
ar
X

iv
:h

ep
-p

h/
94

05
25

5 
  0

9 
M

ay
 1

99
4

6453

April, 1994

(T/E)

Spin, Mass, and Symmetry

Michael E. Peskin

?

Stanford Linear Accelerator Center

Stanford University, Stanford, California 94309

Lectures presented at the XXIst SLAC Summer Institute

Spin Structure in High Energy Processes

Stanford California, July 26–August 6, 1993

? Work supported by the Department of Energy, contract DE–AC03–76SF00515.



Table of Contents

1. Introduction

2. The Poincaré Group
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1. Introduction

When the strong interactions were a mystery, spin seemed to be just a com-

plication on top of an already puzzling set of phenomena. But now that particle

physicists have understood the strong, weak, and electromagnetic interactions to

be gauge theories, with matter built of quarks and leptons, we recognize that the

special properties of spin 1
2 and spin 1 particles have taken central role in our un-

derstanding of Nature. The lectures in this summer school will be devoted to the

use of spin in unravelling detailed questions about the fundamental interactions.

Thus, why not begin by posing a deeper question: Why is there spin? More pre-

cisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero

quanta of angular momentum?

The nature and realization of spin is one of the deep questions in quantum

field theory. The subject has great technical complication and is often relegated to

technical treatises or highly specialized articles. Some detailed treatments of spin

in quantum field theory are given in refs. 1–3. But, though the technical answers

are often complex, the general ideas of the physics of spin are of genuine interest

to those who would like to understand modern particle physics. In these lectures,

I would like to give a broad-brush treatment of this subject, emphasizing its major

ideas and challenging questions.

Why is there spin? Three different kinds of explanatory principles can be

brought forth to answer this question. These might be called permissive, a poste-

riori, and a priori or constructive explanations. Some people are satisfied with an

explanation at any of these levels; others will insist on the third, strongest type of

explanation. Let us consider each level in turn.

A permissive explanation invokes the Totalitarian Principle of Physics: What-

ever is allowed, must exist. Under this philosophy, we can explain spin by showing

that it is a natural consequence of some general formal structure. I will review

in the next section the idea, uncovered by Wigner, that the representations of the
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Poincaré group include naturally include point particles with intrinsic spin. If such

particles are possible, why can’t they occur?

The idea of a posteriori explanation takes this argument a step further. At this

level, one still will not claim to understand why particles have spin, but one argues

that, without it, there would be a disaster. Such arguments use the Anthropic

Principle that the world we see must be such that we can live in it. The Anthropic

Principle gives a particularly strong case for the existence of spin: Without spin,

particles would not obey the Pauli exclusion principle. But without the stability

of Pauli exclusion, matter could avoid collapse only by finding delicate equilibrium

states, such as that of the Wigner crystal, which become unstable at high density.

Thus, it would be extremely difficult to build up the ordered assemblages of matter

that are needed to make intelligent life.

Are these principles satisfying? Ultimately, this question goes beyond physics.

It is possible that a Creator envisioned an ordered Universe and included the

ingredients necessary to bring it about. Linde has argued for another point of

view, that the universe contains as small domains regions in which the laws of

physics are realized in all possible ways.
[4]

Then we inhabit the domain in which

we can live.

However, both of these explanatory principles seem to me much less com-

pelling that a constructive principle which explains the ingredients of Nature as

consequences of a grand pattern of symmetry. The constructive argument for the

existence of particles with spin 1 is by now familiar to all particle physicists: If the

equations of the universe possess a local gauge symmetry, then to each generator

Qa of the gauge group, there must correspond a vector field Aaµ. The quantization

of this field produces spin 1 particles. Unfortunately, there is no equally simple

and compelling argument for spin 1
2 .

How close can we come to a constructive argument for spin 1
2? Can we find a

unified explanation for particles of spin 1
2 , spin 1, and perhaps higher spins? That

is the question I will explore in these lectures. First, of all, I will build up the
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basic formalism of spin. In Section 2, I will review the general principles which

govern particles and fields with spin; then I will apply these principles successively,

in Section 3, to spin 1
2 , in Section 4, to spin 1, and in Section 5, to spin 3

2 and

higher. With this foundation, I will turn in Sections 6–8 to the question of the

origin of spin 1
2 , reviewing three proposals of increasing sophistication.

2. The Poincaré Group

Any formal discussion of spin must start from the representations of the Poin-

caré group, the fundamental spacetime symmetry group of translations and Lorentz

transformations. Any object that lives in Minkowski space must belong to some

representation of the Poincaré group. By constructing the simplest representations

of the Poincaré group, we will find that intrinsic spin appears in a natural way.

One subtlety of this discussion will be that particles and fields transform in

different representations of the Poincaré group. In elementary discussions of quan-

tum field theory, one is taught that there is a direct correspondence between the

particle and the field. For fields with spin, we will see that this correspondence is

not so simple. In fact, the difficulty in finding the correspondence between particles

and fields for fields of high spin will turn out to be an essential one which gives a

crucial restriction on what fields can appear in Nature.

2.1. The Rotation Group

The generators of the Poincaré group are three sets of vectors, the generators

of rotations, boosts, and translations. We will call these

J i , Ki , P i , (2.1)

respectively. As a first step toward finding the representations of this group, we

can start with a small, familiar piece, the group of rotations.
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The generators of rotations obey the commutation relations

[
J i, J j

]
= iεijkJk. (2.2)

The representations of these commutation relations are familiar from any book on

nonrelativistic quantum mechanics: They are the multiplets of spin j, the states∣∣j, j3
〉
, with j = 0, 1

2 , . . . and j3 = −j, . . . , j.

The simplest nontrivial representations are those of with j = 1
2 and j = 1. For

j = 1
2 , we represent

J i =
1

2
σi , (2.3)

with σi a 2×2 Pauli sigma matrix. These generators, and the 2×2 rotation matrices

built from them, act on 2-component spinors ξα, with α = +,− corresponding to

j3 = +1
2 ,−

1
2 .

For j = 1, the representation consists of 3-dimensional vectors vi, and so the

J i must be represented by 3× 3 matrices. For example

J3 = −i

 0 1 0

−1 0 0

0 0 0

 . (2.4)

There is another way to describe this matrix action, as follows: Consider a system

with two 2-component spinors. The state of this system is described by a tensor

carrying two spinor indices, Tαβ. Any such tensor can be divided into its sym-

metric and its antisymmetric part. The most general 2 × 2 antisymmetric tensor

is proportional to εαβ; this object is invariant to spinor rotations. The remaining

symmetric 2 × 2 tensor has 3 independent components and transforms, in fact,

precisely as the 3-dimensional j = 1 representation of angular momentum. This

decomposition of a 2 × 2 matrix of spinors into an invariant (j = 0) and a j = 1
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multiplet is just the familiar angular momentum decomposition

1

2
× 1

2
= 0 + 1 ; (2.5)

you might recall that the j = 0 is the antisymmetric combination and the j = 1 is

the symmetric combination of two spin 1
2 systems.

This construction generalizes to any j. The multiplet of spin j can always be

represented as a totally symmetric tensor with 2j two-component spinor indices:

Ξ{αβ···δ}. (2.6)

It is easy to check that this object has 2j + 1 components, and that its highest

values of j3, given by α = β = · · · = δ = +, is j3 = j. You can view (2.6) as what

remains when the lower-spin components of a general tensor are projected out by

contracting indices with the invariant εαβ.

Now that we have a general picture of the representations of the rotation group,

we can find the representations appropriate to particles and to fields. Particles

are particular states of the Hilbert space with localized excitation; these can be

classified by their values of j and j3: ∣∣j, j3
〉
. (2.7)

Fields are operators which are functions of the space-time position xµ. A general

field can be written as a member of a multiplet of fields

Φ{αβγ}(x) , (2.8)

in which, one must remember, a rotation acts both on the spinor indices and on

the spatial position. Usually, a field with explicit indices corresponding to spin j

will create a particle of intrinsic spin j. However, this correspondence is not at

all obvious, since the field (2.8) will create eigenstates of the Hamiltonian with

all (half-integer) values of angular momentum. To understand the correspondence

between particles and fields, we must probe more deeply.
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2.2. The Lorentz Group

The next step in finding to representations of the Poincaré group is to add the

generators of boosts. This gives the commutation relations of the Lorentz group:

[
J i, J j

]
= iεijkJk[

J i, Kj
]

= iεijkKk[
Ki, Kj

]
= −iεijkJk.

(2.9)

The appearance of Jk in the last line tells us that the composition of boosts pro-

duces a rotation; this effect is known as the Wigner rotation. Indeed, essentially

all of the representation theory from here on was first formulated by Wigner.
[5]

The minus sign in the last line of (2.9) tells us that the rotations generated by J i

and Ki are not four-dimensional rotations covering a compact space but rather are

transformations which span noncompact spaces—the hyperboloids of Minkowski

geometry.

There is a simple trick for finding the representations of the commutation

relations (2.9). Let

J j± =
1

2

(
J j ± iKj

)
. (2.10)

Then the generators J j+ and J j− commute with one another and obey the commu-

tation relations

[
J i±, J

j
±
]

= iεijkJk± (2.11)

among themselves. These latter commutation relations are identical to the com-

mutation relations of angular momentum. Thus, we can find representations of

the original Lorentz group relations (2.9) by choosing a representation for J j+ of

definite angular momentum j+, choosing a representation for J j− of definite angular
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momentum j−, and then recombining these into J j and Kj by inverting (2.10):

J j = J j+ + J j− , Kj = −i
(
J j+ + J j−

)
. (2.12)

We denote this representation as (j+, j−); it is a representation of (2.9) of dimen-

sion (2j+ + 1) × (2j− + 1). We can write the object which transforms in this

representation as a tensor

φ{α̇β̇···γ̇}{ζη···θ} . (2.13)

In general, I will place a dot over an index acted on by the generators J j+.

Notice the factor of i in the reconstruction of Kj in (2.12). This means that

Kj will not be Hermitian, and so the representation we have constructed will not

be unitary. This is the unfortunate but inevitable result of attempting to find a

finite-dimensional unitary representation of a noncompact group action. Under

Hermitian conjugation, (J j+)† = J j−; thus, the representation (j+, j−) is complex,

with

(j+, j−)∗ = (j−, j+) . (2.14)

2.3. Fields under the Poincaré Group

The remaining generators of the Poincaré group, the translation generators

P i, commute with J i and Ki and with each other, so it is easy to take them

into account. We can now write general representations of the Poincaré group on

multiplets of fields. To construct these, we set up field with the spinor indices

corresponding to a representation (j+, j−) of the Lorentz group. We then make

the field a function of xµ, allowing rotations, boosts, and translations to have their

standard action on this spacetime coordinate.

Here are some examples of this construction. In each case, I would like to

indicate in particular the action of a boost in the 3̂ direction. To parametrize
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boosts, I will use the rapidity y, defined by

ey = γ(1 + β) =

√
1 + β

1− β . (2.15)

With this notation, a boost is represented in general as

exp
[
i~y · ~K

]
(2.16)

in particular, in successive boosts along the same axis, the rapidities add.

The simplest representations of the Lorentz group are those with one spinor

index: (1
2 , 0) and (0, 1

2). From the (1
2 , 0) representation, we can built a field ψα̇(x).

Under a rotation about the 3̂ axis, this field transforms as

ψ → eiθσ
3/2ψ , (2.17)

that is, as a spin 1
2 object. Under a boost, it transforms as

ψ → eyσ
3/2ψ ; (2.18)

this transformation increases the field amplitude if the spin is parallel to 3̂. A field

in the (0, 1
2) representation, ψα(x), has the same transformation under rotations,

but the opposite transformation under boosts.

ψ → e−yσ
3/2ψ . (2.19)

The next example is a field in the (1
2 ,

1
2 ) representation, Vαα̇(x). This field

transforms under rotations as 1
2 ×

1
2 = spin 0 + spin 1. Under boosts in the 3̂

direction, the various components of Vαα̇ transform as

(V++̇, V−−̇, V−+̇, V+−̇)→ (V++̇, V−−̇, e
yV−+̇, e

−yV+−̇) . (2.20)

All of these properties correspond to those of a field with a 4-vector index V µ.

