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1 Introduction and Overview

A central goal in the study of quantum chromodynamics is to understand the

non-perturbative structure of hadrons in terms of their quark and gluon degrees

of freedom. The polarization properties of the nucleons are described globally

in terms of their magnetic moments and axial coupling constants. Additional

constraints on nucleon spin structure are obtained from exclusive processes, par-

ticularly the ratio of helicity-changing (Pauli) and helicity-conserving (Dirac) form

factors.

The most direct tool and sensitive test for probing the quark and gluon sub-

structure of the proton is polarized-lepton polarized-target deep inelastic scat-

tering. By using a combination of polarized light nuclear targets, experimen-

talists are now able to extract detailed information on the shape and magni-

tude of the helicity-dependent nucleon structure functions for each quark flavor:

Au(z, Q2), Ad(z, Q2), As(x, Q2). A combined analysis of recent SMC deuteron

target data from CERN and 3He data from the SLAC E142 experiment by Ellis

and Karlinerl gives the value

AE = Au~Ad~As = 0.27 ~0.11 (1)

for the percentage of proton helicity carried by the sum of all quarks (and anti-

quarks) in the nucleon, and the individual integrated values

Au = 0.82+ 0.04,Ad= –0.44 + 0.04, As = –0.11 + 0.04. (2)

Thus the felicities of the up quarks in the proton are highly correlated with that

of the proton, whereas the down and strange quarks are anti-aligned.

In a naive non-relativistic three quark model of the proton, one would expect

AX = 1. As I will discuss below and in Section 10, relativistic binding of the quarks

reduces the prediction of a three-quark model for Ax by 2570. In contrast, in the

Skyrme model, in which the nuclmn emerges as a spin-~ topological soliton Of

an effective chiral Lagrangian, one predicts AZ w O(l/NC) due to the decoupling

of the SU(3) flavor-singlet axial current? In more conventional descriptions, one

can obtain a small value for AX if the gluon polarization in the nucleon is large

and positive. The negative value for the strange quark helicity As can then be

generated through perturbative QCD radiative corrections; i.e. the gluon anomaly.
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However it should be emphasized that the extracted values for AE and AS

are somewhat uncertain because of higher twist corrections, Regge ext rapolat ions,

QCD radiative corrections, and other uncertainties which. I will discuss in Sections

6–9. I will report results from the most recent experiments, including a new and

preliminary analysis from the SMC experiment using polarized muons scattering

on polarized proton targets in Section 5. The SLAC-Yale, EMC, and recent SLAC

E142 measurements are reviewed in detail in this volume by Emlyn Hughes!

Theory predicts that the polarization-dependent measures of the nucleons are

interrelated in subtle ways; for example, the first moment of the nucleon structure

functions are related to the nucleon axial couplings through the Bjorken and

Ellis-Jaffe sum rules, and the anomalous magnetic moments are related through

the Drell-Hearn-Gerasimov sum rule to logarithmic integrals of spin-dependent

photoabsorption cross sections. In fact, as emphasized by Ioffe et al.: the DHG

sum rule is the analytic extension of the Bjorken sum rule evaluated at zero photon

virtuality. This relation provides important constraints on the magnitude of the

coherent higher-t wist contributions to the Bjorken and Ellis-Jaffe sum rules at low

Q2. I review the DHG constraint in Section 7.

Polarization-sensitive scattering experiments can also test dynamical princi-

ples such as perturbative QCD factorization and hadron helicity conservation by

tracing the flow of particle felicities through the reactions and measuring spin cor-

relations. Alt bough much of the observed phenomena can be understood within

standard QCD mechanisms, there are a number of extraordinary experimental

anomalies, such as the large and sudden jump in the spin-spin correlation ANN

observed in large angle elastic proton-proton scattering, the violation of hadron

helicity conservation observed in vector-pseudoscalar decays of the J/@, and the

striking pattern of polarizations seen in massive lepton hadroproduction, both in

the continuum, and at the J/@. In Section 17 I discuss recent work with Branden-

burg, Khoze and Muller which shows how azimuthal correlations in the Drell-Yan

process can provide direct information on hadron structure at the amplitude level.

A simple language for encoding the helicity structure of relativistic composite

hadrons is given by the light-cone Fock expansion. In this framework, the hadron

eigenstate is written as a sum over free quark and gluon Fock states with the

same global quantum numbers. The projection on the n-particle Fock state is the
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light-cone wavefunction

Here

k? k:+ kf.——
“-p+= po+pz

(3)

(4)

is the longitudinal light-cone fraction, the kla are the relative transverse momenta,

and the ~a are the quark and gluon felicities. The wavefunction +~(si, kli, ~i)

is the probability amplitude for the hadron to be in this n-particle Fock state

at fixed light-cone time r = t — z/c with particle momenta pi+ = xiP+ and

p~i = ~ipl + kli.

