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ABSTRACT

We reconsider the model of quantum mechanics violation in the K0–K̄0 system,

due to Ellis, Hagelin, Nanopoulos, and Srednicki, in which CP- and CPT -violating

signatures arise from the evolution of pure states into mixed states. We present a

formalism for computing time-dependent asymmetries in this model and show that

present data constrains its parameters significantly. In the future, this model will

be put to very stringent tests at a φ factory. We present the theory of these tests

and show the relation between particular φ decay correlations and the parameters

of quantum mechanics violation.
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1. Introduction

The propagation and decays ofK0 and K̄0 mesons has provided elementary par-

ticle physicists with the most fruitful system for probing the fundamental discrete

symmetries of Nature. The paradoxes of this system led Lee and Yang to postulate

the violation of parity in the weak interactions.
[1]

More detailed exploration led to

the discovery of CP violation,
[2]

and this system remains the only place in which

CP violation and T violation have been observed. New experiments at CPLEAR

are now strengthening the precision of our knowledge of neutral kaon physics,
[3]

and

beautiful new experiments on the discrete symmetries are planned for future φ

factories.
[21,5]

One of the goals of current and planned experiments on the K0–K̄0 system is

to search for the violation of CPT . To interpret these experiments, one should have

some idea of the source of CPT violation. Within the context of local quantum

field theory, CPT conservation is a theorem.
[6]

Thus, theories of CPT violation must

necessarily step outside the standard assumption that particle physics is governed

by a local quantum field theory. In the 1960’s, one could plausibly build a theory

of CPT violation in the context of a nonlocal model of the strong interactions.

However, with the triumph of the standard model, that route is no longer open.

On the other hand, developments in the quantum theory of gravity have opened

another possible avenue to theories of CPT violation. Building from his results on

the spectrum of radiation from black holes, Hawking has proposed that the gener-

alization of quantum mechanics which encompasses gravity allows the evolution of

pure states into mixed states.
[7]

Page then showed that any such dynamics also leads

to conflict with CPT conservation.
[8]

These ideas raised the interesting possibility

that one could find observable CPT violation due to a mechanism that lies not

only beyond a local quantum description but also beyond quantum mechanics alto-

gether. The notion that gravitation effects beyond quantum mechanics can affect

elementary particle physics is controversial. For example, in theories which allow

the evolution of pure states into mixed states, there is a serious conflict between
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energy-momentum conservation and locality.
[10]

In this paper, however, we will use a

formalism which avoids the issue of locality. Our main goal will be to discuss how

the issue of the violation of quantum mechanics can be addressed experimentally.

To our knowledge, the first attempt at a phenomenological analysis of this

type of quantum mechanics violation was made by P.H. Eberhard in the early

70s’,
[11]

as an attempt to probe the postulates of quantum field theory. Eberhard

suggested various tests of the existence of a unitary S-matrix. His ideas motivated

an experimental test of quantum mechanics in the K0–K̄0 system by Carithers

et al..
[12]

The suggestion that Hawking’s idea could be tested experimentally in the

K0–K̄0 system was put forward independently by Ellis, Hagelin, Nanopoulos, and

Srednicki (EHNS).
[13]

EHNS set up an evolution equation for the K0–K̄0 system in

the space of density matrices. Their equation contains three new CPT violating

parameters α, β, and γ. These parameters have the dimensions of mass and might

be expected to be of order m2
K/mPl ∼ 10−19 GeV.

These authors were attracted to the K0–K̄0 system by the fact that it con-

tains phenomena which depend on quantum coherence over macroscopic distances.

Though there are other phenomena that depend on macroscopic quantum corre-

lations, for example, the persistence of superfluid and superconducting currents,

the K0–K̄0 system gives a controlled setting, involving only one particle, in which

precision experiments can reveal small deviations from the predictions of quantum

mechanics. A second such system, also discussed by EHNS, is found in macro-

scopic neutron interferometry. Here, experiments of Zeilinger, Horne, and Shull

have constrained a similar dimensionful parameter of quantum mechanics viola-

tion to a level less than 0.8 × 10−25 GeV,
[14]

under the assumption that quantum

mechanics violation can randomize the neutron spin.

Recently, Ellis, Mavromatos, and Nanopoulos (EMN)
[15,16]

reconsidered the

analysis of EHNS for the K0–K̄0 system and presented experimentally allowed re-

gions for the parameters α, β, and γ which were consistent with nonzero values

of the magnitude of the earlier estimates. Their analysis suggested that this new
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source of CPT violation might fully account for the observed CP violation in the

K0–K̄0 system. EMN also presented a microscopic theory of α, β, and γ, based on

string theory, which gives values of the size of the estimate above. While we do not

accept their detailed microscopic arguments, we believe that their suggestion that

quantum mechanics violation might be observable in present or planned experi-

ments is an exciting one which deserves further consideration. This is especially

true because the analysis of EMN was incomplete, as these authors themselves

pointed out, in that it did not fully take into account constraints from the time

evolution of the K0–K̄0 state.

It is the purpose of this paper to analyze the dynamics of the K0–K̄0 sys-

tem taking into account the possibility of CPT violation from mechanisms both

within and outside quantum mechanics. We will use this framework to discuss

the implications of past, present, and future experiments on the K0–K̄0 system.

Our formulae will include both the conventional CPT violation within quantum

mechanics and the CPT violation outside quantum mechanics of EHNS. Our goal

is to explain how to disentangle these two possible sources of CPT violation from

one another, and how to distinguish both from conventional CP violation.

Our discussion will proceed as follows: In Section 2, we will review briefly the

conventional parametrization of CP and CPT violation within quantum mechanics

by the parameters ε and ∆. We will then rewrite this discussion in the language

of density matrices. In Section 3, we will review the formalism of EHNS and

generalize the density matrix equations to include their parameters for quantum

mechanics violation, α, β, and γ.

In Section 4, we will work out expressions for the observable quantities in

experiments on single neutral kaons in terms of these parameters. We will show

that the parameter α is not significantly constrained by these experiments, but

that β and γ are tightly constrained by current data. Using the classic results of

the Carithers et al.
[12]

and CERN-Heidelberg experiments
[17−19]

and recent results

from CPLEAR,
[3]

we determine the values β = (0.32 ± 0.29) × 10−18 GeV, γ =
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(−0.2 ± 2.2) × 10−21 GeV. These bounds are much stronger than those of EMN

and lead to the simple but important conclusion that the CP violation observed

in the K0–K̄0 system is dominantly quantum mechanical in nature and of CPT

conserving origin. The analysis of Section 4 includes provision for CPT violation

from within quantum mechanics, but it ignores the possibility of CPT violation

in decay matrix elements. In Section 5, we introduce this possible additional

complication and explain how it potentially weakens our results.

In Sections 6–8, we will discuss precision tests for CPT violation and violation

of quantum mechanics at the future φ factories. A φ factory produces K meson

pairs in an antisymmetric pure state. In ref. 4, Peccei and collaborators showed

that, within the context of quantum mechanical CP and CPT violation, the full

time dependence of the decays into identical states, for example, to {π+π− , π+π−},
is independent of the CP violation parameters and so provides an accurate mea-

surement of the mass difference and lifetimes of the kaon eigenstates. When we

allow for a departure from quantum mechanics, this is no longer true. We find

an additional time-dependent oscillation which, if observed experimentally, would

provide direct evidence of time evolution outside quantum mechanics. Section 6

provides the general formalism for describing this effect. Section 7 gives formulae

from which α, β, and γ can be constrained independently of one another in spe-

cific φ factory experiments. In Section 8, we discuss various processes in which

the two kaons decay asymmetrically. In particular, we consider the decay into

{π+π− , π0π0}, which provides a measurement of Re ε′/ε, and we display correc-

tions to the standard formulae which appear when β and γ are nonzero.
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2. Quantum mechanics of a neutral kaon beam

In quantum mechanics, a kaon state evolves according to the action of a Hamil-

tonian. Even if the kaon decays, its evolution is correctly described by an effective

Hamiltonian which includes the natural width of the state.

One conventionally writes this effective Hamiltonian as

H = M − i

2
Γ, (2.1)

whereM and Γ are Hermitian 2×2 matrices acting on states in the basis (|K0〉 ,
∣∣K̄0

〉
).

These states are alternatively described using the basis of CP eigenstates,

|K1〉 =
1√
2

(
|K0〉 +

∣∣K̄0

〉)
; |K2〉 =

1√
2

(
|K0〉 −

∣∣K̄0

〉)
, (2.2)

or the basis of eigenstates of H, |KS〉 and |KL〉.

It is easiest to express predictions for the K0–K̄0 system by trading the matrix

elements of H for parameters which express the eigenvalues and eigenvectors of this

matrix. We will use the conventions of Maiani,
[20]

which express the eigenstates of

H in terms of parameters εM , which is odd under CP but even under CPT , and

∆, which is odd under both CP and CPT . Explicitly,

|KS〉 =
NS√

2

(
(1 + εS) |K0〉+ (1− εS)

∣∣K̄0

〉)
|KL〉 =

NL√
2

(
(1 + εL) |K0〉 − (1− εL)

∣∣K̄0

〉)
,

(2.3)

where

εS = εM + ∆ , εL = εM −∆, (2.4)

and NS , NL are real, positive normalization factors. We write the corresponding
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eigenvalues as

mS −
i

2
ΓS = (m̄−∆m/2)− i

2
(Γ̄ + ∆Γ/2)

mL −
i

2
ΓL = (m̄+ ∆m/2)− i

2
(Γ̄−∆Γ/2),

(2.5)

so that ∆m and ∆Γ are positive.

From this description of the kaon dynamics in terms of states, it is easy to con-

struct the description in terms of density matrices. With the complex Hamiltonian

(2.1), the density matrix evolves according to

ρK(τ ) = e−iHτ ρK(0) eiH
†τ . (2.6)

The eigenmodes of this equation are

ρL = |KL〉 〈KL|

ρS = |KS〉 〈KS |

ρI = |KS〉 〈KL|

ρĪ = |KL〉 〈KS | .