Such a field transforms under rotations as a multiplet (V 0, ~V )—spin 0 plus spin
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1—and the combinations of components

(V 1 + iV 2, V 1 − iV 2, V 0 + V 3, V 0 − V 3) (2.21)

transform under boosts according to (2.20).

The last simple representation we consider is that of a field belonging to the

(1, 0) representation: Φ{α̇β̇}(x). This field is complex, with its complex conjugate

belonging to the (0, 1) representation. The two pieces together give a structure

with 6 real degrees of freedom. The two fields transform under rotations as spin 1.

Under boosts the three components of Φ transform as

(Φ+̇+̇,Φ+̇−̇,Φ−̇−̇)→ (eyΦ+̇+̇,Φ+̇−̇, e
−yΦ−̇−̇) (2.22)

All of these properties accord with the identification of Φ as the combination of

electromagnetic fields

Ei = Ei + iBi . (2.23)

The field components

(E1 + iE2, E3, E1 − iE2) (2.24)

indeed transform as (2.22). The conjugate combination of fields E i = Ei − iBi

belongs to the (0, 1) Lorentz representation.

The last two examples presented familiar vector and tensor fields in a rather

unfamiliar notation. To connect the formulae given here to more familiar ones, we

should recall Dirac’s famous trick for finding representations of the commutation

relations of the Lorentz group. Dirac suggested that one find matrices which satisfy

the simpler algebra {
γµ, γν

}
= 2gµν (2.25)

and form the combinations

Σµν =
i

4

[
γµ, γν

]
. (2.26)
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Then the components

J i =
1

2
εijkΣjk , Ki = Σoi (2.27)

satisfy (2.9). In 4-dimensional spacetime, the simplest representations of (2.25)

are 4× 4 matrices. Dirac’s trick gives a representation of the Poincaré group as a

4-component field; this is the standard Dirac spinor Ψ.

A convenient explicit set of 4× 4 matrices satisfying Dirac’s relation (2.25) is

γµ =

(
0 σµ

σµ∗ 0

)
, (2.28)

with the 2× 2 components

σµ = (1, ~σ) , σµ = (1,−~σ) . (2.29)

In this basis, the combinations (2.10) are given by

J i+ =

(
0

σi/2

)
, J i− =

(
σi/2

0

)
. (2.30)

Thus, the Dirac spinor Ψ is revealed to be a pair of 2-component fields which

transform as a (0, 1
2) and a (1

2 , 0) under the Lorentz group:

Ψ =

(
ψα

ψα̇

)
. (2.31)

With this notation, the components of γµ carry the indices σµαα̇. It is quite

appropriate to think of these constant matrices as the Clebsch-Gordon coefficients

which link the (0, 1
2), (1

2 , 0), and (1
2 ,

1
2) or 4-vector representations. The two sets

of σµ are not distinct; they are related by a similarity transformation:

σµ = σ2(σµ)Tσ2 (2.32)

The factor σ2 reflects the complex conjugation relation of the (0, 1
2) and (1

2 , 0)

representations. In order to build a field from ψα which transforms exactly like a

12



(1
2 , 0), one must change the basis for the conjugate of ψα according to

ψ̃ȧ = (ψ†σ2)α̇ . (2.33)

Using the invariant σµ, we can identify the fields Vαα̇ and Φ{α̇β̇} about with

fields carrying more familiar combinations of indices. For the vector field

Vαα̇ = σµαα̇Vµ . (2.34)

The electromagnetic field strength is usually written as an antisymmetric tensor

Fµν = (∂µAν − ∂νAµ). Then we can write

Φα̇β̇ = σµαα̇σ
ν
ββ̇
εαβFµν . (2.35)

Notice that the tensor Φ is indeed required to be symmetric as a consequence of

the antisymmetry of the other elements in (2.35).

2.4. Particles under the Poincaré Group

To describe the transformations of particles under the Poincaré group, we use

a somewhat different language. While fields are operators which carry indices,

particles are states in the Hilbert space of the quantum field theory. The transfor-

mation of a field need not be unitary, but transformations of states in the Hilbert

space must be. It is thus useful to represent the various boosts and rotations of a

given particle by the actions of these abstract unitary transformations.

If the particle has mass, it is most convenient to begin from its rest frame. In

this frame, a particle of spin s forms a multiplet of (2s+ 1) states∣∣~p = 0; s s3
〉

(2.36)

which transform into one another under rotations. The boosts of these states can

be defined as ∣∣~p; s s3
〉

= Λ(~p)
∣∣∣~0; s s3

〉
, (2.37)

where Λ(~p) is the unitary transformation which implements the boost.
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Since boosts and rotations do not commute, we profit from being very careful

in defining the order of the boosts and rotations that lead to a given states. For

relativistic particles, it is often most convenient to quantize the spin along the

direction of motion. In this system, states are labeled by their helicity, their spin

projection along the direction of motion. If p̂ is a unit vector parallel to ~p, the

helicity is

λ = ~s · p̂ . (2.38)

The wonderful properties of this representation are explained in a classic paper of

Jacob and Wick.
[6]

To write a state explicitly in the helicity representation, start

from a specific spin state in the rest frame, boost from a rest parallel to the 3̂

axis, and then rotate to bring the momentum ~p into its correct orientation. If the

orientation of ~p is given by polar and azimuthal angles θ and φ, the state of helicity

λ is defined from the rest frame state by

|p, θ, φ;λ〉 = e−iφJ
3

e−iθJ
2

eiφJ
3

Λ(p3̂)
∣∣∣~0; s s3 = λ

〉
. (2.39)

Notice that the helicity λ appears only in the rest frame state. Helicity is invariant

under spatial rotations and under boosts parallel to the direction of motion.

The multiplet of states of the form (2.39) form a unitary representation of

Poincaré group. This representation is infinite-dimensional. As we have noted,

that is a necessary property if we insist that the group action is unitary. But this

means that there is no automatic relations between the transformation properties

of particles and fields.

The simplest way to make a correspondence between the particle and field

transformations is to connect the field with the particle state that it creates or

destroys. For low spin, this is straightforward. The free scalar field φ(x) creates and

destroys scalar particles. The Fourier transform φ̃(p) precisely destroys particles

with momentum p. For spin-1
2 , there is a similar relation: the free Dirac field
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(ψα(x), ψα̇(x)) destroys spin-1
2 particles and creates their antiparticles according

to relations

〈0|ψα(x) |p, λ〉 = uλα(p)e−ip·x , (2.40)

where the right-hand side is a solution to the free Dirac equation. Note that in

this case half of the components correspond to particles destroyed, while the other

half correspond to antiparticles created.

However, beginning with spin 1, problems arise in this identification. A free

vector field V µ(x) creates a particle polarized in the direction µ. This is confusing

if µ = 0, since a vector particle has only three polarization states, corresponding in

the rest frame to the three spatial directions. If we had a fourth polarization state

of a vector particle, its inner product with the other states would need to conform

to the requirements of relativistic invariance, and we would find

〈
p, µ

∣∣ p′, ν〉 = −gµνδ(p− p′) . (2.41)

This is a negative inner product—negative probability—for µ = ν = 0. This

mismatch persists for the spin-3
2 field ψµα, and gets worse for fields with multiple

4-vector indices.

2.5. Massless Particles under the Poincaré Group

The mismatch between particle and field degrees of freedom, which is already

a problem for massive particles, becomes even worse for massless particles. To

understand the new complication, we should think a bit more about the invariances

of the helicity.

For a massive particle, helicity is not invariant to all operations of the Poincaré

group. It is easy to see that the massive particle can be boosted to rest, and

then boosted into any other direction, allowing an arbitrary change in its helicity

(Fig. 1). However, this pathway is not available for a massless particle, which
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can never be boosted to rest. In fact, for a massless particle, the helicity is a

Poincaré invariant. This means that massless particles live in extremely small

representations of the Poincaré group. A typical one is shown in Fig. 2. It consists

of a particle in a state of definite helicity λ, which may be boosted to an arbitrary

lightlike momentum, and its conjugate under CPT , which is an antiparticle of

helicity −λ.

Massless particles are created and destroyed by fields which obey massless wave

equations. Thus, one might ask, which component of the field creates the particle?

To answer this question rigorously, one must perform a careful analysis of the field

equation. Here, I will give a partial answer to the question using a shortcut which

involves dimensional analysis. To begin, recall that the matrix element through

which a field destroys a particle is dimensionless in the case of an integer-spin field

and proportional to |p|1/2 in the case of a half-integer spin field:

〈0|Φ(x) |p, λ〉 =

{
ε ∼ 1

u(p) ∼ |p|1/2

}
e−ip·x . (2.42)

Assume that p is parallel to the 3̂ axis. We now write the state |p, λ〉 as the boost

Λ = eiyK
3

of a state at lower momentum p′. Since the vacuum is boost invariant,

we can rearrange the matrix element as follows:

〈0|Φ(x) |p, λ〉 = 〈0|Φ(x)Λ
∣∣p′, λ〉

= 〈0|Λ−1Φ(x)Λ
∣∣p′, λ〉 . (2.43)

The dependence of the matrix element on p is now contained in the transformation

law of the operator, and we can work this out using the formulae of Section 2.3.

Consider first a spinor field with an undotted index. From eq. (2.18), we can

read the transformation law

Λ−1ψαΛ =
(
e−yσ

3/2
)
αβ
ψβ. (2.44)

This expression is proportional to |p|−1/2 for α = +, and to |p|1/2 for α = −. Only

the second relation agrees with dimensional analysis. If the particle were massive,
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the amplitude for the α = + component to destroy a fermion could consistently

have the form |m2/p|1/2 at large p; however, for a massless particle, this form

is not available. We conclude that ψα destroys only left-handed massless spin-1
2

particles. By a similar argument, we would find that this field can also create their

right-handed antiparticles. Since ψα̇ has just the opposite transformation property

under boost, we would find that a fermion field with a dotted index is associated

with right-handed massless fermions and left-handed antifermions.

A similar argument can be made for the matrix element for a vector field Aαα̇

to destroy a vector particle. Applying (2.43) and the transformation law given in

(2.20), we find

〈0|Aαα̇(x) |p, λ〉 =


ey ∼ p αα̇ = −+̇

1 αα̇ = ++̇,−−̇
e−y ∼ p−1 αα̇ = +−̇

. (2.45)

Only the middle relation is consistent with dimensional analysis. Thus, Aαα̇ de-

stroys, and creates, states with helicity λ = 1 and −1, but not λ = 0.

For higher-spin fields, this dimensional analysis argument allows more possibil-

ities, and one must work out the explicit consequences of the equations of motion

to exclude some of these. The general conclusion is that only the field components

which create maximal helicity have one-particle matrix elements. For the spin-2

field, for example, the field components which create massless particles are

g+++̇+̇ , g−−−̇−̇ . (2.46)

These create and destroy particles of helicity ±2.

Up to this point, we have only addressed the question of which matrix elements

can and cannot be zero, on general principles. It is a separate question to write a

set of equations of motion which lead to the correct one-particle matrix elements

of fields, and which give these fields a consistent set of interactions. To study that

question we will consider a series of specific examples, beginning with spin 1
2 and

working upward.
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3. Spin 1
2

Systems with spin 1
2 provide the simplest examples in which there is a nontrivial

relationship between the quantum fields and the particles they create and destroy.

Many of the complications we will find with spin 1 and higher are absent here,

but nevertheless, the equations of motion of spin 1
2 fields have many interesting

features which are dictated by Lorentz invariance. In addition, the most important

particles of the standard model—the quarks and leptons—have spin 1
2 , and many

of the fundamental questions we have about these particles are posed most clearly

in a language which appreciates the constraints given by space-time symmetries.

3.1. Spin
1
2 Lagrangians

The easiest way to write a set of Lorentz-covariant field equations is to de-

rive these equations from a Lorentz-invariant Lagrangian. It is easy to construct

such Lagrangians: If we begin with fields which carry dotted and undotted spinor

indices, Lorentz-invariance is guaranteed if we contract all indices of each type.