The central advantage of the light-cone description is that it allows a wavefunc-

tion interpretation of hadrons as composite systems of a relativistic quantum field

theory. One is not restricted to states of fixed particle number; all quantum fluctu-

ations consistent with conservation laws and global symmetries are allowed: The

description of the hadron is boost invariant, since the wavefunction +. (Zi, kli, ~i)

is independent of the hadron four-momentum. Form factors are simple convolu-

tions of the light-cone wavefunctions. More generally the light-cone wavefunctions

act as the interpolators between hadron matrix amplitudes and quark and gluon

scattering amplitudes. A more complete discussion is given in the Appendix.

Thus given the light-cone Fock wavefunctions, one can compute form factors,

polarized and unpolarized structure functions, decay constants, exclusive ampli-

tudes, higher twist matrix element coefficients, etc. In principle, one can deter-

mine the light-cone wavefunctions for both bound states and continuum scattering

‘states in QCD by diagonalizing the light-cone Hamiltonian as an eigenvalues prob-

lem on the free light-cone Fock bwis:

HLC [W) = M2 IW) ,

(mlH~~[n) (nIV) = M2 (m[W) .

(5)

(6)

In fact this has been done on a discrete basis assuming periodic boundary con-

ditions for a number of simpler quantum field theories such as QCD(l+l) and

QED(l+l). Recently, Klebanov and Dalley6 have used the discretized light-

cone quantization (DLCQ ) met hod to solve more complicated theories such as
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QCD(l+l) with adjoint matter representations. There also h= been strong

progress in solving field theories displaying spontaneous symmetry breaking. The

complications of the equal-time vacuum is replaced by constraint equations for

the non-dynamical zero modes of the theory.

The use of light-cone wavefunctions also allows one to study relations between

the magnetic moment and the axial coupling of the nucleon which follow from its

underlying relativist ic quark substructure. For example, Schlumpf and I 7 have

found that the relationship between pP and gA is controlled by the kinematics Of

the Melosh transformation connecting the rest frame wavefunction to the light-

cone, and it is essentially independent of the dynamical form of the light-cone wave

function. At large proton radius, pP and 9A are given by the usual nonrelativistic

formulae. At small radius, pP becomes equal to the Dirac moment, M demanded

by the Drell-Hearn-Gerasimov sum rule. In addition, as R1 40, the constituent

quark felicities become completely disoriented and gA~O. At the physical radius

R1 = 0.76 fm, one obtains the experimental values for both PP and 9A, and

the helicity carried by the valence u and d quarks are each reduced by a factor

m 0.75 relative to their non-relativistic values. Thus for the proton’s empirical

size MPR1 = 3.63, the three-quark model predicts Au = 1, Ad = –1/4, and

Ax = AU+ Ad = 0.75. Although the gluon contribution AG = O in this model, .

the general sum rule2

(7)

is still satisfied, since the Melosh transformation effectively contributes to LZ.

It should be emphasized that deep inelastic polarized structure function and

gl ($, Q2) and its sum rules actually measure the quark helicity content of the

nucleon, not the rest frame quark spin projection S:.

Although the Q2 evolution of deep inelastic structure functions is well un-

derstood from perturbative QCD, we only have general constraints on the per-

turbative and nonperturbative dynamics which control the shape of the helicity-

dependent quark and gluon distributions. For example, in order to insure posi-

tivity of fragmentation functions, the distribution functions G./b(x) must behave

as an odd or even power of (1 — z) at z+ 1 according to the relative statistics

of a and 6! Thus the gluon distribution

Gg/N(x) w (1 – x)2~ at z+l to ensure

of a nucleon must have the behavior:

correct crossing to the fragmentation
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function DN/~(z). On the other hand, in the x+1 limitj a constituent of the

proton is far off-shell and the leading behavior in the hadron wavefunctions is

dominated byperturbative QCDcontributions tothe interaction kernel. We thus

may use the minimally connected tree-graphs to characterize the threshold de-

pendence of the structure functions. The gluon distribution of a hadron is often

assumed to be radiat ively generated from the QCD evolution of the quark struc-

ture functions beginning at an initial scale Q;. The evolution is incoherent; i.e.

each quark in the hadron radiates gluons independently. However, as can be seen

in the light–cone Hamiltonian approach, the higher Fock components of a bound

state in QCD cent ain gluons at any resolution scale. Furthermore, the exchange

of gluon quanta between the bound-state constituents provides an interaction

potential whose energy–dependent part generates a non-trivial non-additive con-

tribution to the full gluon distribution G~/H (x, Q~). In Sections 11 and 12 I will

discuss recent work by Burkardt and Schmidt and myselfg which develops an-

alytic representations of polarized quark and gluon distributions in the nucleon.

