffusion coefficient Dsync.
mod. (I) due to modulational diffusion induced by synchrotron

oscillations and chromaticity, as a function of the action. Represented are values for those resonances
(17 out of 28) in the appendix, for which both the first-order sidebands are large and the overlap
condition is fulfilled (dots). A separation of tunes (Qx0−Qz0−m) ≈ 0.005 and modulation parameters
q ∼ 2 · 10−4 and Qm ∼ 4 · 10−4 characteristic for synchrotron oscillations are assumed. The curve
represents the parametrization Dsync.

mod. (I) ≈ 5 · 10−11I25 (mm mrad)−23 s−1, which is the same as for
the case of power supply ripple. Note also here the large value of Dsync.

mod (I) for the resonance at I ≈ 1.2
mm mrad which is not covered by this parametrization.

On the other hand, synchrotron oscillations plus nonzero chromaticity generate a larger
number of strong sidebands, a significant fraction of which are actually overlapping. The
diffusion coefficient Dmod.(I) of Eq. (154) for this case is depicted in Fig. 28. Here, only
resonances for which |k + l| q/Qm ≥ 1 are represented (i.e., at least the first order sideband
resonance is sizable) and for which, furthermore, the overlap criterion of Eq. (132) is fulfilled.

The coefficientDmod(I) for modulational diffusion is roughly parametrized by the function
Dmod.(I) ≈ 10−7I25 (mm mrad)−23 s−1 both for tune modulation due to power supply ripple and
due to synchrotron oscillations (compare Figs. 27 and 28).

6.4. Sweeping Diffusion

If the machine parameters, like orbit and tune, were kept constant for all times, the strong
diffusion of particles across each chaotic layer would have no measurable effect. In real
accelerators, however, these parameters are continually subject to change. As a consequence
of which, the resonance islands are incessantly altering their position in the four-dimensional
phase space, and individual particles will follow a succession of regular and chaotic trajectory
segments. A measurable diffusion rate is the result, which we call ‘sweeping diffusion’. Its size
will be estimated via a macroscopic average in phase space.
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Figure 29: Local diffusion coefficient Dlocal(I) inside the chaotic layer as a function of the action, for
the resonances of order 7–11 listed in the appendix (dots). A modulation amplitude q = 5 · 10−5 is
assumed. The curve represents the parametrization Dlocal(I) ≈ 5 · 10−8I15 (mm mrad)−13 s−1.

Figure 29 shows the local action growth rate from Eq. (72) for the 28 resonances listed
in the appendix. A possible parametrization is

Dlocal(I) =
< (∆(Ix + Iz))

2 >

2 ∆t
≈ 5 · 10−8I15 (mm mrad)−13s−1. (155)

Similar to the treatment of modulational diffusion, but essential in this case, the motion
of resonance islands in phase space, caused by power supply drifts and other perturbations, may
be taken into account by averaging the diffusion inside the chaotic layer over the region between
two adjacent resonances.6 This averaging is further motivated by the following consideration.
Since their motion is very slow, protons in the chaotic layer cannot follow the drifting resonance
islands and become regular, while other, previously regular particles will become chaotic. The
average over some regions of the phase space is then equivalent to an average over certain parts
of the particle distribution.

The resulting coefficient Dsd(I) of this ‘sweeping diffusion’ is then

Dsd(Ii) =
1

2

〈
(∆(Ix + Iz))2

∆t

〉
i

≈ ∆I itot · wi ·
(

(∆(Ix + Iz))2

∆t

)
i

1

Ii+1 − Ii−1

=

(
Qm

QI,i

)2 sinh
(
πQm
2QI,i

)
sinh

(
πQm
QI,i

) 128π
√
k2
i + l2i (ki + li)

2frevh
2
i (Ix,r,i, Iz,r,i)

|l2i ∂
2gi
∂I2z

+ 2kili
∂2gi
∂Ix∂Iz

+ k2
i
∂2gi
∂I2x
|(Ii+1 − Ii−1)

. (156)

Note that the diffusion coefficientDsd(I) in Eq. (156) is independent of the modulation amplitude
q, which reflects the fact that the fraction of phase space covered with chaotic trajectories
increases linearly with the modulation amplitude q, whereas the diffusion rate in this zone
decreases as 1/q (see Eqs. (98) and (72) ).
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Figure 30: Diffusion coefficient Dsd(I) due to ‘sweeping diffusion’ as a function of the action in
units of mm mrad for the resonances of order 7–11 listed in the appendix (dots). A modulation
frequency Qm = 10−3 is assumed. Below I0 ≈ 0.7 mm mrad the phase space is covered by regular
trajectories, while at 4 mm mrad the diffusion coefficient Dsd(I) adopts values on the order of 1
( mm mrad)2/s. In the intermediate emittance range Dsd(I) can be roughly parametrized by the
function Dsd(I) ≈ 4 · 10−10I15 (mm mrad)−13s−1.