(2.7)

A generic kaon beam can be decomposed into these modes. If we write the expan-

sion coefficients at time τ = 0 as AL, AS, AI , AĪ , we find the following general

form for the time evolution:

ρK(τ ) = AL ρL e
−ΓLτ + AS ρS e

−ΓSτ + AI ρI e
−Γ̄τ e−i∆mτ + AĪ ρĪ e

−Γ̄τ e+i∆mτ .

(2.8)

When ρK describes a pure quantum state, ρL,S and ρI,Ī are as in (2.7) and the

coefficient of the interference term AI is correlated with AL and AS. If we write

the pure state as ρK = |K〉 〈K|, with |K〉 = aL |KL〉 + aS |KS〉, then AL = |aL|2,

AS = |aS|2 and AI = A∗
Ī

= aLa
†
S. When ρK is a mixed state, we will find that

these properties no longer hold.
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In the |K1〉 , |K2〉 basis, eq. (2.2), the four eigenmodes of the density matrix

take the form:

ρL =

(
|εL|2 εL

ε∗L 1

)
ρS =

(
1 ε∗S
εS |εS|2

)

ρI =

(
ε∗L 1

ε∗LεS εS

)
ρĪ =

(
εL ε∗SεL

1 ε∗S

)
.

(2.9)

Here and henceforth, we normalize the eigenmodes ρi so that the largest element is

1; the normalization factors NS , NL in (2.3) can be absorbed into the coefficients

Ai in (2.8).

Any physical property of the kaon beam can be extracted from the density

matrix by tracing with a suitable Hermitian operator. To extract the value of the

observable P , we write

〈P〉 = tr
[
ρKOP

]
. (2.10)

This expression for expectation values will remain true in the generalization of

quantum mechanics described in Section 3. In the remainder of this section, we

will write the operators OP associated with the most important observables of the

neutral kaon system.

In principle, CP and CPT violation can show up not only in the neutral kaon

mass matrix but also in the kaon decay amplitudes. There is already some experi-

mental evidence for a nonzero value of the parameter ε′ which characterizes direct

CP violation in decays to two pions.
[22,23]

However, the CP violation associated with

mass mixing is much more important. In models such as the superweak model, in

which CP violation is the result of new physics at a scale M much greater than

mW , direct CP violation typically results from higher-dimension local operators

and so is suppressed by extra powers of (mW/M). Thus, the observation of direct

CP violation is evidence for an origin of CP violation at the weak interaction scale,

for example, by the Kobayashi-Maskawa mechanism.
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Although we know strictly that CPT violation cannot be the result of a local

quantum field theory, we believe it is nevertheless reasonable to use the dimen-

sional analysis rules of local quantum field theory to restrict possible sources of

CPT violation. This is certainly true in a model such as that of ref. 16, in which

violation of quantum mechanics arises from applying an unusual averaging proce-

dure to quantum mechanical amplitudes. When we consider models of quantum

mechanics violation, the scale M which suppresses multipoint amplitudes must

be very large. The appearance of CPT violation within quantum mechanics will

signal a breakdown of local field theory, and this must take place at very short

distances compared to those probed in the LEP experiments at the Z0. The CPT

violation outside quantum mechanics that we will describe in the next section has

the Planck scale as its characteristic mass scale. Combining these ideas, we ex-

pect that CPT violation is associated with processes with the minimum number

of external particles. Thus, in our main analysis, we will include CPT violation

only in the time development of the neutral kaon state, and we will ignore possible

CPT -violating contributions to the decay vertices.

Despite this argument, many phenomenological analyses include the possibility

of CPT -violating decay amplitudes. In this case, the experimental effects of these

CPT -violating terms cannot be unambiguously disentangled from those of quan-

tum mechanics violation. In the standard discussion without quantum mechanics

violation, there is a similar difficulty in disentangling CPT violation in the decay

amplitudes from that in the KL–KS mass matrix. In that case, one can at least

present constraints on combinations of CPT -violating parameters. Then one can

argue that either the individual parameters obey similar bounds or there are un-

natural large cancellations.
[20]

We will present the generalization of these constraints

to the theory with quantum mechanics violation in Section 5.

By the same argument as that which eliminates CPT -violating decay ampli-

tudes, we will ignore the possibility that these new processes violate the ∆S = ∆Q

rule for leptonic K decays. In his review article, ref. 20, Maiani has demonstrated

that conventional contributions to ∆S 6= ∆Q amplitudes are also negligible. Thus,
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we will ignore ∆S 6= ∆Q effects throughout this paper.

Within this set of assumptions, we now construct the operators OP associated

with the semileptonic and 2-pion decays of the neutral kaons. If we ignore violations

of the ∆S = ∆Q rule, only the |K0〉 state can decay to π−`+ν. Then, using the

basis (|K1〉 , |K2〉) of eq. (2.2), the decay rate to this final state corresponds to the

operator

O`+ = |a|2 |K0〉 〈K0| =
|a|2
2

(
1 1

1 1

)
, (2.11)

Similarly, the decay rate to π+`−ν̄ is given by

O`− = |a|2
∣∣K̄0

〉 〈
K̄0

∣∣ =
|a|2
2

(
1 −1

−1 1

)
. (2.12)

In our expressions for the decay rate of neutral kaons to two pions, we will ignore

the possibility of direct CPT violation, but we must include an allowance for direct

CP violation. Then the amplitudes for the decay of |K0〉 and
∣∣K̄0

〉
to π+π− are

M(K0 → π+π−) = A0e
iδ0 +

1√
2
A2e

iδ2

M(K̄0 → π+π−) = A∗0e
iδ0 +

1√
2
A∗2e

iδ2.
(2.13)

We choose the Wu-Yang convention in whichA0 is real. Then the decay amplitudes

from states of definite CP are:

M(K1 → π+π−) =
√

2A0e
iδ0 + ReA2e

iδ2

M(K2 → π+π−) = iImA2e
iδ2.

(2.14)

Then, the decay rate to π+π− is given, in the basis (2.2), by the operator

O+− =

(
|
√

2A0 + ReA2eiδ|2 (
√

2A0 + ReA2e−iδ)(iImA2eiδ)

(
√

2A0 + ReA2eiδ)(−iImA2e−iδ) |iImA2eiδ|2

)
,

(2.15)

where δ = δ2 − δ0. One can check this result by tracing with the density matrices
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for the eigenstates KL and KS , as given in eq. (2.9). We find

tr
[
O+−ρL

]
=
∣∣εL(
√

2A0 + ReA2e
iδ) + iImA2e

iδ
∣∣2

tr
[
O+−ρS

]
=
∣∣√2A0 + ReA2e

iδ) +O(εs)
∣∣2, (2.16)

from which we recover, to leading order in CP violation and ∆I = 1/2 enhance-

ment, the familiar result
[20]

|η+−|2 =

∣∣∣∣M(KL → π+π−)

M(KS → π+π−)

∣∣∣∣2 =
∣∣εL +

1√
2

iImA2

A0
eiδ
∣∣2. (2.17)

The analogous argument for the neutral pion decay leads to the operator

O00 =

(
|
√

2A0 − 2ReA2e
iδ|2 (

√
2A0 − 2ReA2e

−iδ)(−2iImA2e
iδ)

(
√

2A0 − 2ReA2e
iδ)(2iImA2e

−iδ) | − 2iImA2e
iδ|2

)
.

(2.18)

From this expression, in the context of purely quantum-mechanical evolution, we

find

|η00|2 =

∣∣∣∣M(KL → π0π0)

M(KS → π0π0)

∣∣∣∣2 =
∣∣εL −√2

iImA2

A0
eiδ
∣∣2. (2.19)

The quantities η+− and η00 are parametrized in terms of CP-violating observ-

ables ε and ε′:

η+− = ε+ ε′ , η00 = ε− 2ε′ . (2.20)

When we ignore all effects outside quantum mechanics and also ignore the possi-

bility of CPT violation in decay amplitudes, we find
[20]

ε = εL = εM −∆ , ε′ =
i√
2

ImA2

A0
eiδ. (2.21)

From this review of the effects of purely quantum-mechanical evolution on

the K0–K̄0 system, we now procede to the case of propagation outside quantum

mechanics.
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3. Kaon evolution outside quantum mechanics

We now wish to enlarge the framework of our kaon beam equations of motion

to allow the possibility that pure states can evolve into mixed states. In this

section, we add terms to the density matrix equation to allow this possibility. Our

discussion will follow the arguments of Ellis, Hagelin, Nanopoulos, and Srednicki

(EHNS).
[13]

We will extend their work in providing formulae for time-dependent

interference phenomena.

In conventional quantum mechanics, the density matrix obeys the evolution

equation

i
d

dτ
ρ =

[
H , ρ

]
. (3.1)

This equation guarantees the conservation of probability

d

dτ
tr[ρ] = 0, (3.2)

and also a set of higher identities

d

dτ
tr[ρn] = 0, (3.3)

which imply that the purity of the state is not changed by quantum mechanical

evolution.

In a two-state system such as the neutral kaon system, the density matrix can

be expanded

ρ = ρ01 + ρiσi, (3.4)

where i = 0, 1, 2, 3 and σi is a Pauli sigma matrix. The statement of conservation

of probability tr[ρ] = 1 becomes ρ0 = 1
2 , and the statement that ρ has positive
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eigenvalues becomes

(ρ0)2 ≥
3∑
i=1

(ρi)2 (3.5)

If the Hamiltonian is expanded in the same way, the equation of motion can be

written

d

dτ
ρ = 2εijkHiρjσk. (3.6)

The quantum mechanical description of the neutral kaon system is only slightly

more complicated. Here we work with the non-Hermitian Hamiltonian (2.1) which

includes a provision for the kaon states to decay. The evolution equation (2.6)

leads to the equation

d

dτ
ρ = 2εijkM iρjσk − Γ0ρ− Γi(ρ0σi + ρi1). (3.7)

The value of ρ0 = 2 tr[ρ] will now decrease. However, the inequality (3.5) must still

be satisfied, and it will be as long as the matrix Γ has two positive eigenvalues.