The analysis incorporates general constraints obtained from the requirements of

color coherence of gluon couplings at x N O and the helicity retention properties

of perturbative QCD couplings at z N 1.

One of the most important tests of QCD is the Bjorken sum rule. An essential ~

part of the QCD analysis is the evaluation of the perturbative radiative corrections

to structure function moments. However, there is considerable uncertainty in

the radiative corrections, particularly at low momentum transfer due to scale

ambiguities, scheme dependence, and higher twist correct ions. In these lectures I

will discuss a new approach based on work with Hung Jung Lu
10

in which the

scale and scheme dependence of perturbative QCD predictions can be eliminated

by relating observable to each other. For example we show in Section 15 that

perturbatively calculable observable in QCD, including the annihilation ratio

Ret.-, the heavy quark potential, and radiative corrections to structure function

sum rules, are related to each other at fixed relative scales. QCD can thus be tested

in a new and precise way by checking that the radiative corrections to the Bj orken

sum rule and the radiative corrections to the annihilation cross section track both

in their relative normalization and in their commensurate scale dependence.

Although the net correlation of the quark helicity with the proton helicity in

inclusive reactions is apparently small, the spin correlations of large angle elastic
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pp scattering nevertheless display a dramatic structure at the highest measured en-

ergies fi -5 GeV?l These measurements are in strong conflict with the expecta-

tions of perturbative QCD which predicts a smooth power-law fall-off for exclusive

helicity amplitude with increasing momentum transfer~2 The strong polarization

correlations observed in pp scattering are clearly of fundamental interest, since

the microscopic QCD mechanisms that underlie the spin correlations between the

incident and final hadrons must involve the coherent transfer of helicity informa-

tion through their common quark and gluon constituents. The implications of the

spin correlation measurements will be discussed in Section 18.

A basic but non-trivial property of the gauge couplings of PQCD is “hadron

helicity retention”: a projectile hadron tends to transfer its helicity to its leading

particle fragments. A particularly interesting consequence is the prediction that

the J/@ and the continuum lepton pairs produced in pion-nucleus collisions will

be longitudinally polarized at large XF. Helicity retention also provides important

constraints on the shape of the gluon and quark helicity distributions. In the large

XF domain, with Q2 (1 – x) fixed, leading twist and multi-parton higher twist

processes can be of equal importance~3 In the case of large momentum transfer

exclusive reactions, the underlying chiral structure of perturbative QCD predicts

that sum of hadron felicities in the initial state must equal that of the final .

14 Although hadron helicity conservation appears to be empirically satisfiedstate.

in most reactions, the most interesting cases are its dramatic failures such as the

large branching ratio for J/@+pm. I will discuss the implications of this failure of

perturbative QCD predictions in Section 17.

In these lectures I will give a survey of just a few of the many areas of polariza-

tion studies possible in hadron physics. Although most of the topics discussed in

these lectures are concerned with quark or gluon helicity, there are also interesting

linear polarization predicted by the theory, such as in T decays, or in the planar

correlations of four-jet events in e+ e–
15

annihilation. In addition, the oblateness

of a gluon jet can be used to determine its axis of linear polarization. One of the

most promising areas in the future of polarization studies will be the analysis of

spin transfer from the initial electron to the final state hadrons and jets in e+e–

annihilation.



2 Helicity Structure finctions of the Nucleon

The distributions of quark felicities in a polarized nucleon are directly de-

termined from measurements of deep inelmtic polarized-lepton-polarized nucleon

scattering. The key me~ure is the cross section asymmetry for parallel versus

ant iparallel lepton and nucleon longitudinal polarizations:

a:”~(tl) – ~;*p(TT) .
‘1 = ~;”P(~J) + O;”p(tt)

One can then identify the leading-twist helicity structure function

Al(z, Q2)F2(z, Q2)
91(S, Q2) = A1(z, Q2)~l(z, Q2) = 2z[1 + R(x, Q2)]

‘*P As usual Q2 = –q2 and 2Mv = 2p . q, andwhere R = ~~*p/~T .

Q2/2p . q.

(8)

The gl structure function has a simple probabilistic interpretation in the par-

ton model. In the Bjorken limit with fixed Zbj,

where qt (x, Q2) = Gglfpl (z, Q2) + GITipl (z, Q2) is the number distribution of

quarks (plus antiquarks) with helicity aligned with that of the proton. The deep

inelastic kinematics sets the light-cone momentum fraction x = k+ /p+ of the

struck quark in the hadron wavefunction equal to the Bjorken variable xbj. The

individual up and down quark helicity distributions in the proton U(X, Q2) and

d(x,Q2) can then be obtained, modulo small nuclear and isospin-symmetry cor-

rections, by combining proton target and deuteron or 3He data.