As an example, we can construct the Lagrangian for a spin 1
2 field ψα. This

Lagrangian should involve the field ψα, is Hermitian conjugate ψ†α̇, and at least

one spatial derivative ∂µ. By using the invariant σµα̇α to convert the vector index

to spinors, we can contract all the indices by writing

L = ψ†α̇ iσ
µα̇α∂µψα . (3.1)

This is the simplest possible spin 1
2 Lagrangian, involving a 2-component, not a

4-component, field. In a moment, I will show how to reconstruct the familar Dirac

Lagrangian from this starting point.

The field equation following from the Lagrangian (3.1) is

iσµα̇α∂µψα = 0 . (3.2)

This is the Weyl equation. Multiplying on the left by iσναα̇∂ν and using σνσµ = gµν ,
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this equation becomes

∂2ψα = 0 . (3.3)

Thus, the Weyl equation is an equation for massless particles. However, not every

massless wave function satisfies (3.2). If we look for solutions to (3.2) of the form

of a plane wave,

ψ = u(p)e−ip·x , (3.4)

where u(p) is a 2-component constant vector, this vector satisfies

σ · pu(p) = (p0 + ~σ · ~p)u(p) = 0 . (3.5)

This equation implies that u(p) is proportional to a 2-component spinor which is

left-handed with respect to the direction of motion. If ξα is a spinor normalized to

||ξ|| = 1, then

ψα =
√

2E ξαe
−ip·x . (3.6)

Along with the Lagrangian (3.1), there is another equally simple Lagrangian

involving the spin 1
2 field with a dotted index, ψ̃α̇:

L = ψ̃†α iσ
µαα̇∂µψ̃α̇ . (3.7)

This Langrangian implies the field equations equation similar to (3.2) with σµ

replaced by σµ, leading to solutions which are right-handed with respect to the di-

rection of motion. However, this Lagrangian is not an alternative to (3.1); instead,

it is identical. We may replace ψ̃ with ψ† according to (2.33):

ψ̃ = (ψ†σ2)T ; ψ̃† = (σ2ψ)T . (3.8)

Integrate by parts, and cancel the minus sign from this manipulation against the

one obtained by interchanging the order of the fermion fields. Finally, use the

identity (2.32). We find that (3.7) is transformed into precisely into (3.1).
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Both of these forms of the Weyl Lagrangian may be compared with the stan-

dard Dirac Lagrangian which describes electrons in quantum electrodynamics:

L = Ψiγµ(∂µ + ieAµ)Ψ−mΨΨ . (3.9)

Replace the four-component Dirac spinor by two two-component spinors with un-

dotted indices:

Ψ =

(
ψα

ψα̇

)
=

(
ψ1α

(ψ†2σ
2)α̇

)
. (3.10)

The Dirac Lagrangian is rewritten as follows:

L = ψ†1α̇iσ
µα̇α(∂µ + ieAµ)ψ1α + ψ†2α̇iσ

µα̇α(∂µ − ieAµ)ψ2α

− imεαβψ1αψ2β + imεα̇β̇ψ†1αψ
†
2β .

(3.11)

If we ignore the terms proportional to the electron mass, the Lagrangian splits

into two pieces, one for the left-handed electron and its right-handed antiparticle,

and one for the left-handed positron and its antiparticle, the right-handed electron.

Notice that the sign of the charge has changed in the second term precisely in accord

with this interpretation. The mass term is revealed in the second line of (3.11) to

be a Lorentz-invariant mixing of the left-handed and right-handed components.

The structure of eq. (3.11) is very simple; thus, it is straightforward to gen-

eralize it. In fact, we can immediately write down the most general Lagrangian

for fermions interacting with vector bosons. For reasons I will discuss in the next

section, vector bosons are necessarily gauge bosons and are associated with the gen-

erators of a symmetry group. If we accept this for the moment, it makes sense to

represent the most general collection of fermions as a collection of two-component

fields ψaα on which the gauge symmetries act. Write the infinitesimal form of this

transformation abstractly as:

ψaα → (1 + iθATA)abψbα . (3.12)

The gauge symmetry implies that gauge fields couple to fermions through the
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covariant derivative

Dµψaα = (∂µδab − igAAAµTAab)ψbα . (3.13)

Then the most general Lagrangian for massless fermions has the form

L = ψ†aiσ ·Dψa . (3.14)

A mass term for these fermions has the general form

∆L = −iMabεαβψaαψbβ + h.c. (3.15)

Notice that the product of two fermion fields is doubly antisymmetric, since it

pick up a minus sign from interchanging the fermion operators and another from

interchanging the indices α and β. Thus, the mass matrix Mab is symmetric.

The presentation (3.14), (3.15) of the fermion Lagrangian brings us immedi-

ately to the most fundamental questions about elementary fermions. To write the

kinetic energy term (3.14), we need only the most basic information about these

fermions: how many are there, and how are they organized into representations of

the gauge symmetry group? To write (3.15), we need to know how these fermions

link up to acquire mass. Note that these linking terms often imply breaking of

the underlying gauge invariance. For example, in the electron mass term in (3.11),

the left-handed electron field ψ1 is a member of weak isospin doublet, while the

left-handed positron field ψ2 is an isospin singlet. This brings us directly to the

mystery of what agent breaks this symmetry in order to allow the mixing of these

components.
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3.2. Spin Decoupling at Low and High Energy

The Weyl or Dirac Lagrangian dictates a certain relation between the spin of

the fermion and its orbital motion. To understand this relation, it is useful to work

through some examples of fermion motion and its influence on the fermion spin.

The limit of high energy is especially simple. In this limit, the mass terms in the

Lagrangian become irrelevant, and the Lagrangian decouples into terms involving

fermion components of definite helicity. Notice that the coupling to vector fields

separates in exactly the same way and also conserves helicity in this limit.

Another especially simple limit is that of low energy, in which the fermion’s

momentum is small compared to its mass. In this limit, the effects of relativity

become unimportant and a fermion looks to a good approximation like a scalar

particle. The spin decouples up to effects of order 1/m. To see this explicitly, we

manipulate the Dirac equation as follows: Begin from the equation of motion of

the Dirac Lagrangian (3.9), in the form

(iγ ·D −m)Ψ = 0 , where Dµ = ∂µ − igAµ . (3.16)

Multiply on the left by (−iγ ·D −m); this gives

(1

2

{
γµ, γν

}
DµDν +

1

2

[
γµ, γν

]
DµDν +m2

)
Ψ = 0 . (3.17)

Now apply (2.25) and (2.26), and simplify the second term using the antisymmetric

relation [
Dµ, Dν

]
= −igFµν . (3.18)

This converts (3.17) into

(
D2 − gΣµνFµν +m2

)
Ψ = 0 . (3.19)

This last equation is similar to the Klein-Gordon equation, and it is easy to infer

22



from it the Schrödinger equation which gives its nonrelativistic limit. The nonrel-

ativistic Hamiltonian is

H = m− 1

2m
( ~D)2 + gA0 − g

m
~σ · ~B . (3.20)

The first term which involves the spin is also suppressed by an explicit factor of

1/m.

To describe how the Dirac equation interpolates between these limits, we will

consider a specific practical example, the quantum electrodynamics cross section

for the reaction e+e− → µ+µ−. The kinematics of the process are shown in Fig.

3. To be specific, we will consider the annihilation of a left-handed electron with a

right-handed positron, assigning the collision axis in the direction of the electron

motion to be the 3̂ axis. The electron and positron produce a virtual photon with

spin 1 and J3 = −1 which eventually reforms into a muon pair. The differential

cross section for this process is easily worked out from Feynman diagrams. I will

write the result of this calculation in a suggestive notation.

In the low energy limit, the muons are produced in an S-wave. Thus, their mo-

menta are distributed isotropically. The angular momentum of the virtual photon

must be carried by the muon spins, and these are approximately decoupled from

the orbital motion. Then the final muons both have spin S3 = −1
2 . In the basis of

s3, we can write the scattering amplitude as

M(e−Le
+
R → µ−µ+) = −2e2

(
0 0

0 1

)
, (3.21)

where the rows of the matrix denote the spin components S3 = +1
2 and S3 = −1

2

for the µ− and the columns denote the spin components of the µ+.

To discuss the transition to high energy, it is convenient to rewrite this scat-

tering amplitude in a basis of helicity states. These are related to the states of
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definite S3 by a rotation:

∣∣∣∣µ−, S3 = −1

2

〉
= cos

θ

2

∣∣∣∣µ−, λ = −1

2

〉
− sin

θ

2

∣∣∣∣µ−, λ = +
1

2

〉
∣∣∣∣µ+, S3 = −1

2

〉
= − cos

θ

2

∣∣∣∣µ+, λ = +
1

2

〉
− sin

θ

2

∣∣∣∣µ−, λ = −1

2

〉
.

(3.22)

In the basis of helicity states, the matrix (3.21) becomes

M(e−Le
+
R → µ−µ+) = e2

(
− sin θ (1− cos θ)

(1 + cos θ) sin θ

)
. (3.23)

The matrix elements are proportional to the elements of the spin-1 rotation ma-

trices d1
λλ′ (θ), as required by the general results of Jacob and Wick.

[6]

The expression (3.23) can be directly compared to the high energy limit of the

scattering amplitude for e+e− → µ+µ−. In that limit, we find

M(e−Le
+
R → µ−µ+) = e2

(
O(mµ/E) (1− cos θ)

(1 + cos θ) O(mµ/E)

)
. (3.24)

The elements which conserve helicity have the same form as in (3.23), while the

elements which violate helicity conservation go to zero as the muons become rela-

tivistic. This matrix element leads to the unpolarized cross section

dσ

d cos θ
=
πα

2s

[
(1 + cos θ)2 + (1− cos θ)2

]
(3.25)

which is familiar from the phenomenology of e+e− annihilation at energies well

below the Z0. More generally, the appearance of (1+cos θ)2 and (1−cos θ)2 angular

distributions in e+e− annihilation display the constraint of helicity conservation

at high energy and correlate angular distributions to the couplings of the various

helicity states.
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4. Spin 1

After this taste of the dynamics of spin 1
2 fields, we move on to a discussion of

spin 1. Spin 1 is the first case in which the mismatch between field components and

physical particles becomes a serious problem. In this section, I would like to explain

how this problem is resolved for massless and for massive fields. The explanation

has a surprising number of subtleties, but it also reveals some interesting physical

consequences.

4.1. Quantum Electrodynamics

The most familiar spin 1 particle is the photon. Since the photon is massless,

one might think that it would be especially difficult to treat in quantum field

theory. And yet, all of the problems of principle of building a quantum theory of

photons are automatically answered in quantum electrodynamics. Let us review

how this happens.

The Lagrangian of free photons is given by the expressions

L = −1

4
(Fµν)

2 = +
1

2
Aµ
(
∂2gµν − ∂µ∂ν

)
Aν , (4.1)

which leads directly to Maxwell’s equations. It is a standard result of undergrad-

uate physics that the propagating solutions of Maxwell’s equations satisfy

~∇ · ~E = ~∇ · ~B = 0 . (4.2)

A typical solution of Maxwell’s equations, propagating in the 3̂ direction, is given

by taking the real and imaginary parts of the relation

~E + i ~B = (1̂± i2̂)e−ip·x (4.3)

with ~p ‖ 3̂, p0 = |~p|. These are plane waves, propagating at the speed of light, with

helicity λ = ±1. In agreement with the dimensional analysis argument in (2.45),

there is no propagating plane wave solution to Maxwell’s equation with helicity

λ = 0.
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In quantum electrodynamics, we represent the photon field by a propagator

〈Aµ(k)Aν(−k)〉 =
−igµν
k2

(4.4)

which apparently contains all field components. This looks paradoxical, for two

reasons. First, as we have just discussed, the helicity zero components of the

photon are not associated with propagating waves. Second, the expectation value

in (4.4) seems to indicate an incorrect quantum mechanics. From (4.4), one can

straightforwardly derive the identity∑
ε

〈0|Aµ(x) |k, ε〉 〈k, ε|Aν |0〉 = −gµν (4.5)

for the matrix element of the vector field between one-particle states and the vac-

uum. If the norms of states in Hilbert space are positive, this quantity should be

positive, but the µ = ν = 0 element of (4.5) is negative. We encountered this

pathology earlier, in eq. (2.41), and avoided it there only by forbidding bosons

with timelike polarization. However, when we work with (4.4), we must necessar-

ily include both bosons with helicity zero and those with timelike polarization in

our formalism.