Hawking
[7]

proposed that the modifications of quantum-mechanical evolution

due to quantum gravity effects could be described by writing a more general linear

equation for the density matrix. The most general term that we could add to (3.7)

is

−h0jρj1− hj0σj − hijσiρj (3.8)

There are two natural restrictions on these terms. First, they should be consistent

with probability conservation. Second, they should not decrease the entropy of

the density matrix; though pure states can evolve into mixed states, mixed states

should not evolve into pure states. The first of these requirements sets h0j = 0.

The second requirement eliminates any hj0 terms, since these would order the

completely random distribution with ρ = 1
21, and also requires that the remaining
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submatrix hij be positive definite.
[13]

This leads to the following set of equations

for the components of the density matrix:

d

dτ
ρ0 = −Γ0ρ0 − Γiρi

d

dτ
ρi = 2εijkMjρk − Γiρ0 − Γ0ρi − hijρj ,

(3.9)

where, from here on, i, j, k = 1, 2, 3 only. Notice that the antisymmetric part of hij

can be absorbed into Mj , so that we may assume from here on that h is symmetric.

EHNS simplify this formalism by imposing one further assumption. If the

action of quantum gravity is universal among flavors, the new term cannot change

strangeness. Alternatively, if the basis chosen by the quantum gravity interactions

is close to the basis of quark mass eigenstates, the strangeness nonconservation

will be proportional to the square of the rotation angle between these two bases.

If this angle is of order the Cabibbo angle, strangeness violation will be a higher-

order effect. Under either assumption, we may concentrate on the part of h which

conserves strangeness. Since strangeness is measured by the operator OS = −σ1

in the basis of CP eigenstates, the restricted δH must satisfy

tr[σ1hijσiρj ] = 0 , i.e., h1j = 0. (3.10)

This leaves

h = 2

 0 0 0

0 α β

0 β γ

 , (3.11)

where the EHNS parameters α, β, γ satisfy

α, γ > 0 , αγ > β2. (3.12)

The equations (3.9) for the density matrix components are linear equations

which can be solved by diagonalizing a 4× 4 matrix. Since CP violation is a small
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effect, of order 10−3 of ∆m and ∆Γ, a perturbative solution is quite appropriate.

To obtain this solution, we first rewrite the equations (3.9) in the basis of matrix

elements of the density matrix:

ρ =

(
ρ1 ρ

ρ̄ ρ2

)
(3.13)

It is useful to first write the purely quantum-mechanical equation (3.7) in this

basis:

d

dτ


ρ1

ρ2

ρ

ρ̄

 =

−Γ̄ +


−∆Γ/2 0 +iε∗Ld

∗ −iεLd
0 ∆Γ/2 +iεSd −iε∗Sd∗

−iε∗Sd∗ −iεLd +i∆m 0

+iεSd +iε∗Ld
∗ 0 −i∆m




ρ1

ρ2

ρ

ρ̄

 , (3.14)

with

d = ∆m+
i

2
∆Γ. (3.15)

It is straightforward to check that the parameters are chosen so that eigenvectors of

the matrix reproduce (2.9), with the correct eigenvalues. The perturbation (3.11)

adds to the quantity in brackets the matrix


−γ γ −iβ +iβ

γ −γ +iβ −iβ
+iβ −iβ −α α

−iβ +iβ α −α

 (3.16)

Treating this addition to the equations in perturbation theory, and working to

the order of the leading contribution to each matrix element, we can work out the
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new eigenmodes and eigenvalues. The eigenmodes are:

ρL =

(
|εL|2 + γ/∆Γ + 4β(∆m/∆Γ)Im[εL/d

∗]− β2/|d|2 εL + β/d

ε∗L + β/d∗ 1

)

ρS =

(
1 ε∗S − β/d∗

εS − β/d |εS|2 − γ/∆Γ− 4β(∆m/∆Γ)Im[εS/d
∗]− β2/|d|2

)

ρI =

(
ε∗L − β/d∗ 1

−iα/2∆m εS + β/d

)

ρĪ =

(
εL − β/d iα/2∆m

1 ε∗S + β/d∗

)
.

(3.17)

The corresponding eigenvalues are corrected by the shifts

ΓL → ΓL + γ , ΓS → ΓS + γ ,

Γ̄→ Γ̄ + α , ∆m→ ∆m · (1− 1
2(β/∆Γ)2) .

(3.18)

The shifts of ΓL, ΓS , and ∆m can be absorbed by redefinition of these parameters.

The shift of ∆m is of relative size 10−6 and so is negligible in any event. If we

redefine Γ̄ to be the average of the new ΓS and ΓL, then the interference terms ρI

and ρĪ fall off at the rate

Γ̄ + (α− γ) . (3.19)

This correction is not relevant to current experiments unless α is as large as 10−2Γ̄;

in that case α would be 10 times larger than the familiar CP-violating parameters.

We will retain this shift, for completeness, in our formulae below, but we will ignore

it in our analysis of the present experimental situation.

To summarize, under the influence of quantum mechanics violation as described

by the formalism of EHNS, the most general initial density matrix evolves according
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to

ρK(τ ) = AL ρL e
−ΓLτ + AS ρS e

−ΓSτ

+AI ρI e
−(Γ̄+α−γ)τ e−i∆mτ + AĪ ρĪ e

−(Γ̄+α−γ)τ e+i∆mτ ,
(3.20)

where now the eigenmodes are given by (3.17).

To understand the changes that have been induced in the evolution of density

matrices, it is useful to rewrite the eigenmodes slightly in order to emphasize their

similarity to (2.9). It is very convenient to introduce the split ε parameters:

ε±L = εL ± β/d , ε±S = εS ± β/d . (3.21)

Then the expressions for the eigenmodes can be rewritten as follows:

ρL =

(
|ε−L |2 + γ/∆Γ + 4(β/∆Γ)Im[ε−Ld/d

∗] ε+L

ε+∗L 1

)

ρS =

(
1 ε−∗S
ε−S |ε+S |2 − γ/∆Γ− 4(β/∆Γ)Im[ε+Sd/d

∗]

)

ρI =

(
ε−∗L 1

−iα/2∆m ε+S

)

ρĪ =

(
ε−L iα/2∆m

1 ε+∗S .

)
(3.22)

The eigenmodes are written here to sufficient accuracy for the analysis in the rest

of this paper. The complete expressions for these eigenmodes to second order in

small parameters are given in the Appendix.

Except for their smallest matrix elements, of which only ρL1 and ρS2 are im-

portant in practice, the expressions (3.22) take precisely the form of the density

matrices of pure states given in (2.9). However, the various modes contain differ-

ently shifted ε parameters. We will see in the next section that different neutral

kaon experiments are sensitive to different choices of these parameters, in such a

way that the various sources of CPT violation can be distinguished.

17



4. Experimental determination of β and γ

In this section, we will show how present experimental data constrains the

EHNS parameters. We will show how to combine the very accurate measurements

of the K0 parameters from the experiments of the early 1970’s with new data on

time-dependentK0 evolution from the CPLEAR experiment. This comparison will

give stringent constraints on β and γ which limit their effects to be at most about

10% of the observed CP violation in the neutral kaon system. This rules out the

possibility, suggested in ref. 16, that a deviation from quantum mechanics of the

nature considered here is the major source of observed CP violation. We will also

recommend a parametrization of the future, more accurate CPLEAR data which

will facilitate comparison of this data with the EHNS formalism.

In this section, we will consider specifically the following two observables of

the neutral kaon system:

R+−(τ ) =
N(K(τ )→ π+π−)

N(K(τ = 0)→ π+π−)

δ(τ ) =
N(K(τ )→ π−`+ν)−N(K(τ )→ π+`−ν̄)

N(K(τ )→ π−`+ν) +N(K(τ )→ π+`−ν̄)

(4.1)

These quantities are given in terms of density matrices and the decay operators

defined in Section 2 by

R+−(τ ) =
tr ρK(τ )O+−
tr ρK(0)O+−

, δ(τ ) =
tr ρK(τ )

(
O`+ −O`−

)
tr ρK(τ )

(
O`+ +O`−

) (4.2)

In our analysis, we may ignore the effects of ImA2 in O+−, since ε′/ε ∼ 10−4.

Thus, the formulae we present for the charged pion decay apply equally well to the

neutral pion decay. It is easy to restore the effect of ε′ by evaluating (4.2) more

exactly.
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In a K0 beam which has evolved to large τ , the quantities δ and R+− reflect

the pure KL eigenstate. In this case, we can evaluate (4.2) with the density matrix

ρL and obtain the following results:

δL = 2Re ε+L

RL = ρL1 = |ε−L |
2 + γ/∆Γ + 4(β/∆Γ)Im[ε−Ld/d

∗]
(4.3)

Alternatively, we could consider the evolution of a pure K0 or K̄0 state created

in a strong interaction process. For state which is initially pure K0, the evolving

density matrix is given by (3.20) with AL = AS = AI = AĪ = 1
2 , up to corrections

of order ε, α. (For an initial K̄0, reverse the sign of the interference terms.) Then

the time-dependent quantities (4.1) are given by
?

δ(τ ) =
2 cos(∆mτ )e−(Γ̄+α−γ)τ + 2Re ε−S e

−ΓSτ + 2Re ε+Le
−ΓLτ

e−ΓSτ + e−ΓLτ

R+−(τ ) = e−ΓSτ +RLe
−ΓLτ + 2|η̄+−| cos(∆mτ + φ+−)e−(Γ̄+α−γ)τ

(4.4)

with RL as in (4.3), and

|η̄+−|eiφ+− = ε−L . (4.5)

Notice that the interference term in the time-dependent asymmetry depends

on ε−L , while the KL lepton asymmetry depends on ε+L . Thus, by comparing time-

dependent and long-time measurements, we can find a constraint on β which is

independent of other sources of CPT violation. By comparing the value of |ε−L |2

to a determination of RL, and using this bound on β, we can also obtain a bound

on γ.