It is also apparent from the light-cone Fock-space description of the proton

(see Appendix) that the integral of the quark helicity distributions can be obtained

at low Q2 from forward matrix elements of the axial current:

where SP is the proton spin vector. The notation Aq sums both the quark and

antiquark contributions in the proton.

8



The axial current of the quarks can also be written

where R,L = ~ (1 + 75) projects the right- and left-handed chiral components

of the quark fields. For massless quarks, chirality coincides with helicity. If we

choose the Drell-Yan light-cone frame with Q+ = O and the p = + component of

the axial current, then its matrix element in the light-cone Fock space is diagonal

in particle number. The axial current matrix element thus measures the first

moment of the quark helicity distributions:

1

I
Aq = ~z[qt(~, Q2) – ql(~, Q2)]. (13)

o

Note that this moment has zero anomalous dimensions. The axial coupling of

the nucleon measured in ~-decay n~pe–Ve, together with isospin symmetry, thUS

determines

Au – Ad = 9A = 1.2573& 0.0002. (14)

Similarly hyperon decay plus SU(3) symmetry determines the combination

Au+ Ad – 2As = 0.59& 0.02. (15)

A discussion of the uncertainties in these values due to the assumption of isospin

16 The neutron valuesand SU(3)-flavor symmetry has been discussed by Lipkin.

are obtained from isospin symmetry.

3 The Bjorken Sum Rule

Much of our understanding of the helicity structure of hadrons comes from

rigorous constraints, such as the Bjorken sum rule for the integral of the spin

dependent structure functions, and the Drell-Hearn-Gerasimov sum rule, which

relates the anomalous magnet ic moment of a composite system to an integral over

the photoabsorption cross section. In fact, as we will discuss below, the DHG and

Bjorken sum rules can be regarded as low and high Q2 limits of one fundamental

measure.

9



Themost celebrated application occurrent algebra isthe Bjorkensumrulel' for

polarized lepton–polarized nucleon scattering. Thesumrule is b=edon the fact

that the matrix element of the commutator of the electromagnetic currents for

polarized protons is given by the proton matrix element of the axial current. For

the isospin-changing proton-neutron difference, this gives

The Bjorken sum rule has the remarkable feature of relating the first moment of

the helicity-dependent structure functions of the nucleons, which are measured

at high Q2, to a nearly static quantity, the axial coupling constant gA which is

measured at Q2 w O in the ~ decay of the neutron: This sum rule has played

an historic role in high energy physics, providing the first hint that the structure

functions must become essentially Q2 —independent at fixed x = ~. Bj orken’s

derivation was based on current algebra, with the essential ansatz that the current

commutators have the same structure w the currents of free quarks. However, as

in the c~e of the Bjorken scaling of the parton model, the Bjorken sum rule is

only a first approximation; radiative corrections of leading twist (powers of as) ~

and higher twist (powers of 1/Q2 ) also appear. In practice, there are a host of

important theoretical issues that must be understood to actually test the Bjorken

sum rule. In the following I will make a brief survey of some of the underlying

physics.

The radiative corrections to the Bjorken sum rule reflect the fact that gluon

radiation induced by the scattering process eq+eq depolarize the quark helicity.

According to perturbative QCD, deep inelastic lepton-nucleon scattering at high

Q2 can be identified with lepton scattering on effectively free quark currents of the

target. A crucial assumption is that the large distance effects of confinement of the

quarks in the final state can be neglected—the important invariant length scales

which are probed in the forward virtual Compton amplitude are of order l/Q.

The Bjorken-scaling of the structure functions is then equivalent to the impulse

approximation; i.e. the absence of final-state interactions of the outgoing quark

with the spectators of the target nucleon. In light-cone gauge A+ = O the final

state gluon interactions between the active and spectator system give corrections

10



of order 41 /Q2, since the exchanged gluon momenta 1~ are finite. However, the

contributions from gluons associated with vertex corrections and gluons emitted

from the struck quark with momenta 42 N Q2 are only logarithmically suppressed.

Thus one obtains a perturbative series in powers of a~(Q) from the leading order

correct ions. The leading twist corrections are universal since they are the same

whether the target is a quark or a hadron. The lowest order correction in as was

first obtained by Kodaira?8 The perturbative QCD corrections have now been

evaluated by Larin, Tkachev, and Verm~eran 19 through order a~(Q) in MS

scheme.