Fortunately, quantum electrodynamics magically resolves both of these prob-

lems. The crucial element required is the fact that the photon field couples to a

conserved current, the current jµ of electric charge. It is important to note that

Maxwell’s equations would be inconsistent if the charge current were not conserved:

In relativistic form, Maxwell’s equations read

∂µF
µν = ejν . (4.6)

Thus, simply by applying ∂ν to this equation and using the fact that F µν is anti-

symmetric, we find

∂νj
ν = 0 . (4.7)

Alternatively, one can argue that a local gauge symmetry can only be built in a

theory with a perfect global symmetry.
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The conservation of the current jµ constrains the states that can be produced

in quantum electrodynamics processes. To see this, consider the matrix element

for single photon emission, shown in Fig. 4, and analyze this matrix element for

a photon emitted parallel to the 3̂ axis. If we pull the photon out of the vertex

function, as shown in the figure, we see that it couples to the current jµ:

iM = iMµ(q)ε∗µ(q) = −ie 〈jµ(q)〉 ε∗µ(q) . (4.8)

Current conservation imposes the condition

qµ 〈jµ(q)〉 = 0 . (4.9)

In this situation, qµ = (q, 0, 0, q), so this relation implies M0 = M3. If we take

account of the negative norm (4.5) of time-like polarized photon states, we find a

probability of photon emission proportional to the Lorentz-invariant combination

|M1|2 + |M2|2 + |M3|2 − |M0|2 . (4.10)

Only the first two terms of this expression correspond to physical propagating

photons. But we now see that the other two terms of this expression are irrelevant,

since they cancel precisely due to the constraint of gauge invariance.

It is amazing that the various unphysical aspects of the formalism work together

with one another to make this cancellation occur. The organizing principle is

gauge invariance. In this discussion, I have made a particular choice of gauge, the

Feynman gauge. With other choices, for example, the Coulomb gauge,
[7]

one can

work directly with a Hilbert space which contains only the physical photon degrees

of freedom, at the cost of manifest Lorentz invariance.

This same cancellation mechanism also holds in non-Abelian gauge theories

with massless gauge bosons. Again, it is organized by the requirement that the

current associated with the gauge symmetry be (covariantly) conserved. In the
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non-Abelian case, there are additional pairs of unphysical positive and negative

norm states—the Fad’deev-Popov ghosts—which enter the cancellation. The de-

tailed proof of this cancellation is rather technical; it has been set out clearly (for

theorists) by Taylor
[8]

and by Kugo and Ogima.
[9]

4.2. Massive Spin 1 Bosons

The questions that we discussed in the previous section become more intricate

when we consider massive spin 1 bosons. For massive particles, all (spacelike)

helicity states should be physical and correspond to propagating modes. However,

in a covariant formalism, the timelike component of the vector field Aµ still must

create states of negative norm. How can these conflicting demands be satisfied?

For simplicity, I will consider only the case of a single massive vector boson, without

the complications of non-Abelian couplings.

For this case of a single massive spin 1 boson, there are two solutions known

in the literature. The first is given by adding a mass term to the Lagrangian of

quantum electrodynamics, to produce the Stückelberg Lagrangian,

L = −1

4
(Fµν)

2 +
1

2
m2AµAµ . (4.11)

This Lagrangian has a very simple classical theory. The field equation is

∂µF
µν +m2Aν = 0 . (4.12)

Applying ∂ν to this equation, we find

m2∂νA
ν = 0 ; (4.13)

then the timelike component of Aµ vanishes. The remaining components of Aµ
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satisfy the massive field equation

(∂2 +m2)Aν = 0 . (4.14)

The propagating solutions to this equation have the form

Aµ = εµ(p)e−ip·x , (4.15)

with p2 = m2. Eq. (4.13) imposes the constraint p · ε(p) = 0. The solutions

satisfying this constraint correspond to three spacelike polarizations. In the quan-

tum theory, by an argument similar to that of (4.8), the timelike polarization is

not produced from a conserved current. Unfortunately, the most familiar massive

spin 1 bosons in Nature, the W and Z bosons, couple to currents such as the

weak isospin current which correspond to broken symmetries. In this case, the

Stückelberg strategy breaks down.

The alternative to this strategy is to construct massive spin 1 bosons from

massless gauge bosons by spontaneously breaking the gauge symmetry. This strat-

egy, which was discovered by Higgs, Kibble, Guralnik, Hagen, Brout, and Englert,

is now generally known as the Higgs mechanism. In its simplest formulation, one

would add to the Lagrangian of electrodynamics an electrically charged scalar field

ϕ.

L = −1

4
(Fµν)

2 +Dµϕ
†Dµϕ− V (|ϕ|2) , (4.16)

where the covariant derivative Dµ is given by Dµ = (∂µ − igAµ), as in eq. (3.13).

The function V is a potential energy for the field ϕ. If it becomes energetically

favorable for ϕ to obtain a vacuum expectation value

〈ϕ〉 =
1√
2
v , (4.17)

then the second term in (4.16)leads to

Dµϕ
†Dµϕ→

1

2
g2v2AµAµ , (4.18)

which is a mass term with m = gv. In this way, we recover the Stückelberg mass
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term, but in a theory with an underlying symmetry structure.

This structure will become crucial when we try to answer more detailed ques-

tions about the nature of this massive spin 1 field. Here are two: Set up the

kinematics of boson emission as in the discussion of eq. (4.8), with the boson

moving parallel to the 3̂ axis. In this massive case, A3 creates physical states, so it

is no longer obvious that the negative metric states created by A0 will be exactly

cancelled. How is this guaranteed? In addition, the new physical states created

by A3 have their own difficulties. If the massive boson is emitted at rest, the new

states have polarization vector εµ(q) = (0, 0, 0, 1). The boost of this vector to

momentum q is

εµlong(q) =
( q
m
, 0, 0,

E

m

)
, (4.19)

where E2 = q2 + m2. In the limit of high energy, the individual components of

this vector become extremely large, sufficiently so, as we will see below, to cause

scattering amplitudes to violate unitarity. What controls the growth of these new

amplitudes?

I will now argue that underlying local gauge invariance which is present in the

Higgs mechanism supplies the answers to both of these questions. To make the

connection, we need one further ingredient, which is, however, a consequence of

local gauge invariance. In any local field theory in which a continuous symmetry

is spontaneously broken, the theory must contain a massless particle, called a

Goldstone boson. As an example of this general principle, we might consider the

scalar field in (4.16). In the above discussion, we assumed that it is energetically

favorable for ϕ to acquire a vacuum expectation value (4.17). Since the theory is

symmetric under rotation of the phase of ϕ, this expectation value could equally

well be generated with any phase. But now consider a field configuration such that

〈ϕ(x)〉 = eiα(x) 1√
2
v . (4.20)

The phase variation shown here could at worst cost an energy proportional to

|~∇α| which vanishes in the long wavelength limit. Thus, this phase variation
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corresponds to a massless field, or, after quantization, a massless particle. In the

following discussion, I will denote this particle by

π =
√

2 Imϕ . (4.21)

Notice that in a gauge theory, (4.20) is a local gauge transformation, and thus the

field π can be transformed away. Nevertheless, we must retain it in our covariant-

gauge formalism.

An important property of a Goldstone boson is that it is created and destroyed

singly by the symmetry current. In the example of ϕ, the electromagnetic current

is

jµ = −i
(
ϕ†∂µϕ− ∂µϕ†ϕ

)
. (4.22)

Inserting (4.17) and (4.21) into (4.22) to determine the piece depending on one

quantum field, we find

jµ = v∂µπ + · · · (4.23)

Then the current can create and destroy single quanta of π. The standard form

for this relation is

〈0| jµ |π(p)〉 = −iFpµ ; (4.24)

using (4.23), we can identify F = v in this example. Though the symmetry associ-

ated with jµ is spontaneously broken, the current should still satisfy the equation

of motion ∂µjµ = 0. Applied to (4.24), this equation implies p2 = 0, which confirms

that the Goldstone boson should be massless.

The presence in the theory of a Goldstone boson allows us to understand how

the spin 1 particle can acquire mass compatible with current conservation. The

structure of the vector boson self-energy in the theory (4.16) is shown in Fig. 5.

This amplitude is actually an expectation value of two currents; thus, it should
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satisfy

qµ 〈jµ(q)jν(−q)〉 = 0 . (4.25)

The mass term in the Lagrangian, eq. (4.18), contributes the term

−igµνm2 , (4.26)

with m = gv, which does not by itself satisfy (4.25). However, because the current

jµ can create a single Goldstone boson, there is another contribution of the same

order, as shown in the figure. This new contribution uses the matrix element (4.24)

and contains a Goldstone boson propagator i/q2. The sum of these contributions

is

−igµνm2 + (−igF qµ)
i

q2
(igF qν)

= −im2
(
gµν − qµqν

q2

)
,

(4.27)

where m = gv = gF . This full expression satisfies (4.25). One may, in fact, turn

this argument around to show that the relation

m = gF (4.28)

follows from the formula (4.24), independently of the underlying Lagrangian.

Now we have all of the ingredients we need to analyze vector boson emission in

a theory with the Higgs mechanism. To begin, we should write the analogue of eq.

(4.10) for the theory with massive spin 1 bosons. Let εµTi be the polarization vectors

corresponding to transverse polarizations, let εµlong be the polarization vector (4.19)

corresponding to longitudinal polarization, and let εµt be a vector equal to (1, 0, 0, 0)

in the rest frame which corresponds to time-like polarization. Then the probability

of emitting a spin 1 boson is proportional to

|εT1 · M|2 + |εT2 · M|2 + |εlong · M|2 − |εt · M|2 + |Mπ| . (4.29)

The last term in the sum involvesMπ, the matrix element for producing a Gold-

stone boson. Among these five states, the first three are expected to be physical
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particles. The timelike vector boson is a state of negative norm and must therefore

be unphysical. The Goldstone boson is also expected to be unphysical, as explained

below eq. (4.20).

A relation between the latter two production amplitudes is given by the equa-

tion of current conservation. As in Fig. 4, we can analyze a vector boson emission

amplitude by pulling on the vector boson line and revealing the current to which

the boson attaches. In the case of a massive boson, the result of that manipulation

is shown in Fig. 6. The current can either couple directly into the emission process,

or it can couple to a single Goldstone boson which in turn joins onto the emission

diagram. Thus, we find

〈jµ(q)〉 =Mµ − igF qµ i
q2
Mπ . (4.30)

If the current must be conserved, we must find zero when we contract qµ with this

expression. This gives the relation

qµMµ + gFMπ = 0 . (4.31)

Since εµt = qµ/m, we find

|εt · M|2 = |Mπ|2 . (4.32)

Thus, also in the case of a massive vector boson, the underlying principles of gauge

symmetry and current conservation guide the cancellation of unphysical positive

and negative norm states.

This argument can be pushed a bit farther to develop an additional piece of

insight. Notice that the longitudinal polarization vector (4.19) satisfies

εµlong =
qµ

m
+O

(m
q

)
. (4.33)

I have already remarked that the individual components of εµlong can be extremely
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large. However, we now see that

εlong · M ' εt · M , (4.34)

which is in turn related by (4.32) to the amplitude for emission of a Goldstone

boson. Thus, we find the relation shown in Fig. 7, known as the Goldstone Boson

Equivalence Theorem.
[10,11]

This formula has the following physical interpretation:

Through the Higgs mechanism, the vector field becomes massive by eating the the

Goldstone boson. At high energy, the spontaneous symmetry breaking becomes

irrelevant, and the emission amplitudes for massive bosons show their origin as a

combination of transverse spin 1 and Goldstone boson emission amplitudes.

The argument for the Goldstone Boson Equivalence Theorem is given here only

at the simplest level. A more careful argument is needed when several vector bosons

are emitted and when loop corrections to the boson propagators are included.