The difficulty in implementing this program is that experiments on the time-

dependent evolution of neutral kaon beams typically report fits of their data to

the conventional CPT -conserving theory, in which ε−L , ε+L , and the square root of

? This formula includes all corrections linear in α.
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ρL1 are not distinguished. Thus, it is important to understand which particular

parameters are actually constrained by each given experiment.

The value of δL poses no difficulty. The current world average
[9]

gives

δL = 2Re ε+L = (3.27± 0.12) × 10−3 . (4.6)

In the early 1970’s, the CERN-Heidelberg collaboration carried out beautiful

studies of the time-dependence of KL–KS interference.
[17−19]

These studies con-

firmed that the conventional, CPT -conserving parametrization of the neutral kaon

system indeed gives a good description of its time-dependent phenomena. How-

ever, it is very difficult to reconstruct the constraints that these experiments put

on more general models of time-dependence. The experiments involved kaon pro-

duction from a platinum target; in this situation, the proportion of K0 versus

K̄0 initial states is not known a priori and is also momentum-dependent. The

particle-antiparticle asymmetry must be described by an unknown function

A(p) =
N(p) − N̄ (p)

N(p) + N̄(p)
(4.7)

In ref. 18, data on neutral kaon decays to π+π− was binned in momentum and

decay time and these distributions were used to fit for the parameters |η+−|, φ+−,

and A(p) (in each bin) from the assumed relation

R+−(τ ) = e−ΓSτ + |η+−|2e−ΓLτ + 2A(p)|η+−| cos(∆mτ + φ+−)e−Γ̄τ . (4.8)

Unfortunately, the absolute magnitude of the interference term can be absorbed

into the parameters A(p), so it is not possible to determine the coefficients RL

and |η̄+−| separately. Since the strongest constraint on |η+−| from this data set

comes from the long-time tail of the decay distribution, we will consider the CERN-

Heidelberg determination of |η+−| to be a measurement of RL:√
RL = (2.30± 0.035) × 10−3. (4.9)

From Fig. 4 of ref. 18, it is clear that quantum mechanics does correctly describe
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the interference region to few-percent accuracy after adjustment of the A(p), but

we will not make use that information in the discussion below.

Shortly afterward, the experimental group of Carithers et al., working at the

LBL Bevatron, used their data on K → ππ decays in a regenerated KL beam

to directly measure the magnitude of the interference term in neutral kaon evolu-

tion.
[12]

In the notation of eq. (4.4), they obtained the result

|η̄+−|√
RL

= 0.972± 0.021 . (4.10)

Very recently, the CPLEAR collaboration has published as its first result a de-

termination of |η̄+−| using hadronically produced neutral kaons tagged by an ac-

companying charged kaon.
[3]

Their determination is dominated by the interference

region, and so we may interpret their result as a measurement of |η̄+−|. This gives

|η̄+−| = (2.32± 0.14) × 10−3 . (4.11)

Averaging these measurements using the CERN-Heidelberg value for RL, we find

|η̄+−| = (2.249 ± 0.054) × 10−3 . (4.12)

Finally, we see no difficulty in accepting the world average of measurements of

the interference phase φ+− as a determination of the phase of ε−L :

φ+− = (46.5± 1.2)◦ (4.13)

The comparison of these four numbers allows us to constrain β and γ. We can

find β from the relation

Re
2β

d
= Re ε+L − Re ε−L . (4.14)
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To analyze this relation, we use the fact that β is real and d is very well known:
[9]

d = ∆m+
i

2
∆Γ =

(
(3.522± 0.016) + i(3.682± 0.008)

)
× 10−15GeV (4.15)

It is convenient to parametrize

d = |d|ei(π/2−φSW ) , (4.16)

where φSW = (43.73±0.15)◦ is the superweak phase of Maiani’s conventions.
[20]

With

this definition

β =
|d|

2 sin φSW

(δL
2
− |η̄+−| cosφ+−

)
(4.17)

This yields

β = (3.2± 2.9)× 10−19 GeV . (4.18)

With this determination of β, we can evaluate γ by comparing RL to ε−L :

γ = ∆Γ
[
RL − |η̄+−|2 − 4(β/∆Γ)|η̄+−| sin(2φSW − φ+−)

]
. (4.19)

which gives

γ = (−0.2± 2.2)× 10−21 GeV . (4.20)

These constraints are similar to those obtained by Ellis, Mavromatos, and Nanopou-

los
[15,16]

in one-parameter fits for β and γ. However, our constraints hold in the

general three-parameter EHNS model; they exclude the possibility that β and γ

could give large individual contributions which cancel in RL.

The geometry of these constraints is shown in Fig. 1. In Fig. 1(a), we show the

systematics of the various values of ε. This figure should be compared to Fig. 1 of

ref. 15. The parameter ε−L , considered as a vector in the complex plane, is directly

determined by the interference measurement. From the endpoint of this vector, ε+L
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is found by making an excursion downward at 45◦ by a displacement proportional

to β. Similarly, RL is found by moving outward a distance proportional to γ, after

correcting for a β effect. In Fig. 1(b), we show the constraints on these excursions

given by the experimental values (4.6), (4.9), (4.12), (4.13). The various constraints

overlap in the ε plane in such a way as to constraint β and γ to contribute only a

very small part of the CP violation phenomenology.

It is important to note that the constraints on CPT violation outside of quan-

tum mechanics that we have considered here are quite independent of the possibility

of CPT violation within quantum mechanics. Such a source of CPT violation can

be constrained, just as in the analysis without quantum mechanics violation,
[20]

by

verifying the extend to which εL = ε−L + β/d is parallel to d in the complex plane.

We will give the precise argument in the next section. Since we have not used

any information on the absolute phase of εL in order to bound β and γ, the stan-

dard constraints on CPT violation within quantum mechanics are not significantly

weakened when we allow for the presence of the EHNS parameters. In the fu-

ture, the measurement of ε±S will allow a stronger constraint on this type of CPT

violation.

To derive further constraints on the violation of quantum mechanics, we strong-

ly recommend that time dependent decay distributions be fit directly to the for-

mulae (4.4), to determine the five independent parameters RL, δL, |η̄+−|, φ+−, α.

This will make it possible to check, without the ambiguities of our analysis here,

whether the rapport among these parameters definitively excludes the presence of

new terms in the density matrix evolution equation.
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5. Effects of CPT violation in decay amplitudes

At the end of Section 2, we argued that, whether CPT violation arises from

the breakdown of quantum mechanics or from the breakdown of local quantum

field theory within quantum mechanics, the effects of direct CPT violation in de-

cay amplitudes should be small compared to those in neutral kaon propagation.

Nevertheless, much emphasis is given in the literature on CPT violation to disen-

tangling effects of CPT violation in decay vertices from CPT violation in the kaon

mass matrix. In this section, we will show that this separation can still be made,

and constraints on β and γ deduced, if one allows for CPT -violating additions to

the kaon decay vertices. However, this analysis will require additional assumptions

which, though not unreasonable, are not airtight.

To begin the analysis, we need the more complicated forms of the decay opera-

tors OP which allow for CPT violation in the decay amplitudes. The parametriza-

tion given in Maiani’s review article
[20]

leads to the following expressions, which

replace (2.11), (2.12), (2.15), and (2.18): for the leptonic decay amplitudes,

O`+ =
|a+ b|2

2

(
1 1

1 1

)
, O`− =

|a− b|2
2

(
1 −1

−1 1

)
; (5.1)

for the ππ decay amplitudes,

O+− = |X+−|2
(

1 Y+−

Y ∗+− |Y+−|2

)
, O00 = |X00|2

(
1 Y00

Y ∗00 |Y00|2

)
, (5.2)

where

X =
〈
ππ
∣∣∣ K1

〉
, Y =

〈
ππ
∣∣ K2

〉〈
ππ
∣∣ K1

〉 . (5.3)

More explicitly,

Y+− =
(ReB0

A0

)
+ ε′

Y00 =
(ReB0

A0

)
− 2ε′

(5.4)

The quantities Re(B0/A0) and Re(b/a) parametrize CPT -violating decay ampli-
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tudes; ε′ has the CPT conserving value (2.21) shifted by the amount eiδ(ReB0/A0−
ReB2/A2)/

√
2 which accounts for a different degree of CPT violation in the isospin

I = 0 and I = 2 pion-decay channels.
[20]

With this generalization, the value of δL

becomes

δL = 2Re
[
ε+L +

b

a

]
(5.5)

and the parameters RL, |η̄+−|, and φ+− in (4.4) are shifted to

RL = γ/∆Γ + |η̄+−|2 + 4(β/∆Γ)Im
[
η̄+−d/d

∗ − Y+−
]

|η̄+−|eiφ+− = ε−L + Y+− .
(5.6)

When we include these corrections into the relation between ε−L and ε+L , we

find, instead of (4.17), the following expression for β:

β +
|d|

2 sin φSW
Re
( b
a
− B0

A0

)
=

|d|
2 sinφSW

(δL
2
− |η̄+−| cosφ+−

)
. (5.7)

The relation for γ remains

γ = ∆Γ
[
RL − |η̄+−|2 − 4(β/∆Γ)|η̄+−| sin(2φSW − φ+−)

]
(5.8)

if we ignore a very small correction proportional to β · ImY+− = β · Im ε′. Thus,

our previous constraints on β and γ now appear as constraints on combinations of

CPT -violating parameters.