The numerical value of the perturbative corrections to any finite order de-

pends on the choice of renormalization scheme e.g., MS and on the choice of

renormalization scale. In Section 15 I will discuss recent work done with Hung

Jung Lul” in which we show that the scale ambiguity can be consistently resolved

for any choice of scheme through the first two orders of perturbation theory by us-

ing the methods of Ref. 20. We also show that the scale and scheme ambiguity of

the leading twist PQCD radiative corrections can be eliminated by relating these

corrections to the radiative corrections for other observable. These “commen-

surate scale relations” greatly diminish the uncertainty in the perturbative QCD

corrections. In addition, we note that the radiative corrections to the Bjorken sum

rule are identical to those of the Gross–Llewellyn Smith sum ruleup to small

corrections of order a: (Q2).

Thus a basic test of QCD can be made by considering the ratio of the Gross–

Llewellyn Smith, and Bjorken sum rules: 21

[
3 JC1dz F;p(~,Q2)– F~(z, Q2)]

~GLLS/Bj(Q2, C)= (17)
: ~1 dx [gf(x, Q2) - gf(z, Q2)] .

Since the Regge behavior of the two sum rules is similar, the empirical extrapo-

lation to c + O should be relatively free of systematic error. Moreover, PQCD

predicts

()A~CD
~GLLS/Bj(Q2, c+o) = 1 + ~ (~:(Q)) + ~ ~ , (18)

i.e. hard relativistic corrections to the ratio of the sum rules only enter at three

loops. Thus measurements of the ratio of the sum rules could provide a remarkably
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complication-free test of QCD–any significant deviation from

RGLLS/Bj (Q2, c~O) = 1 must be due to higher twist effects which should vanish

rapidly with increasing Q2.

4 The Ellis-Jaffe Sum Rule

The Bjorken sum rule applies to the isospin-non-singlet proton-neutron

ference, and it is thus insensitive to the helicity carried by strange quarks in

proton. We can also apply the same analysis to the proton alone:

The radiative corrections

di f-

the

[

4

1[

~ + ~a~(Q) +
~Au + ;Ad + ~As —

1
. . . . (19)

T

to this sum rule are only known to order as. 22 If one

assumes that the strange quark contribution As in the proton is small, then the
23

above result gives the original Ellis-Jaffe sum rule.

One also obtains a non-zero contribution to the sea quark felicities if the

gluons in the nucleon are polarized?4 This contribution arises from the quark loop

contribution to g*~* +g*~* in the forward virtual Compton amplitude; i.e. from .

the scattering of the leptons on the quarks arising from the gluon’s substructure:

~~(Q2) A9(Q2).
Aq=– ~= (20)

The result is independent of the scale Q since the product a,(Q2)Ag(Q2) is a

renormalization-group invariant. However, the actual value for Ag(Q2) depends

on the internal non-perturbative structure of the

invariant, the gluon anomaly contribution cancels in

sum rule.

proton. Since it is isospin-

the evaluation of the Bjorken

The “gluon anomalyn contribution adds to any “intrinsic” sea-quark polar-

ization inherent to higher Fock states in the bound state wavefunction. 25 The

anomaly contribution only arises if the gluon virtuality is large compared to the

mass of the sea quark; thus the analysis requires the introduction of a minimum

transverse momentum cutoff for the gluons, which is a gauge-dependent separation

26 As noted by Carlitz, Collins, and Mueller~7 it is possible in principleof scales.
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to physically isolate the anomaly contribution by demanding a coincident high ~

jet in the nucleon fragmentation regime.

In the next section I will discuss theoretical constraints on the shape of the

quark and gluon helicity distributions which follow from general QCD principles.

5 Comparison of Experiment and Theory for the
QCD Helicity Sum Rules

A complete discussion of the SLAC-Yale, EMC, and the most recent SLAC

E142 and CERN SMC measurements of the polarized structure functions of the

nucleons can be found in Emlyn Hughes’ contribution to this volume and in a
28

recent presentation of the SMC data by Vernon Hughes. I will only summarize

the main results here?g

0.1

0

r;

-0.1

-0.2

A
I u I

/. \ I I

-----=-B-A---
E142

1
E142+
p data

[

i
I

Wsum Rule

1 VI 1 I

4.1 0 0.1 0.2

r?
2* I 7Q3m

Figure 1. Experimental values for the integrals r; and r? of the helicity-dependent struc-
ture functions, compared with the Bjorken sum rule prediction at Q2 = 5 GeV2. From Rf.
28.
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The experimental values for the sum rule integrals from the original EMC/SLAC

measurements, t oget her with the recent results from the E142 and SMC experi-

ments are summarized in Fig. 1. The predicted value for the Bjorken sum rule

isr~—r~=*= 0.209(1) without radiative corrections. Taking as = 0.26(2)

in MS scheme at Q2 = 5 GeV2, the leading twist radiative corrections through

order a: reduce the predicted value to r; – r? = O.185(4) at Q2 = 5 GeV2. This

prediction for the Bjorken sum rule at Q2 = 5 GeV2 appears as a diagonal band

in the plot of r: versus r;. The recent results from E142 for the neutron asym-

metry extracted from a 3He target are represented as a band for r!. The recent

SMC deuteron target measurement appears as a constraint on the sum r! + r~.