However, the theorem remains true in these situations. Some recent analyses which

take account of these subtleties are given in refs. 12–14.

4.3. Examples from the Standard Model

If the discussion of the previous section was a bit abstract, the moral of this dis-

cussion has direct application to high energy processes in the standard electroweak

gauge theory. In this section, I will present two important examples.

The first of these is the theory of the top quark width. We now know that the

top quark is sufficiently heavy to decay to an on-shell W boson and a bottom quark.

For this two-body decay, one might roughly estimate the width as Γt ∼ (αw/4π)mt,

where αw = g2/4π = α/ sin2 θw. The width of the top quark eventually controls the

qualitative features of top decays, so it is important to understand its magnitude.

Surprisingly, this rough estimate turns out to be very naive; the true result for Γt

grows as m3
t . The explanation for this change comes from the Goldstone Boson

Equivalence Theorem.
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Before I explain the behavior of the top quark width, let us obtain the correct

result by a straightforward Feynman diagram calculation. In the standard model,

the top quark width is given to leading order by the diagram of Fig. 8(a). The

decay matrix element is

iM =
ig√

2
u(pb)γ

µ (1− γ5

2
u(pt) ε

∗
µ(q) , (4.35)

where q is the W momentum. From here on, ignore the b quark mass. Then the

square of the matrix element is

1

2

∑
spins

|M|2 =
g2

2

[
pµb p

ν
t + pνb p

µ
t − gµνpb · pt

]
ε∗µ(q)εν(q) . (4.36)

Now sum over the three physical W polarizations, excluding the timelike polariza-

tion: ∑
pol

ε∗µ(q)εν(q) = −
(
gµν −

qµqν

m2
W

)
. (4.37)

This gives

1

2

∑
spins

|M|2 =
g2

2

[
pb · pt + 2

q · pbq · pt
m2
W

]
. (4.38)

To simplify this expression, use the kinematic relations

2pb · pt = 2pb · q = m2
t −m2

W , 2pt · q = m2
t +m2

W . (4.39)

Notice that the second term in (4.38) is of order (m4
t/m

2
W ). Add phase space

factors to obtain the final result

Γt =
g2

64π

m3
t

m2
W

(
1− m2

W

m2
t

)2(
1 + 2

m2
W

m2
t

)
(4.40)

As promised, this result grows as m3
t .
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The result we have found is doubly surprising because the large result comes

from the qµqν terms in (4.37). In quantum electrodynamics, this term in the spin

sum always cancels out due to current conservation. But in weak interaction theory,

the current bγµ(1−γ5)t which mediates the top decay is not conserved; in fact, its

divergence is of order mt.

However, in the context of our discussion of the interplay of gauge symmetry

and Goldstone bosons, the result is easily understood. Though the quark charged

current is not conserved, one can add terms involving Goldstone bosons to form

the conserved gauge current of a spontaneously broken gauge theory. The analysis

of the previous section applies to this theory directly. Thus, the Goldstone Boson

Equivalence Theorem tells us that the leading behavior of the top quark width at

high energy should be given by the Goldstone boson emission diagram of Fig. 8(b).

I will now compute this diagram and verify the correspondence.

The matrix element for the emission of a Goldstone boson from a top quark,

as shown in Fig. 8(b), is

iM = −λtu(pb)
(1 + γ5

2
u(pt) . (4.41)

In this expression, λt is the coupling of the top quark to the Higgs boson. In the

standard model, both the top quark mass and the W boson mass arise from the

Higgs field vacuum expectation value v, according to the relations

mt =
λtv√

2
, mW =

gv

2
. (4.42)

Using these formulae to eliminate λt and v, we find

1

2

∑
spins

|M|2 = λ2
tpb · pt =

g2m2
t

2m2
W

· m
2
t

2
(4.43)

This leads to an expression for the top quark width

Γt =
g2

64π

m3
t

m2
W

(4.44)

which does indeed capture the leading behavior of (4.40).
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A more complex process which is strongly affected by the physics of massive

spin 1 particles is the reaction e+e− → W+W−. I will present a semiquantitative

discussion of this reaction; the full tree-level formulae can be found, for example,

in ref. 15.

The leading order diagrams contributing to e+e− → W+W− in the standard

electroweak model are shown in Fig. 9(a). To understand the conceptual issues

which this process addresses, let us make a naive estimate of the first of these

diagrams. Roughly, we expect the amplitude for W pair production by a virtual

photon to be given by the amplitude for production of charged scalars, times a

polarization inner product:

iMγ ∼ iM(e+e− → φ+φ−) · ε∗µ(q+)ε∗µ(q−) . (4.45)

However, for the case of longitudinally polarized W bosons, the polarization prod-

uct in (4.45) is very large. We can apply (4.33) to estimate

ε∗µ(q+)ε∗µ(q−) ' q+ · q−
m2
W

=
s

2m2
W

. (4.46)

This estimate of the matrix element of W pair production would imply

dσ

d cos θ
∼ πα

s
·
( s

2m2
W

)2
. (4.47)

But this result is unphysically large. The (1/s) behavior of the first factor in (4.47)

is actually the largest asymptotic behavior allowed by unitarity for a single partial

wave. Somehow, the strong energy dependence of (4.46) must be cancelled in the

full result for the cross section.

Our general analysis of massive vector bosons tells us that this cancellation

must occur, and that the matrix element for longitudinal W pair production must

eventually be reduced to that for Goldstone boson pair production. I will sketch

how this works in the amplitude for annihilation of polarized electrons,M(e−Le
+
R →

W+
longW

−
long).
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The first two diagrams in Fig. 9(a) have the same general form, in which the

two W polarization vectors dot into the Yang-Mills vertex function. Using the

approximation (4.33) for the longitudinal polarization vectors, one can simplify

this vertex and arrive at the following expression:

iMγ+Z = −ie2(q+ − q−)µv(p+)γµ
(1− γ5)

2
u(p−)

·
(1

s
+

1
2 − sin2 θw

sin2 θw

1

s−m2
Z

)
· s− 2m2

w

2m2
W

.

(4.48)

In this expression, the first term is the matrix element for scalar boson production,

the term in parentheses is the coherent sum of virtual photon and Z propagators,

and the final term is the result of contracting longitudinal polarization vectors with

the three-boson vertex. Though there is some cancellation between the photon and

Z contributions, the full result still shows the pathology described in the previous

paragraph.

The third diagram of Fig. 9(a) has a different kinematic structure. However,

when one contracts this diagram with the longitudinal polarization vectors, one

finds

iMν = −i e2

2 sin2 θw
v(p+)

γ · q+

mW

γ · (p− − q−)

(p− − q−)2

γ · q−
mW

(1− γ5)

2
u(p−) . (4.49)

Since p−u(p−) = 0, we can replace (γ · q−) by γ · (q−− p−); this factor cancels the

neutrino propagator. Then the expression (4.49) can be rearranged into

iMν = −ie2(q+ − q−)µv(p+)γµ
(1− γ5)

2
u(p−) ·

(
− 1

2 sin2 θw

1

2mW

)
(4.50)

Now add (4.48) and (4.50), take the high energy limit, and use the standard
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model relation m2
W = m2

Z cos2 θw. This gives

iM'−ie2(q+ − q−)µv(p+)γµ
(1− γ5)

2
u(p−)

·
( m2

Z

s−m2
Z

1
2 − sin2 θw

2m2
W sin2 θw

− 1

s−M2
Z

1

2 sin2 θw

)
' −ie2(q+ − q−)µv(p+)γµ

(1− γ5)

2
u(p−) · 1

s
·
(1− 2 sin2 θw − 2 cos2 θw

4 sin2 θw cos2 θw

)
' +ie2(q+ − q−)µv(p+)γµ

(1− γ5)

2
u(p−) · 1

s
·
( 1

4 sin2 θw
+

1

4 cos2 θw

)
.

(4.51)

This last answer is exactly the result of computing the diagrams of Fig. 9(b), in

which the gauge bosons of the standard weak interaction model create pairs of

Goldstone bosons. In the expression in parentheses in the last line, the first term,

with the coupling (e/ sin θw), is the contribution of SU(2) boson exchange, while

the second term, with the coupling (e/ cos θw), is the contribution of U(1) boson

exchange. The final answer not only respects unitarity but actually is smaller

than the amplitude for the pair production of transversely polarized W bosons.

The cancellations that lead to this point are organized by the Goldstone Boson

Equivalence Theorem and the underlying principle of exact local gauge invariance.

5. Higher Spin

We have now seen that the theory of spin 1 fields and their associated particles

is surprisingly complex. In particular, it requires a higher principle such as current

conservation to organize the states created by the field and to neatly cancel all

contributions except those from physical propagating modes. These cancellations

must occur even more strongly and more intricately in theories of spin greater

than 1. I will now explain how our earlier arguments generalize to these cases.

In this discussion, I will concentrate on theories of massless particles. As was
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demonstrated in the previous section, the corresponding massive theories are built

from the massless theories and are, if anything, more highly constrained.

In my general discussion of the connection between fields and particles, I

pointed out that, as the spin of a field increases, fewer and fewer of its components

create and destroy physical propagating states. In general, only the components

of maximal helicity are physical. Thus, from the 8 complex-valued components

of a spin 3
2 field, only two—ψ++̇+̇ and ψ−−̇−̇—create and destroy physical parti-

cles moving in the 3̂ direction. All other states which are created by the various

components of ψαȧβ̇ in some mathematical formalism must be made to cancel out.

This applies most strongly to the states of negative norm created by σ0αȧψαȧḃ.

The cancellation of these unphysical components occurs naturally, just as in

the spin 1 case, when the higher spin field couples to a conserved tensor. Thus,

we can make a consistent theory of a massless spin 3
2 field ψµα̇ in a theory which

contains a conserved spin 3
2 tensor current sµα̇, with the cancellations of unphysical

modes following from the pair of equations

∂µsµα̇ = 0 . (5.1)

Similarly, we can construct a consistent theory of a massless spin 2 field hµν by

coupling it to a conserved two-index tensor tµν. In Yang-Mills theory, the coupling

to the gauge field changes the current conservation equation ∂µjµ = 0 to a modified,

gauge-covariant equation Dµjµ = 0 which agrees with the standard equation to

leading order. Such a modification is also typical in theories of higher spin.

To construct a theory of higher spin fields, we must thus ask, what conserved

tensors of higher spin are available to be the sources of the new fields? One

candidate is obvious. The energy-momentum tensor of all particles and fields, Tµν,

is naturally conserved and can be considered as the source of a spin 2 field. The

gauge theory of spin 2 which results from this coupling is precisely general relativity.

The conservation law of the energy-momentum tensor is modified self-consistently
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to

∇µTµν = 0 , (5.2)

the analogue of the covariant conservation law for the Yang-Mills current. General

relativity contains only helicity ±2 particles as propagating states, and the pro-

duction of these particles from the conserved energy-momentum tensor naturally

cancels additional, unphysical modes.
[16,17]

In order to construct a higher-spin field in addition to the gravitational field, we

must identity a second naturally conserved tensor. Unfortunately, this is extremely

difficult; almost every possible case is excluded by general restrictions on the S-

matrix proved by Coleman and Mandula.
[18]

To understand the origin of these

restrictions, let us consider the constraints on the existence of a second conserved

two-index tensor rµν , in addition to the full energy-momentum tensor Tµν.

The spatial integrals of Tµν give a globally conserved energy-momentum 4-

vector Pµ. Similarly, let us define the 4-vector

Rµ =

∫
d3x r0µ . (5.3)

The vector Rµ is an additional conserved quantity which restricts scattering pro-

cesses. By Lorentz covariance, the diagonal matrix elements of Rµ in one particle

states of momentum p are proportional to pµ,

〈p, a|Rµ |p, a〉 = Cap
µ , (5.4)

where the constant of proportionality Ca depends only on the particle type. Now

consider the elastic scattering of particles of two different types, 1 + 2 → 1 + 2.