For completeness, we should add one further constraint on a combination of

parameters characterizing CPT violation within and outside of quantum mechan-

ics. This constraint, which is reviewed in ref. 20, uses unitarity and the dominance

of the isospin 0 ππ decay channel to determine the phases of the CPT -conserving

and CPT -violating mixing parameters. If we denote these components of the kaon

mixing parameters as εM and ∆, as in eq. (2.4), then this constraint implies that

the phase of εM is φSW of eq. (4.16), and the phase of the combination

∆− ReB0

A0
(5.9)

is φSW ± π/2.
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To apply this relation, rewrite the second of eqs. (5.6) as:

|η̄+−|eiφ+− = εM −
(
∆− ReB0

A0

)
− β

d
. (5.10)

Notice that, because d points at 45◦, the last term has a phase of (−45◦), so that

it is also perpendicular to εM . On the other hand, the experimental value of φ+−

is very close to that of φSW , though there is a small discrepancy:

φ+− − φSW = (2.8± 1.2)◦ . (5.11)

Thus, by comparing the components of the right and left hand sides of (5.10) per-

perdicular to εM , we obtain a third constraint on the parameters of CPT violation.

This additional constraint reads:

β ± |d|
∣∣∣∣∆− ReB0

A0

∣∣∣∣ = (−5.6± 2.5) × 10−19 GeV . (5.12)

This must be combined with the results of eqs. (5.7) and (5.8):

β +
|d|

2 sin φSW
Re
( b
a
− B0

A0

)
= (3.2± 2.9)× 10−19 GeV

γ − 2|η̄+−d|Re
( b
a
− B0

A0

)
= (−0.2± 2.2) × 10−21 GeV .

(5.13)

In the last relation, we have used the approximation φSW ≈ φ+−. These three

equations provide three constraints on four parameters and so cannot disprove the

existence of CPT violation. However, they imply that, unless there are unnatural

cancellations among these parameters, the magnitude of CPT violation should be

at most about a tenth that of CP violation.
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6. Tests of quantum mechanics at a φ factory: formalism

A high-luminosity φ factory has been recognized as a facility which gives par-

ticularly incisive tests of CPT violation.
[5]

In models in which CPT violation arises

within quantum mechanics, Peccei and collaborators have shown how, by study-

ing the full set of possible time-dependent asymmetries observable at a φ factory,

one may disentangle CPT -violating terms in the neutral kaon mass matrix from

CPT -violating contributions to kaon decay amplitudes.
[4,21]

This analysis is made

possible by the very simple time-dependence predicted for the K0–K̄0 state which

evolves from the decay of the φ. Since the φ has spin 1, its decay to two spinless

bosons produces an antisymmetric spatial wavefunction. This means that, when

the φ decays to two neutral kaons, those particles must remain in opposite mass

eigenstates until one decays. This strong constraint from quantum-mechanical

coherence governs the whole phenomenology of φ factory measurements.

Because of the importance of quantum-mechanical coherence in φ decays, a φ

factory is also an ideal place to search for terms in the kaon evolution which violate

quantum coherence. In this section, we will explain how the standard formulae for

kaon correlations in φ decay are changed by the introduction of quantum mechanics

violation according to the model of EHNS, and we will point out particularly

incisive measurements for determining or constraining the EHNS parameters.

The key to our analysis will be the form of the density matrix for the two-

particle system which results from φ decay. We will first review the form of this

density matrix in the case in which CPT is violated only by corrections within

quantum mechanics. Then we will show how this result is generalized in the EHNS

model.

In the following discussion, we will assume that the φ resonance is pure spin 1,

with no quantum mechanics violation in its decay amplitudes. Throughout our

analysis, we will ignore background processes which produce K0K̄0 in a spin 0

combination, and also effects of finite detector size. The influence of these effects

in conventional φ factory analyses are described in ref. 5.
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A spin 1 φ meson decays to an antisymmetric state of two kaons. If the

kaons are neutral, we can describe the resulting wavefunction, in the basis of CP

eigenstates |K1〉, |K2〉, as

φ→ 1√
2

(
|K1, p > ⊗|K2,−p > −|K2, p > ⊗|K1,−p >

)
. (6.1)

The two-kaon density matrix resulting from this decay is a 4× 4 matrix. We can

express this matrix concisely by introducing the set of 2× 2 matrices appropriate

to the |K1〉, |K2〉 basis:

ρ̂1 =

(
1 0

0 0

)
, ρ̂2 =

(
0 0

0 1

)
, ρ̂+ =

(
0 1

0 0

)
, ρ̂− =

(
0 0

1 0

)
. (6.2)

Then the state (6.1) corresponds to the density matrix

P =
1

2

(
ρ̂1 ⊗ ρ̂2 + ρ̂2 ⊗ ρ̂1 − ρ̂+ ⊗ ρ̂− − ρ̂− ⊗ ρ̂+

)
. (6.3)

To work with the density matrix (6.3), we must express its components ρi

in terms of eigenstates of the single-particle density matrix evolution equation.

Then we can assign each eigenstate its natural time-dependence. This procedure

accounts correctly the full time-dependence of correlations.

To see how this works, we will first express P in terms of eigenmodes in the

quantum-mechanical case. It is straightforward to express the components (6.2) in

terms of the four matrices (2.9) and then to express the combination (6.3) in terms

of these elements. One finds, to no great surprise, an antisymmetric combination

of |KL〉 and |KS〉. Here and for the rest of this section, we will denote results

derived assuming quantum mechanical evolution (but not CPT symmetry) with a

superscript diamond. Thus,

P (♦) =
1 + 2Re(εSεL)

2

(
ρS ⊗ ρL + ρL ⊗ ρS − ρI ⊗ ρĪ − ρĪ ⊗ ρI

)
. (6.4)

The prefactor, which we have written to order ε2, corrects for the fact that |KL〉
and |KS〉 are not orthogonal. Supplying the proper time-dependence, we find the
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density matrix for processes in which the first kaon decays at proper time τ1 and

the second at proper time τ2. We find

P (♦)(τ1, τ2) =
1 + 2Re(εSεL)

2

(
ρS ⊗ ρLe−ΓSτ1e−ΓLτ2 + ρL ⊗ ρSe−ΓLτ1e−ΓSτ2

− ρI ⊗ ρĪe−i∆m(τ1−τ2)e−Γ̄(τ1+τ2) − ρĪ ⊗ ρIe+i∆m(τ1−τ2)e−Γ̄(τ1+τ2)
)
.

(6.5)

It is equally straightforward to perform this computation when quantum me-

chanics violation is included. One must first work out expressions for the compo-

nents (6.2) in terms of the eigenmodes (3.22). To first order in small quantities,

we find

ρ̂1 = ρS + (γ/∆Γ)ρL − ε−∗S ρI − ε−S ρĪ
ρ̂2 = −(γ/∆Γ)ρS + ρL − ε+LρI − ε

+∗
L ρĪ

ρ̂+ = −ε−∗L ρS − ε+S ρL + ρI + i(α/2∆m)ρĪ

ρ̂− = −ε−LρS − ε
+∗
S ρL − i(α/2∆m)ρI + ρĪ .

(6.6)

Inserting these expressions into (6.4), we find

P =
1

2

[
ρS⊗ρL + ρL ⊗ ρS − ρI ⊗ ρĪ − ρĪ ⊗ ρI

− 2
β

d
(ρS ⊗ ρI + ρI ⊗ ρS) − 2

β

d∗
(ρS ⊗ ρĪ + ρĪ ⊗ ρS)

+ 2
β

d∗
(ρL ⊗ ρI + ρI ⊗ ρL) + 2

β

d
(ρL ⊗ ρĪ + ρĪ ⊗ ρL)

+ i
α

∆m

(
ρI ⊗ ρI − ρĪ ⊗ ρĪ

)
+

2γ

∆Γ

(
ρL ⊗ ρL − ρS ⊗ ρS

)]
.

(6.7)

In eq. (6.7), each coefficient is given to first order in small quantities. We will carry

out our analysis to this order. However, if some of the EHNS parameters are more

severely constrained than others, one might need the expressions of second order

in the less constrained parameters to determine the correct limits for the more

constrained ones. For example, we saw in Section 4 that the terms quadratic in β

affect the limits on γ. In case a similar situation arises in φ factory experiments,

we have given in the Appendix the complete formula for P correct to second order

in small quantities.
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When we study time-dependent correlations, each term of (6.7) will lead to

a characteristic exponential behavior. The first line of (6.7) is identical (within

the approximation given) to (6.4) and thus contains only time-dependences al-

lowed within quantum mechanics. The next three lines of (6.7), however, contain

completely new structures. The second line of (6.7) leads to terms in the decay

distribution which behave as

cos(∆mτ1 − φ)e−(Γ̄+α−γ)τ1e−ΓSτ2 , (6.8)

and, in the same way, with 1 and 2 interchanged. The third line leads to similar

expressions with the decay rate ΓL. The first term in the fourth line leads to the

even more bizarre time dependence

sin(∆m(τ1 + τ2)− φ′)e−(Γ̄+α−γ)(τ1+τ2) . (6.9)

If we interpret frequencies as energies, both of the forms (6.8) and (6.9) signal

a switch from positive to negative values of the energy. This is a rather subtle

breakdown of energy conservation, which should be expected in the framework of

density matrix evolution equations according to the analysis of ref. 10. This subtle

effect does not obviously lead to macroscopic violations of energy conservation.