Within errors of order 15%, the experiments do not appear to be in conflict with

the Bjorken sum rule.

However, there is an possible conflict with the leading-twist Ellis-Jaffe predic-

tion. The preliminary value from the recent measurement of the Spin Muon Col-

laboration for proton targets gives r~(SMCQ2 = 10.5 GeV2) = 0.152 *0.015 (stat )+

O.Ols(syst ), where the systematic error includes uncertainties from the Regge ex-

trapolation to z~O. The predicted value, including the leading order correction,

but neglecting strange quarks, is r; = 0.177~ 0.010 at Q2 = 10.5 GeV2. The com-

bined data from all of the experiments gives r~(World) = 0.145 A 0.01 * 0.012. ~

This discrepancy with the predicted value rf = O.172+0.010 at Q2 = 5 GeV2 can

be taken as evidence for a polarized strange quark contribution in the nucleon.

However, as emphasized by Burkert and Ioffe, higher-twist corrections could sig- -

nificantly reduce the predicted value.

Figure 2 presents another representation of the data, assuming the validity of

the Bjorken sum rule, as well as the constraint from hyperon decay Au + Ad –

2As = X – 3As = 0.59(2). The figure shows that the E142 measurement of the

neutron asymmetry is consistent with a small strange quark polarization and a

large value for the total quark polarization B = Au+ Ad + As E 0.6, of the same

order as the quark momentum fraction. (The non-relativistic three quark model

predicts E = 1.) However, the asymmetry measured by the SMC on polarized

deuteron targets implies a large and negative strange quark polarization in the

nucleon: As * –0.2 and correspondingly, a small value for the total quark helicity

Z. The recent (preliminary) analysis from the SMC experiment using polarized
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Figure 2. Experimental values for the total quark helicity Z and the strange quark helicity
As in the nucleon. The hyperon beta decay constraint is =sumed. From Ref. 28.

28
muons scat tering on polarized proton targets gives

As = –0.07 + 0.06.

AX = 0.36+ 0.21, and

(21)

The overall average from the SMC experiments is Z = 0.28 + 0.11, and AS = .

–0.09+0.04. Any apparent discrepancy between the E142 and SMC measurements

could be due to different low-z ext rapolat ions or large higher-twist corrections,

corrections which would most strongly affect the lower energy data. The new

HERMES gas jet target measurements planned at DESY and the higher energy

pl,b = 50 GeV/c E143 experiment now underway at SLAC will hopefully be able

to clarify these issues. In addition, deep inelastic neutrino scattering can also

provide direct information on the polarization of strange quarks in the nucleon.
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6 Higher-Twist Corrections to Deep Inelastic
Scattering

Power-law-suppressed l/Q” corrections to the Bjorken sum rule, as well ~ the

structure functions themselves, are an inevitable complication to the physics of

inelastic lepton-proton scattering. For example, at small values of Q2 comparable

to 1/R2 where R is the separation of quarks in the nucleon, the interference of am-

plitudes where two different quarks are struck must be taken into account. These

contributions give corrections to the Bjorken sum rule of order Ng (Ng – 1)/Q2~2,
30

where Ng is the number of quark constituents in the nucleon. These corrections

can be labelled as intrinsic higher-twist effects corrections since they depend on

the detailed structure of the nucleon itself. The intrinsic higher order contribu-

tions to structure functions give corrections of relative order A~cD/(l – Z)Q2;

i.e. they become very large at z+l, since the lepton can scatter on a coher-

ent multi-quark system carrying a large fraction of the nucleon momentum. In

particular, the scattering of the lepton on the two valence quark system gives

a large higher twist contribution to the longitudinal structure function at large

Z. Such contributions have in fact been observed in the SLAC and NMC deep

inelastic scattering measurements, and are taken into account in the analysis of

31 Higher twist corrections are also caused by finite ~structure function evolution.

mass effects, finite intrinsic transverse momentum smearing, and insertions due to

vacuum condensates. QCD condensate corrections to the quark and gluon prop-

agators give extrinsic power-law suppressed corrections, since they are essentially

target-independent. However, as emphasized by Mueller~2 such terms are difficult

to distinguish from the Borel sum of perturbative higher order contributions in

as (Q2 ). Thus it is difficult to identify the condensate corrections unless one first

has control over the leading-twist corrections of very high order.