Conservation of Pµ yields the constraint

pµ1 + pµ2 = p′µ1 + p′µ2 . (5.5)
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Conservation of Rµ yields the additional equation

C1p
µ
1 + C2p

µ
2 = C1p

′µ
1 + C2p

′µ
2 . (5.6)

The constraint (5.5) is solved by going to the center of mass frame; then (if the

final state remains in the 1̂–3̂ plane) the allowed values of ~p′1 and ~p′2 lie on a circle.

This constraint is shown in Fig. 10. In this frame, the constraint (5.6) restricts the

vector ~p′1 to an ellipse. The two constraints intersect for forward scattering and

possibly at some additional specific angles. However the general property that the

S-matrix is analytic in the momentum transfer t forbids such discrete solutions. We

conclude that, if both conditions (5.5) and (5.6) are to be imposed simultaneously,

there can be no elastic scattering of 1 from 2.

The theorem of Coleman and Mandula
[18]

generalizes this argument to forbid

additional conserved 4-vectors and conserved tensors of any higher rank (except

for the Lorentz group generators Mµν). Thus, it implies that gravity is the only

consistent theory of a spin 2 field, and that there are no consistent theories of

massless fields with spin higher than 2. At least, no such theory can be constructed

according to the strategy described here.

The case of spin 3
2 is more ambiguous. A conserved spin 3

2 current sµȧ leads

to a conserved spinor charge Qȧ. However, such a charge does not have diagonal

matrix elements in single particle states. Thus, it is not necessarily forbidden, but

its properties are strongly restricted. We will discuss this case in Section 7. For

the case of spin 5
2 , the loophole available for spin 3

2 can be closed, and the required

source is forbidden by the Coleman-Mandula theorem. Thus, we come to the end

of our catalogue of possible higher-spin fields.
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6. Spin 1
2 as a Construct

Now I will turn to the question with which we began these lectures: Why is

there spin 1
2? In this section and the next, I will describe two possible solutions.

In this section, I will show how to construct spin 1
2 from a mechanical model of

particle dynamics. In the next section, I will describe a symmetry, which might be a

fundamental symmetry of Nature, which requires spin 1
2 to complete its symmetry

multiplets.

6.1. A Model of a Scalar Particle

Before we can form a mechanical model which produces relativistic spin 1
2

particles, we should construct a model which leads to ordinary relativistic scalar

particles. This is easily done by imagining scalar particles as point objects which

move through space-time along world lines, and then write the mathematics ap-

propriate to this physical picture. A natural guess is that the quantum mechanical

amplitude for a particle to propagate from the space-time point y to x is given by

an integral over paths

D(x, y) =

∫
DXµ exp

(
iS[Xµ]

)
, (6.1)

whereXµ(s) is a path from y to x S[X] is some appropriate phase that the particle’s

wave function acquires as it moves along the path. A particle of mass m at rest

would be expected to acquire a factor

e−imt ; (6.2)

thus, a reasonable guess for S is that it is proportional to the proper time which

elapses along the path:

S = −m
∫
ds

√(dXµ

ds

)2
. (6.3)

Does the expression (6.1) with (6.3) really lead to a description of relativistic

scalar particles? It will be more straightforward to work with this expression if
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we rewrite it in such a way that the square root in (6.3) is removed. To do this,

introduce a new parameter e(s) which is a function of the position on the path,

and write

D(x, y) =

∫
DXµDe exp

(
−i
∫
ds

1

2

[(Ẋ)2

e
+ em2

])
, (6.4)

where Ẋµ = dXµ/ds. The variational equation for e(s) is

−(Ẋ)2

e2
+m2 = 0 ; (6.5)

fixing e(s) as the solution to this equation, and substituting into the exponent

of (6.4), we recover (6.3). Thus, (6.4) is also a reasonable starting point for our

discussion.

In the construction of (6.3) and (6.4), position along the path is parametrized

by the coordinate s. However, in both expressions for the path integral, the choice

of the parameter s is arbitrary. Both exponents have the local invariance

Xµ(s)→ Xµ(g(s)) , e(s)→ dg

ds
e(g(s)) , (6.6)

corresponding to the change of variables s → g(s). Since this is an invariance at

each point s, it is a gauge symmetry of the path integrals, and these integrals must

be defined by Fadde’ev-Popov gauge fixing. The gauge freedom of (6.4) can be

fixed in a simple way: Set

e(s) = 1 . (6.7)

There are no ghosts or other awkward consequences of this choice of gauge.

With this prescription, the general sum over paths can be written as a sum

over paths for which the parameter s runs from 0 to T , and an integral over T .
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We thus obtain

D(x, y) =

∞∫
0

dT

∫
DXµ exp

(
−i
∫
ds

1

2

[
(Ẋ)2 +m2

])
, (6.8)

This functional integral can be evaluated explicitly. It is, in fact, the Feynman

path integral for a nonrelativistic system with Hamiltonian

H = m2 − p2 = m2 + (~p)2 − (p0)2 , (6.9)

integrated over time T :

D(x, y) =

∞∫
0

dT 〈x| e−i(m
2−p2)T |y〉

=
i

p2 −m2
.

(6.10)

The final result is the Feynman propagator for a free scalar particle, the best result

we could have hoped for.

Though we set up this construction by considering the scalar particle as an

world line embedded in space-time, an alternative viewpoint is possible. We could

as well interpret eq. (6.4) or (6.8) as representing an abstract world line, with a

one-dimensional quantum field theory living on it. The Lagrangian of this quantum

field theory is

L = −1

2

[
(Ẋ)2 +m2

]
. (6.11)

In this view, the space-time coordinates Xµ(s) are fields which are a part of this

one-dimensional field theory. In other words, one may view space-time as living on

the world line as easily as one might view the world line as living in space-time.
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6.2. Addition of Spin

From the point of view in which space-time is an attribute of the particle’s

world line, it is easy to find generalizations which produce more interesting types

of particles. A simple way to modify (6.11) is to add an anticommuting coordinate

field θµ(s), µ = 0, 1, 2, 3.
[19,20]

The Lagrangian of this extended theory is

L = −1

2

[
(Ẋ)2 + θµθ̇µ +m2

]
. (6.12)

In principle, we might have tried adding any field that could live on the 1-

dimensional world line. This particular choice, however, is especially interesting

because the Lagrangian (6.12) has an unusual symmetry. Consider the transfor-

mation generated by

δXµ = εθµ , δθµ = −εẊµ , (6.13)

where ε is an anticommuting number: ε1ε2 = −ε2ε1. The second variation under

this transformation is

(δ1δ2 − δ2δ1)A = 2ε2ε1Ȧ , (6.14)

where A is Xµ or θµ. Thus, the transformation (6.13) is in some sense the square

root of a translation in s. It is not difficult to show that (6.13) is a symmetry of

the Lagrangian (6.12):

δ

∫
dsL =

∫
ds
(
Ẋµεθ̇µ − εẊµθ̇µ

)
= 0 . (6.15)

For the moment, we might view this symmetry as an amusing feature of this

particular extension; we will have more to say about it in Section 7.

In order to find the interpretation of (6.12) in terms of particles, we need to

find the analogue of eq. (6.10) for the one-dimensional functional integral which

contains this Lagrangian. The part of (6.12) which contains commuting numbers
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is treated just as in (6.10). For the anticommuting numbers, the Lagrangian term

1
2θ · θ̇ should be compared to the standard expression for commuting numbers

L =
∑
i

piq̇i −H(p, q) . (6.16)

To make the analogy, we take the half of the θµ to be canonical coordinates and

the other half to be their conjugate momenta, with H = 0. Since these objects

anticommute, we should convert them to quantum operators with anticommutation

relations. Then the quantum operators θµ obey

{
θµ, θν

}
= −1

2
gµν . (6.17)

One way to interpret these set of relations is to diagonalize it by finding two

linear combinations of the θµ, which might be called ai, and two orthogonal linear

combinations a†i which obey {
ai, a

†
j

}
= δij . (6.18)

Then the Hilbert space acted on by the θµ is described by four states

|φ〉 , a†1 |φ〉 , a†2 |φ〉 , a†1a
†
2 |φ〉 . (6.19)

Alternatively, we might recognize that the algebra (6.17) is exactly the Dirac al-

gebra (2.25). Then the four states indicated schematically in (6.19) correspond to

the four-dimensional Dirac representation of the Lorentz group. Thus, the particle

which moves along the world line carries a Dirac spinor and thus has spin 1
2 .

This particular constructive picture of spin works uniquely for spin 1
2 . However,

it is easily generalized to provide a construction of spin 1, and also higher spins.

To construct particles with spin 1, choose the Lagrangian

L = −1

2

[
(Ẋ)2 +m2

]
− θµθ̇µ + ωθ

µ
θµ , (6.20)

where now θµ is a complex anticommuting number, with θ
µ

its complex conjugate.

Interpreting these variables as canonical coordinates and momenta according to
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(6.16), we are led to the set of commutation relations

{
θ
µ
, θν
}

= −gµν . (6.21)

and the Hamiltonian

H = −ωθ · θ . (6.22)

Given (6.21), it is natural to interpret θµ as a set of fermionic annihilation operators

aµ (with positive metric for µ = 1, 2, 3) and θ
µ

as the corresponding creation

operators a†µ. The Hamiltonian is H = ωa† · a. Then this theory contains particle

world lines associated with the various possible fermion states:

|0〉 spin 0 , (mass)2 = m2

a†i |0〉 spin 1 , (mass)2 = m2 + ω ,
(6.23)

and so on.

Though this analysis does give a construction of spin 1, it raises as many

questions as it solves. For example, what kind of field is associated with a†ia†j |0〉?
This field should be present in the theory unless it is removed by taking ω very

large. There are problems in obtaining massless spin 1 particles: If (m2 + ω) = 0,

then either scalar particles or the new states with two world-line fermions will

have negative (mass)2. Finally, the construction contains explicit negative norm

states a†0 |0〉. These states must have a mechanism to cancel completely from all

scattering processes. It is possible to give satisfactory answers to these questions,

but only within a formal structure more constraining than the particle models

discussed in this section. We will find a better setting for addressing these questions

in Section 8.
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7. Spin 1
2 as a Symmetry

As an alternative to explaining spin as a mechanical attribute of particles, one

might attempt to postulate a symmetry of Nature which naturally leads to spin

1
2 . In this type of model, one would postulate that there exists an operator Q

which generates a symmetry of the Hamiltonian of particle interactions and also

has the property of converting particles of zero spin into particles with spin 1
2 .

Such a symmetry is known as a ‘supersymmetry’. The first renormalizable field

theory with a supersymmetry was constructed by Wess and Zumino.
[21]

The formal

consequences of supersymmetry are presented in detail in the book of Wess and

Bagger.
[22]

7.1. The Supersymmetry Algebra

Any charge which converts spin 0 to spin 1
2 must carry a spinor index. The

simplest choice, and actually the only consistent one, is to take this charge to

carry spin 1
2 . However, the hypothesis of a spin 1

2 charge Qα which commutes

with the Hamiltonian turns out to be extremely restrictive. To see this, write the

anticommutator of the charge Qα with its Hermitian conjugate:

{
Qα, Q

†
α̇

}
= Raα̇ (7.1)

If Q commutes with the Hamiltonian, Q† will as well; thus Rαα̇ commutes with the

Hamiltonian. We recognizeRαα̇ as a conserved vector, just the sort of object which

was excluded by the Coleman-Mandula theorem, as described in the discussion

following eq. (5.3). On the other hand, Rαα̇ cannot be zero: Since R is the square

of Q, R = 0 only if both Q and Q† give zero on all states of the Hilbert space.

There is only one way out of this dilemma. Rαα̇ must be the one conserved

4-vector allowed by the Coleman-Mandula theorem—the total energy-momentum

Pµ. Thus, if Qα is a symmetry of the Hamiltonian carrying spin 1
2 , it must obey
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the commutation relation {
Qα, Q

†
α̇

}
= 2σµaα̇Pµ . (7.2)

No half-measures are possible. Qα must be a fundamental symmetry of space-time,

generalizing the Poincaré algebra. The new symmetry generated by Qα must act

on every particle in Nature. Thus, we are led to a profound generalization of the

theory of elementary particles.