However, in the φ factory experiments, one does not need to wait for the problems

of energy conservation to built up to a macroscopic violation; one can instead track

these violations directly in the frequency dependence of corrections. Finally, the

second term in the fourth line contains the time-dependences

e−ΓS(τ1+τ2) , e−ΓL(τ1+τ2) . (6.10)

Both terms in this line signal a breakdown of the antisymmetry of the final state

wave function, which corresponds to a subtle breakdown of angular momentum

conservation.
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The basic observables computed from P are double differential decay rates,

the probabilities that the kaon with momentum p decays into the final state f1 at

proper time τ1 while the kaon with momentum (−p) decays to the final state f2

at proper time τ2. We denote this quantity as P(f1, τ1; f2, τ2). If we denote the

expression (6.7) schematically as

P =
∑
i,j

Aij ρi ⊗ ρj , (6.11)

where i, j run over S, L, I, Ī, and write the corresponding eigenvalues as λi, then

the double decay rate is given by

P(f1, τ1; f2, τ2) =
∑
i,j

Aij tr[ρiOf1
] tr[ρjOf2

]e−λiτ1−λjτ2 . (6.12)

Since it is easier to understand a distribution in one variable, much of the

analysis of φ factory experiments has made use of the integrated distribution at

fixed time interval ∆τ = τ1 − τ2. We will assume, in working with this quantity,

that ∆τ > 0. Then this time interval distribution is defined as

P̄(f1; f2; ∆τ ) =

∞∫
∆τ

d(τ1 + τ2)P(f1, τ1; f2, τ2) . (6.13)

This time interval distribution is very useful for obtaining the standard CP viola-

tion parameters of the neutral kaon system. However, since (6.13) integrates out

one of the exponentials in (6.12), this integral does not possess the strange time de-

pendences which signal quantum mechanics violation. A different quantity which

shows these unusual effects more clearly is the double decay rate interpolated to

equal times:

Q(f1; f2; τ ) = P(f1, τ ; f2, τ ) . (6.14)

In the case in which quantum mechanics is exact and the density matrix is given

by (6.5), this expression is a linear combination of decreasing exponentials, with no
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oscillatory terms. However, when we introduce the EHNS parameters, Q(τ ) can

acquire terms with the oscillatory dependences cos(∆m∆τ−φ) and cos(2∆m∆τ−
φ′).

The most striking example of this modification of the quantum mechanical

prediction appears in the case of decay to identical final states f1 = f2 = f . In this

case, the quantum mechanical prediction for the double decay rate is especially

simple.
[4]

Using

tr[ρSOf ] tr[ρLOf ] = tr[ρIOf ] tr[ρĪOf ] =
∣∣〈f ∣∣ KS

〉∣∣2∣∣〈f ∣∣ KL

〉∣∣2 , (6.15)

we can rewrite the expression for the double decay rate as

P(♦)(f, τ1; f, τ2) = C×
[
e−ΓSτ1−ΓLτ2 +e−ΓLτ1−ΓSτ2−2 cos(∆m(τ1−τ2))e−Γ̄(τ1+τ2)

]
.

(6.16)

This quantity depends on the two times in a manner completely fixed by quantum

mechanics irrespective of the properties of the decay amplitudes. In particular, at

τ1 = τ2, the double distribution vanishes, as a consequence of the antisymmetry

of the final state wavefunction. All of these conclusions hold whether or not CPT

symmetry is preserved.

On the other hand, when quantum mechanics is violated, decays to identical

final states can have a much less constrained structure which includes all of the

time dependences found in the most general case. We will see examples of this in

the next section.
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7. Tests of quantum mechanics at a φ factory: identical final states

Now that we have clarified the general form of the effects of quantum mechan-

ics violation in the EHNS model, we will present expressions for the dependence

of particular observables on the EHNS parameters. In particular, we will show

explicitly how the terms of the equal time distributions Q(f ; f ; τ ), defined in eq.

(6.14), can be used to constrain these parameters. In this section, we will return

to the framework of Section 4, in which CPT violation in decay vertices and ε′ are

neglected. However, in contrast to the case of experiments on single kaons, the con-

straints on the EHNS parameters from φ factory experiments are not essentially

affected by the inclusion of CPT violation in decay vertices. In the next section,

we will explain this point and also discuss some aspects of the measurement of

these decay parameters.

Consider first the case in which both kaons decay semileptonically. The cases

in which both kaons decay to π−`+ν or to π+`−ν̄ are examples of decays to iden-

tical final states whose special properties were discussed at the end of the previous

section. It is straightforward to work out the double time distribution for these

cases by using the expression (6.7), the explicit forms of the density matrix eigen-

modes (3.22), and the decay operators (2.11), (2.12). We find, to first order in

small parameters

P(`±, τ1; `±, τ2) =
|a|4
8

×
{

(1± 4Re εM )
[
e−ΓSτ1−ΓLτ2 + e−ΓLτ1−ΓSτ2 − 2 cos(∆m(τ1 − τ2)e−(Γ̄+α−γ)(τ1+τ2)

]
± 4

β

|d| sin(∆mτ1 − φSW )e−(Γ̄+α−γ)τ1e−ΓSτ2 + (1↔ 2)

± 4
β

|d| sin(∆mτ1 + φSW )e−(Γ̄+α−γ)τ1e−ΓLτ2 + (1↔ 2)

+ 2
α

∆m
sin ∆m(τ1 + τ2) e−(Γ̄+α−γ)(τ1+τ2) + 2

γ

∆Γ

[
e−ΓL(τ1+τ2) − e−ΓS(τ1+τ2)

]}
.

(7.1)

Notice that the first term in the brackets has a form quite close to the canoni-
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cal form (6.16) predicted by quantum mechanics, while the remaining terms give

systematic corrections to this result. For comparison,

P(`±, τ1; `∓,τ2) =
|a|4
8

×
{[
e−ΓSτ1−ΓLτ2 + e−ΓLτ1−ΓSτ2 + 2 cos(∆m(τ1 − τ2))e−Γ̄(τ1+τ2)

]
+O(ε, α, β, γ)

}
.

(7.2)

The complete expression is given in Appendix B.

The form of the corrections to quantum mechanics are easiest to see by inter-

polating to the line τ1 = τ2. On this line, (7.2) becomes

P(`±, τ ; `∓, τ ) =
|a|4
8
· 4e−2Γ̄τ , (7.3)

and (7.1) has a similar, though less dramatic, simplification. Then one finds

Q(`±; `±; τ )/Q(`±; `∓; τ ) =

1

2

[
1− e−2(α−γ)τ

(
1− α

∆m
sin 2∆mτ

)]
+

1

2

γ

∆Γ

[
e+∆Γτ − e−∆Γτ

]
±2

β

|d|
[
sin(∆mτ − φSW )e−∆Γτ/2 + sin(∆mτ + φSW )e+∆Γτ/2

]
(7.4)

The three coefficients α, β, and γ are selected by terms which are monotonic

in τ , oscillatory with frequency ∆m,and oscillatory with frequency 2∆m.

It is amusing to note that the positivity of the expression (7.4) under the

conditions (3.12) is maintained by a delicate interplay of the correction terms.

This is most easily seem by examining the limits α� γ > 0 and γ � α > 0.

Similar information is provided by the decay distribution to ππ final states on

both sides of the φ decay process. Since we ignore ε′ effects, the decay distributions
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to π+π− and π0π0 final states are identical up to the overall normalization. For

the specific case of π+π− decays on both sides, we find, to second order in small

parameters

P(π+π−, τ1;π+π−, τ2) = 2|A0|4

×
{
RL
[
e−ΓSτ1−ΓLτ2 + e−ΓLτ1−ΓSτ2

]
− 2|η̄+−|2 cos(∆m(τ1 − τ2))e−(Γ̄+α−γ)(τ1+τ2)

+ 4
β

|d| |η̄+−| sin(∆mτ1 + φ+− − φSW )e−(Γ̄+α−γ)τ1e−ΓSτ2 + (1↔ 2)

− 2

[
γ

∆Γ
+ 2

β

|d| |η̄+−|
sinφ+−
cosφSW

]
e−ΓS(τ1+τ2)

}
.

(7.5)

where |η̄+−|eiφ+− = ε−L and RL is defined as in (4.3). Specializing to the line

τ1 = τ2 = τ , we find

Q(π+π−;π+π−; τ ) ∝ e−2Γ̄τ

×
{
|η̄+−|2

[
1− e−2(α−γ)τ

]
− 2

β

|d| |η̄+−|
sin(φ+− − 2φSW ) + e−∆Γτ sinφ+−

cosφSW

+
γ

∆Γ

[
1− e−∆Γτ

]
+ 4

β

|d| |η̄+−| sin(∆mτ + φ+− − φSW )e−∆Γτ/2

}
+O3(α, β, γ, εM ,∆).

(7.6)

This distribution is less sensitive to α; its leading α effect is of order α · |η̄+−|2.

However, the measurement of this distribution does allow one to put independent

constraints on β and γ.

The corresponding distributions for the three pion decay channels can be ob-

tained by tracing the density matrix P with the operator O3π ⊗O3π as in (6.12).

O3π is expressed in terms of the three pion decay amplitudes as

O3π = |X3π|2
(
|Y3π|2 Y ∗3π

Y3π 1

)
, (7.7)
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where

X3π =
〈

3π
∣∣∣ K2

〉
, Y3π =

〈
3π
∣∣ K1

〉〈
3π
∣∣ K2

〉 . (7.8)

In this section we ignore CP and CPT violation in the decay amplitudes, so

we set Y3π to zero; then

P(3π, τ1;3π, τ2) =
|X3π|4

2

×
{
RS
[
e−ΓSτ1−ΓLτ2 + e−ΓLτ1−ΓSτ2

]
− 2|η̄3π|2 cos(∆m(τ1 − τ2))e−(Γ̄+α−γ)(τ1+τ2)

+ 4
β

|d| |η̄3π| sin(∆mτ1 − φ3π + φSW )e−(Γ̄+α−γ)τ1e−ΓLτ2 + (1↔ 2)

+ 2

[
γ

∆Γ
+ 2

β

|d| |η̄3π|
sinφ3π

cosφSW

]
e−ΓL(τ1+τ2)

}
+O3(α, β, γ, εM ,∆).

(7.9)

where |η̄3π|eiφ3π = ε+S and RS = −γ/∆Γ + |η̄3π|2 − 4(β/∆Γ)Im
[
η̄3πd/d∗

]
.

This distribution reduces, on the line τ1 = τ2 = τ , to

Q(3π;3π; τ ) ∝ e−2Γ̄τ

×
{
|η̄3π|2

[
1− e−2(α−γ)τ

]
− 2

β

|d| |η̄3π|
sin(2φSW − φ3π)− e∆Γτ sinφ3π

cosφSW

− γ

∆Γ

[
1− e∆Γτ

]
+4

β

|d| |η̄3π| sin(∆mτ − φ3π + φSW )e∆Γτ/2

}
+O3(α, β, γ, εM ,∆).