There is however, a reliable way to estimate the intrinsic higher-twist correc-

tions to QCD sum rules. As shown by Ioffe et ai?, the integrals over the structure

functions

Q2

rP,n(Q2) = ~

m dv

I
~GIP,n(v, Q2)

p,n
Q2/2Mp,n

(22)

that appear in the Bjorken and Ellis-Jaffe sum rules are—up to a factor of Q2—

precisely the same integrals ~P,n = (2~~,n/Q2) rp,~ (Q2) which appear in the
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Drell-Hearn Gerasimov sum rule for the proton and neutron anomalous magnetic

moments: (See Section 7.)

Ip,n(o)= –; K;,n. (23)

The G1 structure function is equal to the polarized photoabsorption cross section

at Q2 = O and

+G1(s, Q2)~gl(~, Q2) (24)
P

in the Bjorken limit. The sum rule integr~s rp,~ (Q2) must thus each changesign

w Q2 decreases. This identification provides a powerful constraint on the path of

the Bjorken integral rp(Q2) – rn (Q2) as Q2 is decrewed to the photoabsorption

point. Figure 3, which is taken from a recent analysis by Burkert and Ioffe*, shows

that resonance contributions to the Bjorken integral are likely to give significant

corrections to the leading-twist predictions at momentum transfers Q2 <2 GeV2.

It would clearly be interesting to measure the sum rule integrals in the low Q2

domain to see this transition. Note the effect of the resonances and moment

constraints at low Q2 has a very strong effect for the Ellis- Jaffe sum rule for

rp(Q2). It would also be interesting to find similar low Q2 constraints for the

Gross–Llewellyn Smith sum rule for the charged-current structure functions.

Recently, Ji and Unrau33 have noted that, technically, the Bjorken sum rule

integral, as defined from the saturation of a current commutator? includes the

elastic nucleon pole cent ribut ion at x = 1, whereas the DHG sum rule does not

include this contribution; the DHG integration starts at the inelastic threshold

st~,e,~ = (Mp +mX)2. However, since experimentalists always define the measured

sum rule integral excluding the nucleon pole cent ribut ion, this complication does
34

not actually occur in practice.

7 The Drell-Hearn-Gerasimov Sum Rule

One of the most important constraints on the spin structure of both elemen-

tary particles and composite systems is the Drell-Hearn-Gerasimov sum rule.
35,36

The DHG sum rule was originally derived as a constraint on the anomalous mag-

netic moment of spin-1/2 systems by writing an unsubtracted dispersion relation

for the forward helicity-flip Compton amplitude and the low-energy theorem!’

The generalization to arbitrary spin has been made in Refs. 36 and 38.
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Figure 3. Connection between the Bjorken and DHG sum rule integrals 1(Q2) for the pr~
ton, neutron and proton-neutron difference. At Q2 = O the integrals are constrained by the
nucleon anomalous magnetic moments. The curves include an estimate of resonance contribu-
tions up to mass 1.8 GeV. From Burkert and Ioffe, Ref. 4.

The DHG sum rule for spin-1/2 and spin-1 systems takes the form

(25)

where pa = pl — &and p.=pl– * are by definition the anomalous magnetic

moment for the spin- 1/2 and spin-1 systems, respectively, ap (OA) is the total cross

section for absorption of a photon with spin parallel (antiparallel) to the spin of

the target, and u is the photon energy, with wth the threshold energy. The result

is totally general, applying to both elementary fields such as leptons, quarks, W’s

and Z’s, as well as composite systems such as baryons, vector mesons, and nuclei.

Although an experimental verification of the DHG sum rule for nucleons has been
39

carried out, it would also be interesting to verify this result for deuterons.

The extension of the DHG sum rule analysis to include the quadruple moment

of a spin-one system requires a low-energy theorem to second-order in the photon

energy. At this order, the polarizability enters the Compton amplitude in addition
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to the quadruple moment. Hiller and 140 have shown how one can use a dispersion
41

relation due to Tung in order to obtain the following sum rule for the non-

forward Compton amplitude:

where M is the mass, Qa = Q1+ * definesthe anomalousquadruple moment}

vis(s– u)/4, and fp (fA) is the helicity amplitude for parallel (antiparallel)

photon and target spins. The standard Mandelstam variables s, t and u are used.