To understand the consequences of the symmetry algebra (7.2) a bit better,

consider the representation of this algebra in the simplest context—massless single-

particle states moving in the 3̂ direction. For such states, we saw that in Section 2.5

that the Poincaré algebra has one-dimensional representations, plus their reflections

under CPT . We will now analyze how the algebra (7.2) links these representations.

The first step in working with (7.2) is to write the ++̇ and −−̇ components of

(7.2) explicitly: {
Q+, Q

†
+̇

}
= 2(H − P 3){

Q−, Q
†
−̇
}

= 2(H + P 3)
(7.3)

Since the quantities on the right-hand side generate translations in time and space,

these commutation relations are reminiscent of (6.14). In fact, they represent the

correct generalization of (6.14) to a multidimensional space-time.

A massless particle moving in the 3̂ direction satisfies (H−P 3) = 0, (H+P 3) =

2P 3. Thus, Q+ and Q†
+̇

must give zero on such states, while Q− and Q†−̇ give a

nonzero result. Define

1√
4P 3

Q− = a ,
1√
4P 3

Q†−̇ = a† . (7.4)

Then the second line of (7.3) becomes{
a, a†

}
= 1 . (7.5)

The operators (7.4) thus act on the one-particle states as fermion creation and

annihilation operators. Since these operators raise and lower the 3̂ component of
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angular momentum, and thus the helicity, we can view the pairs of states with and

without the fermion created by a† as pairs of states |p, λ〉:

|p, 0〉 ↔
∣∣∣∣p, 1

2

〉
∣∣∣∣p, 1

2

〉
↔ |p, 1〉 ,

(7.6)

and so forth. These relations clarify the intuitive idea that supersymmetry links

bosonic and fermion particle states.

7.2. Supersymmetric Dynamics

The requirement of supersymmetry thus forces a quantum field theory to con-

tain spin 1
2 particles and fields. According to eq. (7.6), and its generalization to

massive states, a spin zero particle in a supersymmetric theory must have a spin

1
2 partner, and a spin 1 particle must have either a spin 1

2 or a spin 3
2 partner.

The interactions of these new fermions are linked to the interactions of the bosons

through the constraint of supersymmetry.

Perhaps the most interesting case from the viewpoint of first principles is the

relation between spin 1 and spin 1
2 . Local gauge invariance requires the existence

of spin 1 particles. Since supersymmetry in turn requires the existence of spin 1
2

particles, it seems that we might construct a complete rationale for the particles

which compose the standard model. However, the details do not fall into place

correctly.

Given the existence of gauge bosons, supersymmetry specifies the quantum

numbers and interactions of the new fermions. In the simplest realization of super-

symmetry, the global symmetry charges commute with the supersymmetry charges:

[
QA, Qα

]
= 0 . (7.7)

We will see below that the strong constraints from this relation are not made

weaker in more complicated realizations of the algebra. From (7.7), the partners
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of a set of gauge bosons AAµ are fermions λAα which belong to the same (adjoint)

representation of the gauge group. As shown in Fig. 11(a), the Yang-Mills vertex

for gauge bosons induces an interaction between the gauge boson and the new spin

1
2 particle. This interaction is exactly the one present in the simple Lagrangian

L = −1

4
(FAµν)

2 + λ iσ ·Dλ . (7.8)

The Lagrangian (7.8) is the simple minimal coupling of a gauge particle to a chiral

fermion, but it happens that, when the fermion and the gauge boson belong to the

same representation of the gauge group, this Lagrangian is supersymmtric.

Unfortunately, the representation assignment of the fermions is precisely not

what is needed to construct the standard model. From W bosons in the I = 1

representation of weak interaction SU(2), supersymmetry would require I = 1

fermions w̃α. From the gluons, which belong to the octet representation of color

SU(3), supersymmetry would require a multiplet of fermions g̃a which also are

color octet. These particles have no analogue in the standard model.

In fact, the restriction (7.7) makes it impossible to explain any fermion-boson

correspondence seen so far in Nature. A left-handed quark qL has as its supersym-

metry partner a boson q̃L with color 3, I = 1
2 , and hypercharge Y = 1

6 . The right-

handed leptons `R or `L lead to scalar particles with I = 0 and Y = 1. The SU(2)

doublets of left-handed charged leptons and neutrinos, such as EL = (νe, eL), lead

to scalar particles with I = 1
2 , Y = −1

2 . These quantum numbers are, curiously,

those of the Higgs boson φ. But it is difficult to understand how lepton number

could be conserved while φ obtains a vacuum expectation value in a scheme where

φ is the partner of EL.

Thus, if supersymmetry is the origin of spin 1
2 , one cannot extend this idea

to explain the detailed content of the standard model. One must, in fact, pos-

tulate a new, undiscovered particle as the partner of each known particle of the

standard model. However, there are good reasons to believe that Nature is, never-

theless, supersymmetric at its most fundamental level. If one believes in the grand
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unification of the gauge interactions of the standard model at some very high mo-

mentum scale mG, supersymmetry is the only known way to stabilize the relation

mφ � mG, and is the most natural explanation of the values of coupling constants

observed at the Z0. These motivations for supersymmetry are reviewed in more

detail in refs. 23 and 24. In the remainder of my discussion, I will use super-

symmetry, quite independently of its phenomenological justification, as a powerful

geometrical symmetry which organizes our conception of space-time.

I should remark that, just as the supersymmetry relation between spin 1 and

spin 1
2 particles generates the spin 1

2 interactions, so the relation between spin 1
2

and spin 0 generates a set of vertices for the spin 0 fields. These are shown in

Fig. 11(b). The spin 0 partner of the lepton doublet EL, for example, acquires

a coupling both to the W boson and to its partner the w̃, and also a 4-scalar

self-coupling.

7.3. Spin
3
2 and Higher Supersymmetries

From the viewpoint of the theory of spin, one important feature of supersym-

metry is that it provides the missing ingredient in the discussion of spin 3
2 particles

given at the end of Section 5. We argued there that a consistent theory of spin 3
2

requires a conserved spin 3
2 current sµα. Such a current would be associated with

a global charge

Qα =

∫
d3x s0α . (7.9)

We have now seen that such a global charge is consistent only if it is a supersym-

metry charge; then a spin 3
2 field can be included in a field theory only if it couples

to the current of supersymmetry.

In such a structure, the spin 3
2 field ψµα becomes the gauge field of supersym-

metry, and the whole theory acquires a gauge symmetry

δψµα = Dµεα , (7.10)

where εα(x) is an anticommuting parameter which defines a local supersymmetry
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transformation. The composition of supersymmetry transformations gives a trans-

lation, and so the field ψµα should naturally be associated with the gauge field of

local translations, the gravitation field. Indeed, the massless spin 3
2 particle cre-

ated by ψµα is naturally paired with the graviton in a multiplet with the form of

(7.6). The field ψµα is then called the gravitino, and the resulting generalization of

general relativity is called supergravity. The Lagrangian which includes gravitation

and the natural coupling of gravity to ψµα,

L =
√
−gR +

1

2
ψµiε

µνλσγνDλψσ , (7.11)

can be shown to be invariant under local supersymmetry transformations which

link the fields gµν and ψµα.
[25]

In this line of argument, it seems that there could be at most one spin 3
2 field,

just as there can be at most one graviton. However, more general supersymm-

metry algebras than (7.2) are possible, and by incorporating them, we may build

larger theories. But this extension also brings in new restrictions, since the higher

supersymmetry algebras imply still stronger relations among the couplings of the

model.

The general restrictions of the Coleman-Mandula theorem on the presence of

spin 1
2 changes were worked out by Haag, Lopuszanski, and Sohnius.

[26]
These

authors showed that, although the restriction we found on the right hand side

of (7.2) is absolute, more general theories can be built by incorporating several

supersymmetry charges, each of which has a square which is the total energy-

momentum. More explicitly, they allow a set of commutation relations

{
Qiα, Q

j†
α̇

}
= 2δijσµaα̇Pµ . (7.12)

This structure is known as N-extended supersymmetry. A theory with N super-

symmetry charges can be gauged with one graviton and N gravitinos. The each of

the various supersymmetry charges pair one gravitino with the graviton and the
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others with spin 1 bosons which must also be present in the theory. These spin 1

bosons provide a gauge group which does not commute with the supersymmetry

charges Qiα, providing the generalization of (7.7). We can use (7.12) to determine

the exact particle content of theories with this higher symmetry.

To analyze the implications of (7.12), consider once again the action of the

supersymmetry generators on massless one-particle states moving in the 3̂ direction.

As in the paragraph below (7.3), we can convert the supersymmetry commutation

relation {
Qi−, Q

j†
−̇
}

= 2δij(H + P 3) (7.13)

to a set of relations for fermion create and annihilation operators. Define

1√
4P 3

Qi− = ai ,
1√
4P 3

Qj†−̇ = aj† . (7.14)

The operators ai are helicity raising operators. Then the commutation relations

(7.13) become {
ai, aj†

}
= δij . (7.15)

These operators build up a multiplet of 2N states connected by extended super-

symmetry.

The simplest examples of these multiplets occur in theories of N = 2 extended

supersymmetry. The simplest representation, which is built on a state |p, 0〉 of

helicity zero, is

 a1 |p, 0〉
|p, 0〉 a1a2 |p, 0〉

a2 |p, 0〉

 =


∣∣p, 1

2

〉
|p, 0〉 |p, 1〉∣∣p, 1

2

〉
 . (7.16)

This multiplet contains a gauge boson, two chiral fermions, and a scalar: (φA, λ1A
α ,

λ2A
α , AAµ ).
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The N = 2 multiplet with maximum helicity 2 is


∣∣p, 3

2

〉
|p, 1〉 |p, 2〉∣∣p, 3

2

〉
 , (7.17)

which contains a vector boson, two gravitinos, and the gravitons. The vector boson

may be thought to generate a gauge symmetry unified with gravity. However, in

this case, the symmetry is only U(1). To construct higher symmetries within the

supersymmetry multiplets, we must go to higher N .

For N = 4, one finds a multiplet

|p,−1〉 ↔ 4×
∣∣∣∣p,−1

2

〉
↔ 6× |p, 0〉 ↔ 4×

∣∣∣∣p, 1

2

〉
↔ |p, 1〉 . (7.18)

This multiplet is CPT self-conjugate, it contains one vector boson, 4 chiral fermi-

ons, and 6 real scalar bosons. This is the largest multiplet for which all fields have

spin less than or equal to 1. The field theory of this multiplet turns out to be quite

magical; for example, its renormalization group β function vanishes to all orders

in perturbation theory.
[27]

One might similarly ask for which values of N one finds a multiplet with a

single graviton and no spin higher than 2. The largest such multiplet occurs for

N = 8:

|p,−2〉 ↔ 8×
∣∣∣∣p,−3

2

〉
↔28× |p,−1〉 ↔ 56×

∣∣∣∣p,−1

2

〉
↔ 70× |p, 0〉

↔ 56×
∣∣∣∣p, 1

2

〉
↔ 28× |p, 1〉 ↔ 8×

∣∣∣∣p, 3

2

〉
↔ |p, 2〉 .

(7.19)

The multiplet contains 28 gauge bosons. These form the antisymmetric tensor

representation of SO(8), which is also the adjoint representation, Thus, this theory

naturally contains a unified SO(8) gauge theory. Unfortunately, this group is not

large enough to contain the standard model gauge group SU(3) × SU(2) × U(1).
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Worse, this SO(8) has vector-like couplings rather than the chiral couplings which

are essential to build weak interaction theory. Cremmer and Julia
[28]

have worked

out the detailed structure of the N = 8 supergravity theory and have identified a

large global symmetry group—a noncompact E8—but so far no one has succeeded

in building a relation between this group and the gauge group of the standard

model.

Thus, the idea that spin 1
2 arises as the result of a symmetry of Nature turns

out to be a very powerful one, but one which stops short of providing a complete

theory of the fundamental interactions. To build more successful models, we need

to add to supersymmetry some structure of a quite different kind.