(7.10)

This distribution has a sensitivity to γ which survives at large time (ΓSτ � 1)

as

lim
ΓSτ�1

Q(3π; 3π; τ ) ∝ γ

∆Γ
e−2ΓLτ . (7.11)

Its origin can be traced to the ρL ⊗ ρL propagating mode of the density matrix

(6.7). This behavior contrasts with the behavior of the equal-time distribution

Q(π+π−; π+π−; τ ); the latter vanishes, at large time, as ∼ e−ΓSτ .
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8. Tests of quantum mechanics at a φ factory: general final states

In the previous section, we showed how to constrain the EHNS parameters

independently of one another by considering the most straightforward experiments

on φ decay, analyzed with the simplest theory. In this section, we will generalize

our analysis to include direct CPT violation and the effects of ε′. in the K0 decay

matrix elements, as we have discussed for single kaon experiments in Section 5. We

will first re-examine the determination of the EHNS parameters. We will show that

these complications have virtually no effect on the method, or even the formulae,

given in the previous section for the determination of α, β, and γ. Then we will

consider the reciprocal problem of the effect of quantum mechanics violation on

the experimental determination of the kaon decay matrix elements. We will show

that the measurements of these decay matrix elements can be affected if β and γ

are nonzero. The measurements most sensitive to the modifications of kaon decay

within quantum mechanics are asymmetries of the integrated time distributions

(6.13).
[4]

We will present formulae which show how these asymmetries are shifted by

quantum mechanics violation.

The modification of the formulae for theQ(f ; f ; τ ) in the presence of the effects

discussed in Section 5 is quite minor. In the formulae for leptonic double decay

distributions, |a|2 is changed to |a+ b|2 for decays to `+ and to |a− b|2 for decays

to `−. This has no effect on the functional form of the double time distribution

except for the simple replacement

εM → εM +
b

a
. (8.1)

In particular, the formula (7.4) is still valid in this more general context. Similarly,

the inclusion of more general effects in the kaon decay vertices changes the relative

normalization of π+π− and π0π0 decay rates. However, the formula (7.6) remains

valid with the replacement

|η̄+−|eiφ+− = ε−L + Y+− , (8.2)
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as in eq. (5.6). This is equally true for the case of the three pion decay, for which

formula (7.10) remains valid with the substitution
?

|η̄3π|eiφ3π = ε+S + Y3π . (8.3)

Thus, there is no difficulty in constraining CPT violation from outside quantum

mechanics in φ factory experiments even in this more general context. For refer-

ence, the complete expressions for the double time distributions to pion or leptonic

final states are given in Appendix B.

It is also interesting to ask whether the converse of this statement is true,

whether quantum mechanics violation can interfere with the measurement of ε′

and other more standard asymmetries which should appear at a φ factory. In the

following, we briefly discuss how the determination of certain of these quantities

might be affected.

One would not immediately expect the measured value of ε′/ε to be significantly

affected by quantum mechanics violation, since ε′ is a property of the difference

between the decay rates into π+π− and π0π0 while the parameters β and γ affect

the time evolution of the kaon system prior its decay. From this argument, one

would expect ε′/ε to be at most corrected by a factor 1+O(β/dε , γ/|d||ε|2) . Using

the bounds on β and γ derived in Section 4, we estimate the terms in parenthesis to

be at most corrections of the order of 5% and 25% respectively. These corrections

are mild and can be reduced further if no evidence for nonzero β and γ is found at

a φ factory.

However, if β and γ prove to be nonzero, they will have two important effects

in the measurement of ε′/ε. First, any time-dependent method of determining

ε′/ε would be complicated by the new time dependences introduced by quantum-

mechanics violating terms in the density matrix evolution. As we have already

? We also assume here that we can neglect a term proportional to ImY3π; we expect this term
to be no bigger than ImY+− ∼ Imε′.
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pointed out, this effect can be minimized by considering the integrated distributions

(6.13) at fixed time interval ∆τ = τ1 − τ2. Second, because β/d and ε are close to

being orthogonal in the complex plane, effects of nonzero β can mix the real and

imaginary parts of ε′/ε.

To demonstrate these points quantitatively, we consider the determination
[24]

of

ε′/ε from the measurement of the quantity

A(π+π−; π0π0; ∆τ ) =
P̄(π+π−; π0π0; ∆τ )− P̄(π0π0; π+π−; ∆τ )

P̄(π+π−; π0π0; ∆τ ) + P̄(π0π0; π+π−; ∆τ )
. (8.4)

This asymmetry can be straightforwardly computed using the formulae of Ap-

pendix B. We find

A(π+π−; π0π0; ∆τ ) = 3Re
ε′

ε
× NRD − 3 Im

ε′

ε
× NID , (8.5)

The coefficientsNR,I and D are functions of ∆τ , β/d, γ, and |η̄+−| which are given

in Appendix C.

In the context of pure quantum mechanics, the quantities NR,I and D have a

simple functional form, and the quantities Re ε′/ε, Im ε′/ε can be extracted from

A(♦)(π+π−; π0π0; ∆τ ) by a two-parameter fit. In presence of quantum mechanics

violation, this is no longer true. For example, in the limit ΓS∆τ � 1,

A(♦)(π+π−; π0π0; ∆τ )→ 3Re ε′/ε . (8.6)

In the same limit, (8.5) becomes

A(π+π−; π0π0; ∆τ )→

3Re ε′/ε

[
1 + (2β/|d||η̄+−|) sin(φSW − φ+−)

1 + (γ/∆Γ|η̄+−|2) + (2β/|d||η̄+−|)(sin(2φSW − φ+−)/ cosφSW )

]
−3Im ε′/ε

[
(2β/|d||η̄+−|) cos(φSW − φ+−)

] .

(8.7)

To understand the role of the near-orthogonality of β/d and η̄+−, we may approx-
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imate φ+− ≈ φSW ≈ 45◦; then (8.7) simplifies to

A(π+π−;π0π0; ∆τ )→

3Re ε′/ε

[
1− γ√

2|d||η̄+−|2
− 2

β

|d||η̄+−|

]
− 3 Im ε′/ε

[
2

β

|d||η̄+−|

]
. (8.8)

This makes clear that, if one opens the possibility of quantum mechanics violation

in the neutral kaon system at the level β ∼ m2
K/mPl, one must constrain or

determine β in order to measure Re ε′.

Similar effects are present in asymmetries involving the semileptonic decay

distributions P̄(`±; `±; ∆τ ). For simplicity, we again consider only the large-time

limit ΓS∆τ � 1. Three particularly informative asymmetries are

P̄(`+; `+; ∆τ )− P̄(`−; `+; ∆τ )

P̄(`+; `+; ∆τ ) + P̄(`−; `−; ∆τ )
→ δL

P̄(`+; `+; ∆τ )− P̄(`−; `−; ∆τ )

P̄(`+; `+; ∆τ ) + P̄(`−; `−; ∆τ )
→ 4Re (εM + b/a) + 8

β

|d| sin 2φSW cosφSW

P̄(`+; `−; ∆τ )− P̄(`−; `+; ∆τ )

P̄(`+; `+; ∆τ ) + P̄(`−; `−; ∆τ )
→−4Re ∆ + 4

β

|d| sinφSW
[
1− 4 cos2 φSW

]
.

(8.9)

The first of the above formulae yields a direct determination of δL, even in the

presence of quantum mechanics violation. However, the other two formulae are

more complicated. If quantum mechanics is assumed to be valid, these two limits

give simple constraints on the CPT violating parameters ∆ and Re(b/a). However,

in the more general context of quantum mechanics violation, these parameters are

constrained only to the extent that β is known from the experiments described in

Section 7.

It is remarkable how sensitively the parameters of quantum mechanics violation

affect the various observable quantities of the K0–K̄0 system as observed at the

φ. Using the strategies we have discussed, it is likely that all three of the EHNS

parameters of quantum mechanics violation can be bounded, or measured, at a

level well below (1/mPl). Perhaps there are still more surprises waiting for us in

neutral kaon physics.
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APPENDIX A: Eigenmodes of density matrix evolution

In this appendix, we give more exact formulae for the eigenmodes of the density

matrix evolution and for the components of the density matrix for neutral kaon

pairs resulting from φ decay. The expressions below are complete through second

order in CP-violating parameters.

First, we present the density matrix eigenmodes. These are given as column

vectors 
ρ1

ρ2

ρI

ρĪ

 , (A.1)

where these elements are defined by eq. (3.13). The expressions (3.22) should be

replaced by:

ρS =



1

−γ/∆Γ + 2Im[ε+S ε
−∗
S d]/∆Γ

ε−∗S − (dε+Lγ/d
∗∆Γ) + i(ε−∗S γ/d∗)− (2αIm ε−S ]/d∗)

ε−S − (d∗ε+∗L γ/d∆Γ) − i(ε−Sγ/d) − (2αIm ε−S ]/d)


, (A.2)

ρL =



γ/∆Γ− 2Im[ε+Lε
−∗
L d∗]/∆Γ

1

ε+L + (d∗ε−∗S γ/d∆Γ) + i(ε+Lγ/d) + (2αIm ε+L ]/d)

ε+∗L + (dε−S γ/d
∗∆Γ)− i(ε+∗L γ/d∗) + (2αIm ε+L ]/d∗)


, (A.3)
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ρI =



ε−∗L (1 + iγ/d∗ − iα/d∗)− iε+Sγ/d∗ + i(dε−Lα/2d
∗∆m)

ε+S (1 + iγ/d− iα/d) − iε−∗L γ/d + i(d∗ε+∗S α/2d∆m)

1

−i(α/2∆m) + (ε−S ε
−∗
L d + ε+∗L ε+∗S d∗)/2∆m


, (A.4)

ρĪ =



ε−L (1− iγ/d+ iα/d) + iε+∗S γ/d∗ − i(d∗ε−∗L α/2d∆m)

ε+∗S (1− iγ/d∗ + iα/d∗) + iε−Lγ/d
∗ − i(dε+Sα/2d∗∆m)

i(α/2∆m) + (ε−∗S ε−Ld
∗ + ε+Lε

+∗
S d)/2∆m

1


. (A.5)

Note that the expressions for ρL1 and ρS2 given in (3.22) agree with the expressions

above.