The action-dependent diffusion coefficient Dsd(I), defined in Eq. (156), is shown in
Fig. 30 assuming a modulation frequency of 50 Hz (Qm = 10−3). A possible parametrization is
Dsd ≈ 4 · 10−10I15 (mm mrad)−13 s−1.
According to Eq. (128) the action growth rate is given by〈

∆I

∆t

〉
=

d

dI
Dsd(I) ≈ 6 · 10−9I14 (mm mrad)−13 s−1. (157)

The action growth rate of Eq. (157) is small compared with the island drift rate, if

I ≤ 1.8 mm mrad, (158)

where use has been made of Eqs. (72), (128), and (153). For this amplitude regime (which is
larger than the physical aperture of HERA) the averaging over the regular and chaotic regions
of phase space seems justified.

6.5. Comparison of Different Processes

The dynamic aperture observed in HERA agrees well with the smallest value of action at which a
chaotic layer of nonzero width is caused by a realistic tune modulation. The diffusion coefficients
for modulational diffusion, for sweeping diffusion, resonance streaming,7 Arnold diffusion,7 and
gas scattering (pH2 = 2 · 10−9 mbar6) are depicted for comparison in Fig. 31. It seems very
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Figure 31: Comparison of diffusion coefficients computed for different types of nonlinear transport
mechanisms and for gas scattering as functions of action.

unlikely that Arnold diffusion or resonance streaming is the source of the dynamic aperture,
since the corresponding diffusion rates are too small by many orders of magnitude.

The largest diffusion rates are those for modulational diffusion and sweeping diffusion.
The diffusion coefficients for both processes exhibit a steep increase as a function of action,
and could thus give rise to something resembling a ‘dynamic aperture’. They are calculated as
averages of the local diffusion coefficients over regular and chaotic phase space regions between
two adjacent resonances. This average is a first attempt to take into account all other types of
perturbations (besides tune modulation) which will move the resonance islands around in phase
space. On the other hand, the diffusion coefficients and growth rates calculated for resonance
streaming and Arnold diffusion may be considered as upper limits, since they refer to the region
inside the chaotic layer and would be reduced (by a factor of 100–1000) if averaged over the
phase space (see also Fig. 23).

Figure 32 shows the mean action growth rate < ∆I/∆t > derived from D(I) according
to Eq. (128) together with the growth rate due to intra-beam scattering for the design number
of 1011 protons per bunch.56, 57, 6

In the amplitude regime of interest (between I ≈ 1 mm mrad and I ≈ 2 mm mrad) the
growth rate for modulational diffusion is larger than that for sweeping diffusion by up to several
orders of magnitude. Hence, modulational diffusion is the most likely cause of the dynamic
aperture measured.
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Figure 32: Comparison of mean action growth rates computed for different types of nonlinear transport
mechanisms, for gas scattering, and for intra-beam scattering as functions of action.

7. Conclusions

The observed dynamic aperture of about ε ≈ 1.2 mm mrad in the HERA proton ring at 40
GeV is in good agreement with the results of computer simulations and analytical calculations
which consider the combined effects of the measured nonlinear field errors of all superconducting
magnets and a modest tune modulation. Techniques to facilitate the simulation studies have
been proposed and investigated in detail. The use of Lyapunov exponents in the postprocessing
analysis of tracking data is a promising method, which has routinely been applied in the
simulation studies. The effect of tune modulation on a single resonance island in a nonlinear
Hamiltonian system has been described in detail. It was shown how a suitable combination
of normal-form and factorization processes permits the extraction of parameters for resonances
including eleventh order inside the whole dynamic aperture of a complex storage ring such as
HERA. A semi-analytical method for calculating transverse diffusion rates from these resonance
parameters was used to derive and evaluate expressions for macroscopic diffusion coefficients,
as caused by resonance streaming and modulational diffusion. Modulational diffusion due to
synchrotron oscillations and nonzero chromaticity has been identified as the most probable
source of the dynamic aperture measured. Further dedicated measurements are required to get
a better experimental confirmation of the calculated diffusion rates.
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