8. A Fruitful Blend

One of the most remarkable theoretical developments of the past ten years

has been the realization that it is possible to merge the ideas of the previous two

sections in a fruitful way. In Section 6, we studied the idea of building a particle

theory by putting a one-dimensional quantum field theory on a world line. It is

not hard to imagine a generalization in which one imagines a particle as a line or

ring which sweeps out a two-dimensional surface in space-time. In this context, we

could build a particle model by putting a two-dimensional quantum field theory

on this surface. It is not so obvious why this would give an improvement over

the picture we found for world-line theories, or, on the other hand, why we should

stop at two-dimensions rather than studying three- or four-dimensional objects

embedded in space-time. I can only say that the two-dimensional case offers just

the right balance between freedom and constraints to allow one to create theories

with an intriguing amount of structure. This particular case is known as string

theory, or, with the inclusion of supersymmetry, superstring theory.
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8.1. The Bosonic String

The simplest sort of string theory is one in which a particle is a ring moving

through space-time. The physical picture of particle motion is that shown on the

right-hand side of Fig. 12: The particle sweeps out a world-surface in the form

of a tube. This surface may split or branch, and these branches represent particle

interactions. All of the properties of the particles described by this motion follow

from a quantum field theory on two-dimensional surface shown on the left.

In the world-line theory of Section 6.1, we began our discussion by considering

the world-line to be embedded in space-time. If we take a similar point of view

here, we would describe the string dynamics by field Xµ(s, t). The arguments of

the field (s, t) are coordinates on this surface. With a convenient choice of gauge,

the Xµ(s, t) are free fields whose Lagrangian is

∫
L =

T

8π

∫
dsdt

[
∂λX

µ∂λXµ

]
, (8.1)

with λ = 0, 1. The parameter T has the dimensions of (mass)2 and provides a

natural length scale for the theory.

Now we can switch our perspective and regard space-time Xµ as a set of fields

which lives on the string. Choose the coordinate s to run from 0 to 2π around the

ring. Then Xµ(s) has the Fourier decomposition

Xµ(s) = Xµ
0 +

∑
n6=0

einsXµ
n . (8.2)

Then Xµ
0 is the center of mass position of the string, conjugate to the total

4-momentum Pµ. The Xµ
n are the coordinates of string oscillations. These can be

quantized as harmonic oscillators corresponding to running waves moving to the

left and to the right around the ring. Let aµn and aµn, n > 0, be the annihilation op-

erators corresponding to these two sets of harmonic oscillators. Then the dynamics
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of the string is neatly captured in the formula for the energies of the various string

states. This is the relativistic mass formula P 2 = m2, with

m2 = 2πT
{∑

n

n
(
a†µn a

µ
n + a†µn a

µ
n

)
+ 2Z

}
. (8.3)

The offset 2Z is the (renormalized) zero-point energy of the two sets of oscillators.

The relation (8.3) between the oscillator excitations the masses of string states

clarifies that the system is at the same time relativistic and harmonic.

The mass formula (8.3) is reminiscent of the mass formula in (6.23) for the

particle theory with spin 1. However, the two-dimensional field theory substruc-

ture provides three further restrictions. The first restriction is relatively simple:

The level of excitation in the left-moving oscillators must be equal to the level of

excitation in the right-moving oscillators. Otherwise, the coordinate system would

rotate around the ring. The second restriction is a bizarre one: The number of

dimensions of the space-time in which the string is embedded must be 26. I will

explain below how this restriction may be relaxed. The third restriction precisely

fixes the zero point energy Z to the value (−1).

Ignoring, for the moment, the strange second requirement, we can work out

the lowest mass states in the spectrum of the string. The ground state is

|0〉 , m2 = −4πT . (8.4)

This state is an unphysical scalar tachyon, and this also must be eliminated in an

improved theory. The first excited states are

a†µ1 |0〉 , a†µ1 |0〉 , m2 = −2πT . (8.5)

However, these states are eliminated by the requirement that the left- and right-

moving oscillators have the same degree of excitation. Thus, the next physical

state of the theory is

a†µ1 a
†ν |0〉 , m2 = 0 . (8.6)

This multiplet contains an exactly massless spin 2 particle—the graviton.
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From the discussion of Section 5, we ought to be suspicious that this spin 2

particle is defined consistently, so that its unphysical components are not produced

in scattering processes. However, in the string theory, one can prove that the

unphysical production amplitudes naturally cancel. The strategy of this proof is

geometrical, and is illustrated in Fig. 13. The emission of any string state occurs

through a world-surface of the form shown on the left of the figure, with a long pipe

branching off of the main surface. If we deform the pipe to be very long and thin,

we can replace the pipe with a pointlike perturbation of the world surface, which

can be represented by a local operator. Each particular particle state of the string

corresponds to a different boundary condition at the end of the pipe, and therefore,

through this construction, to a different local operator. For the particle state (8.6),

the corresponding local operator is the energy-momentum tensor T µν(s, t) on the

world surface. This is a conserved tensor, and so the unphysical components of the

graviton cancel out naturally.

Actually, this argument is reveals only a part of the deeper substructure of

string theory. In higher dimensions, as we have seen, the energy-momentum ten-

sor is the highest rank conserved tensor possible. However, in two dimensions it

is possible to have extremely large geometrical symmetry groups and correspond-

ingly high-rank conserved tensors. The special symmetry involved is familiar from

the theory of classical partial differential equations: In two dimensions, equations

which do not have an intrinsic scale, such as the Laplace equation, are solvable by

conformal mapping. Under certain conditions, this symmetry of conformal map-

ping survives into the quantum theory. For free fields, these conditions precisely

restrict the total number of fields in the theory and the zero-point energy, in just

the manner described below (8.3). Since a surface branching into a long thin tube

is related to a surface with a small hole by a conformal transformation, the re-

lation shown in Fig. 13 requires no approximation and applies to every possible

string state. This means that the interactions of a string are uniquely determined

by its spectrum, a profound generalization of the constraints of gauge invariance.

Similarly, the cancellation of unphysical states that we found for the graviton gen-
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eralizes to the full string spectrum: By using the relation between the higher states

of the string spectrum and the higher conserved tensors of the two-dimensional the-

ory, one can show that all negative norm excitations created by the operators a†0n

cancel out of scattering matrix elements.
[29]

8.2. Decorated Strings

The theory in which only the space-time coordinates Xµ(s, t) live on the world

surface has some wonderful mathematical properties but also contains awkward

features—a tachyonic particle and the restriction to 26 dimensions. To amelio-

rate these problems, we might try to put a different two-dimensional field theory

onto the string world surface. Following the approach of Section 5.2, we can add

anticommuting coordinate ψµ(s, t). In order for the negative norm excitations

created by ψ0 to be cancelled, we require a higher symmetry which incorporates

both conformal invariance and supersymmetry. Thus, to add spin to the string in

the manner of Section 5.2, we must already add two-dimensional supersymmetry.

What do we get back in return?

Comparing this construction to that in Section 5.2, we see one new feature:

The field ψµ is a function of the coordinate s which runs around the ring, and

we must fix the boundary condition to be imposed on these fields. The simplest

choice is periodic boundary conditions. With this choice, the zero point energy

turns out to be Z = 0 and so the n = 0 Fourier components of the ψµ link a

multiplet of massless particles. In the quantum theory of the string, the operators

corresponding to these modes satisfy

{
ψµ0 , ψ

ν
0

}
= −1

2
gµν , (8.7)

just as we found for the one-dimensional case in (6.17). The physical interpretation

is the same: These strings are Dirac fermions in space-time. In the discussion

below, I will denote states of this Dirac fermion multiplet as |α〉.
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In the same string theory, it is consistent to have other strings for which the

boundary condition on ψµ(s) is different. One may consider, for example, antiperi-

odic boundary conditions: ψµ(2π) = −ψµ(0). Now the Fourier expansion of ψµ(s)

has the form

ψµ(s) =
∑
n≥0

ei(n+ 1
2
)sψµ

n+ 1
2

+ c.c. (8.8)

The zero point energy for these strings is Z = −1
2 , so the states

ψ†µ1
2

ψ
†µ
1
2
|0〉 (8.9)

form a multiplet of massless particles which include the graviton. In fact, ψµ1
2

and ψ†µ1
2

have the same operator relations as the operators θµ and θ
µ

in (6.22).

Remarkably, string theory allows particles acted on by these operator to coexists

with particles acted on by (8.7). The price of this coexistence is equally remarkable;

it is that states with an even number of fermions in either the left- or right-moving

sector cancel out of the S-matrix. This removes the tachyon |0〉, and also converts

the multiplet |α〉 acted on by (8.7) from a Dirac to a chiral fermion.

For either or both choices of boundary condition, the constraint on the total

number of fields Xµ and ψµ is that µ should run over 10 dimensions. However, it

is possible to lower this number to 4 dimensions, or any other convenient value,

by decorating the string world surface with more free fields, or with interacting

fields which satisfy the constraints needed for conformal invariance. The zero-

point energy depends on the detailed collection of fields, and may be different

for the left- and right-moving sectors. For example, one can build a theory with

additional right-moving antiperiodic fermions χi, i = 1, . . . , n, in such a way that

the total zero point energy is Z = −1
2 from the left-moving sector and Z = −1

from the right-moving sector. Then the state

ψ†µ1
2

χ†i1
2

χ†j1
2

|0〉 (8.10)

is an allowed particle of the theory. This state is massless, has spin 1, and trans-

forms as an antisymmetric tensor of SO(n). It is, in fact, an SO(n) gauge boson.
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If the content of the string theory is properly arranged, states which acquire

a vector character from a left-moving excitation created by ψ†µ1
2

can be naturally

paired with states for which the left-moving sector is a spinor state |α〉. For exam-

ple, the same theory which contains the state (8.9) will also contain

ψ
†µ
1
2
|α〉 . (8.11)

This particle carries spin 3
2 and is, in fact, the gravitino partner of the graviton

given above. Similarly, the same theory which contains the state (8.10) will also

contain

χ†i1
2

χ†j1
2

|α〉 , (8.12)

the spin 1
2 supersymmetry partner of the gauge boson. In this way, it is straight-

forward to construct string theories which have a supersymmetric spectrum, and,

by extension, a full set of supersymmetric interactions.

From this point, the possibilities are limited only by one’s imagination in as-

sembling two-dimensional field theories with which to decorate the string world

surface. A large number of model-building strategies for string theory are de-

scribed in refs. 30–32. Using these strategies, one can build a wide variety of

theories, some of which might even resemble the standard model. All of these

theories, or at least all interesting ones, require spin 1
2 or some generalization as

an input to build the two-dimensional theory, but then recover spin 1
2 , and often

supersymmetry as well, in its spectrum of particles in space-time.
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9. Conclusions

Though we have found no definite answer to the question posed in the intro-

duction, we have found ourselves led through a wonderful tangle of speculations

on the deep structure of Nature. Is spin constructed or is it fundamental? Is it

the requirement of symmetry? In the furthest flights we have taken, it seems that

space-time itself is too restrictive a notion, and that we must generalize this in

order to gain a full appreciation of spin. In any case, there is no doubt that spin

must play a central role in unlocking the mysteries of fundamental physics.
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FIGURE CAPTIONS

1) The process which changes the helicity of a massive particle.

2) The minimal representation of the Poincaré group in the case of a massless

particle.

3) Kinematics of the process e+e− → µ+µ−.

4) Single photon emission in quantum electrodynamics.

5) Vector boson self-energy in the Higgs model (4.16).

6) Emission of a single massive vector boson.

7) The Goldstone Boson Equivalence Theorem.

8) Diagrams contributing to the top quark width: (a) the leading order contri-

bution in the standard model; (b) the analogous Goldstone boson diagram.

9) Diagrams contributing to e+e− → W+W−: (a) the leading order contribu-

tions in the standard model; (b) the analogous Goldstone boson diagrams.

10) Constraints on elastic scattering imposed by conservation of two 4-vectors

Pµ and Rµ.

11) Supersymmetry specifies the interactions of fermions from the interactions

of the corresponding bosons, or vice versa: (a) the interaction vertex for the

spin 1
2 partner of a gauge boson, (b) the interaction vertices for the spin 0

partner of the left-handed electron.

12) The dynamics of a periodically connected two-dimensional surface is viewed

as a particle moving and interacting in space-time.

13) Relation between the amplitude for emission of a string state and an operator

expectation value in the world-surface.
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