Next, we present a more precise form for the density matrix P by quoting the

matrix elements of Aij , defined by eq. (6.11), to second order in small parameters.

We find:
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ASL = ALS =
1

2
(1 + 2Re(εSεL)) + βRe

εS − εL
d

+
3

2
β2 d

2 + d∗2

|d|4 − 3

2

γ2

(∆Γ)2

ASS = − γ

∆Γ
− 2

β2

|d|2 − 4
β

∆Γ
ImεL

ALL =
γ

∆Γ
− 2

β2

|d|2 + 4
β

∆Γ
ImεS

ASI = AIS = (ASI)
∗ = (AIS)∗

= −β
d
− 2

α

d
ImεL − i

γ

d
(εL − ε∗S) + i

αβ

2∆md∗
− γβ

∆Γd∗

ALI = AIL = (ALI)
∗ = (AIL)∗

=
β

d∗
+ 2

α

d∗
ImεS + i

γ

d∗
(εL − ε∗S)− i αβ

2∆md
− βγ

∆Γd

AIĪ = AĪI = −1

2
(1 + 2ReεLεS) + β Re

(
εS − εL

d

)

+
3

2
β2 d

2 + (d∗)2

|d|4 − 3

8

α2

(∆m)2

AII = (AII)
∗ =

iα

2∆m
− 2

β2

|d|2 −
β

∆m
(εL − ε∗S)

(A.6)

APPENDIX B: Double time distributions

In this appendix, we give the complete formulae for the double time distribu-

tions P(f1, τ1; f2, τ2) for φ decay to the various final states discussed in the text.

The expressions below are complete through first order in CP-violating parameters

unless it is specified otherwise.
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P(`±,τ1; `±, τ2) =
|a|4
8

×
{[

(1± 4Re (εM +
b

a
)
][
e−ΓSτ1−ΓLτ2 + e−ΓLτ1−ΓSτ2 − 2 cos(∆m(τ1 − τ2))e−(Γ̄+α−γ)(τ1+τ2)

]
± 4

β

|d| sin(∆mτ1 − φSW )e−(Γ̄+α−γ)τ1e−ΓSτ2 + (1↔ 2)

± 4
β

|d| sin(∆mτ1 + φSW )e−(Γ̄+α−γ)τ1e−ΓLτ2 + (1↔ 2)

+ 2
α

∆m
sin ∆m(τ1 + τ2) e−(Γ̄+α−γ)(τ1+τ2) + 2

γ

∆Γ

[
e−ΓL(τ1+τ2) − e−ΓS(τ1+τ2)

]}
.

(B.1)

P(`+, τ1;`−, τ2) =
|a|4
8

×
{

(1 + 4Re (∆− β/d))e−ΓSτ1−ΓLτ2 + (1− 4Re (∆− β/d))e−ΓLτ1−ΓSτ2

+ 2 cos
(
∆m(τ1 − τ2)− 4Im(∆ + β/d)

)
e−(Γ̄+α−γ)(τ1+τ2)

+ 4
β

|d| sin(∆mτ1 − φSW )e−(Γ̄+α−γ)τ1e−ΓSτ2 − (1↔ 2)

+ 4
β

|d| sin(∆mτ1 + φSW )e−(Γ̄+α−γ)τ1e−ΓLτ2 − (1↔ 2)

− 2
α

∆m
sin ∆m(τ1 + τ2) e−(Γ̄+α−γ)(τ1+τ2) + 2

γ

∆Γ

[
e−ΓL(τ1+τ2) − e−ΓS(τ1+τ2)

]}
.

(B.2)

P(π+π−,τ1; π+π−, τ2) =
|X+−|4

2

×
{
RL
[
e−ΓSτ1−ΓLτ2 + e−ΓLτ1−ΓSτ2

]
− 2|η̄+−|2 cos(∆m(τ1 − τ2)) e−(Γ̄+α−γ)(τ1+τ2)

+ 4
β

|d| |η̄+−| sin(∆mτ1 + φ+− − φSW )e−(Γ̄+α−γ)τ1e−ΓSτ2 + (1↔ 2)

− 2

(
γ

∆Γ
+ 4

β

∆Γ
Im
[
η̄+− − Y+−

])
e−ΓS(τ1+τ2)

}
+ O3(α, β, γ, εS,L, Y+−) ,

(B.3)
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using η̄+−eiφ+− = ε−L + Y +− and

RL = γ/∆Γ + |η̄+−|2 + 4(β/∆Γ)Im
[
η̄+−d/d

∗ − Y+−
]
. (B.4)

P(π+π−, τ1; π0π0, τ2) =
|X+−|2|X00|2

2

×
{
R00
L e
−ΓSτ1−ΓLτ2 +R+−

L e−ΓLτ1−ΓSτ2

− 2|η̄+−||η̄00| cos(∆m(τ1 − τ2) + φ+− − φ00) e−(Γ̄+α−γ)(τ1+τ2)

+ 4
β

|d| |η̄+−| sin(∆mτ1 − φSW + φ+−)e−(Γ̄+α−γ)τ1e−ΓSτ2

+ 4
β

|d| |η̄00| sin(∆mτ2 − φSW + φ00)e−(Γ̄+α−γ)τ2e−ΓSτ1

− 2

(
γ

∆Γ
+ 2

β

∆Γ
Im
[
η̄+− − Y+− + η̄00 − Y00

])
e−ΓS(τ1+τ2)

}
+ O3(α, β, γ, εS,L, Y{+−

00
) .

(B.5)

P(3π, τ1;3π, τ2) =
|X3π|4

2

×
{
RS
[
e−ΓSτ1−ΓLτ2 + e−ΓLτ1−ΓSτ2

]
− 2|η̄3π|2 cos(∆m(τ1 − τ2))e−(Γ̄+α−γ)(τ1+τ2)

+ 4
β

|d| |η̄3π| sin(∆mτ1 − φ3π + φSW )e−(Γ̄+α−γ)τ1e−ΓLτ2 + (1↔ 2)

+ 2

(
γ

∆Γ
+ 4

β

∆Γ
Im
[
η̄3π − Y3π

])
e−ΓL(τ1+τ2)

}
+ O3(α, β, γ, εS,L, Y3π).

(B.6)

where |η̄3π|eiφ3π = ε+S + Y3π and

RS = −γ/∆Γ + |η̄3π|2 − 4(β/∆Γ)Im
[
η̄3πd/d

∗ − Y3π

]
. (B.7)
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P(π+π−, τ1;`±, τ2) =
|X+−|2

2

|a|2
2

×
{
RLe

−ΓLτ1−ΓSτ2 +
[
1± δL +

γ

∆Γ

]
e−ΓSτ1−ΓLτ2

∓ 2|η̄+−| cos(∆m(τ1 − τ2) + φ+−)e−(Γ̄+α−γ)(τ1+τ2)

± 4
β

|d| sin(∆mτ2 − φSW )e−(Γ̄+α−γ)τ2e−ΓSτ1

− 2

(
γ

∆Γ
+ 4

β

∆Γ
Im η̄+−

)
e−ΓS(τ1+τ2)

}
.

(B.8)

APPENDIX C: Formulae for the measurement of ε′/ε

In this Appendix, we present formulae for extracting ε′/ε from the integrated

distributions at fixed time interval ∆τ = τ1 − τ2 of the asymmetric decay into

charged and neutral pion final states.

A(π+π−; π0π0; ∆τ ) =
P̄(π+π−; π0π0; ∆τ )− P̄(π0π0; π+π−; ∆τ )

P̄(π+π−; π0π0; ∆τ ) + P̄(π0π0; π+π−; ∆τ )
. (C.1)

A(π+π−; π0π0; ∆τ ) = 3Re ε′/ε× NRD − 3Im ε′/ε× NID , (C.2)

with

NR = e−ΓL∆τ

[
1 + 2

β

|d||η̄+−|
sin(φSW − φ+−)

]
−e−ΓS∆τ

[
1 + 2

β

|d||η̄+−|
(

sin(φSW − φ+−)− |z| sin(φSW + φz − φ+−)
)]

+e−Γ̄∆τ

[
2

β

|d||η̄+−|
|z| sin(∆m∆τ + φ+− − φSW − φz)

] ,

(C.3)

46



NI = e−ΓL∆τ

[
2

β

|d||η̄+−|
cos(φSW − φ+−)

]
−e−ΓS∆τ

[
2

β

|d||η̄+−|
(

cos(φSW − φ+−)− |z| cos(φSW + φz − φ+−)
)]

+e−Γ̄∆τ

[
2 sin ∆m∆τ − 2

β

|d||η̄+−|
|z| cos(∆m∆τ + φ+− − φSW − φz)

] ,
(C.4)

D = e−ΓL∆τ

[
1 +

γ

∆Γ|η̄+−|2
+ 2

β

|d||η̄+−|
sin(2φSW − φ+−)

cosφSW

]
+e−ΓS∆τ

[
1− γ

∆Γ|η̄+−|2
ΓL
ΓS

+ 2
β

|d||η̄+−|
(sin(2φSW − φ+−)

cosφSW
− 2|z| sin(φSW + φz − φ+−)

)]
−e−Γ̄∆τ

[
2 cos ∆m∆τ − 4

β

|d||η̄+−|
|z| sin(∆m∆τ + φ+− − φSW − φz)

]
(C.5)

We have defined

|z|eiφz =
2Γ̄

ΓS + Γ̄ + i∆m
. (C.6)
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FIGURE CAPTIONS

1) Constraints on the EHNS parameters β and γ from the comparison of deter-

minations of the ε parameter from different observables of theKL–KS system:

(a) the systematics of expected discrepancies; (b) the current experimental

situation.
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