The optical theorem takes the form

~mfp,A= 2VUp,A. (27)

Thus in the forward direction, this extended sum rule reduces to the DHG Sum

Rule, with the use of u = v/M. A sum rule that relates Qa to total cross sections

does not exist:1

One of the most interesting consequences of the DHG sum rule occurs if we

take a point-like limit such that the threshold for inelastic excitation becomes .

infinite while the mass of the system is kept finite. In such a case the photoab-

sorption cross section and the integrals that appear in the RHS of the sum rules

vanish as the size R j Oor the excitation energy ~th - m. Thus in the point-like

limit, the magnetic moment of a spin-half system must approach the Dirac value

PfiPD = e/2M up to structure corrections of order M/A, [or (M/A)2 if the un-

derlying theory is chiral]?2 We can apply a similar limit for spin-one composite

systems: Qa ~ O and pa ~ O. Therefore P1 = % and Q1 = —& are the CanOni-

cal moments of a spin-one system. Note that this analysis is non-perturbative. In

the case of the standard model, the integrals in are higher order w 0(a2); thus

again ~w = fi and Qw = –*, Up to Schwinger-like radiative corrections of or-

der a/m. Thus in the point-like limit, both the magnetic moment and quadruple

moment of any spin-one system must approach the canonical values predicted by

electroweak theory for the Wf”

Note that any spin-half or spin-one system is required to satisfy the extended

DHG sum rule. Thus one cannot distinguish an elementary lepton, quark, W,
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or Z from a compact composite system simply on the basis that its magnetic

moment and quadruple moment are close to those predicted by the standard

model, since such behavior is also automatically attained for any composite system

with size small compared to its Compton scale, i.e. RM <<1. Specific models for

compositeness of leptons and intermediate vector bosons are discussed by Brodsky
.43

and Drell~2 Abbott and Farhl, 44 The DHG sumand Claudson, Farhi, and Jaffe.

rule has also been used to place constraints on quark and lepton compositeness
45

and excited states in the strong-coupling standard mode143 by Jaffe and Ryzak.

However, the case of the axial coupling of a composite system is more subtle.

As we shall show in the following section, the natural limit of gA for a composite

spin- ~ system is lim~~+o gA = A not 9A = 1 as required for leptons and quarks

in the standard model. Thus it would be necessary to enforce strict chiral sym-

metry if one wishes to use composite systems simulate the chiral properties of the

element ary fields of the standard model.

Hiller and 140 have also shown that the ratios of the three electromagnetic

form factors Gc : GM : GQ = (1 – $q) :2: – 1 are identical for elementary spin-

one W’s and for composite spin-one hadrons in QCD at large momentum transfer

since the leading helicity-conserving amplitude is dominant. Thus at large Q2,

perturbative QCD predicts that the ratio of form factors for deuterons~ P* ~etc. ~ .

become identical to those of the point-like spin-one fields of the standard model.

One of the most remarkable consequences of natural magnetic moments is

the prediction of null zones in exclusive radiative processes. For example the

tree-graph contributions to the differential cross section

do –
~( ud~w+~) = O (28)

at the special angle cos O = ed/eW = 1/3 provided that the W+ and the quarks

have natural magnetic and quadruple moments as defined by the DHG Sum

46 More generally, the Born contribution to any radiativerule and its extensions.

cross section with an arbitrary number of incident and outgoing charged lines will

vanish at the photon emission angle which satisfies the null zone condition that

all ratios el/pl. k are equal. Again this occurs only if provided p. = O and Qa = O.

Thus all helicity amplitudes for the subprocess u~jW+~ simultaneously vanish

at cos O = ed/eW provided that the W+ and the quarks have natural moments.
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The occurrence of null zones requires not only the destructive interference of

radiation from all of the convection currents p: + PJPof all of the incidentand
final particles, but in addition, the radiation from all of the spin currents must

also cancel among themselves. This fact follows from the same reason that the

precession and Larmor frequencies of a spin-~ particle in an external magnetic

field are identical when there is no anomalous moment and the gyromagnetic

rat io g = 2; in such a case the spin currents can be generated by a pseudo-Lorentz

transformation and the spin-current contributions vanish at the same angle = the

convection contributions. Thus the moments defined by the DHG sum rule and

its extension in the point-like limit also are the moments that preserve null zones.

A discussion of bounds on the W anomalous moment that can be obtained from

present pP~W~X data is presented in Ref. 47.

The Drell-Hearn sum rule also has important consequences for the computa-

tion of the magnetic moments of baryons in QCD. Magnetic moments are often

computed using the quark model formula ~ = ~~=1 pi . This formula is correct

in the case of atoms where the mass of the nucleus can be taken as infinite. How-

ever, magnetic moment additivity cannot be correct in general: the DHG sum

rule shows that in the limit of strong binding where the constituents become very

massive and the hadron becomes point-like, its magnetic moment must equal the

Dirac value, not zero as predicted by quark moment additivity. The flaw in the

conventional quark model formula is that it does not take into account the fact

that the moment of a system H is derived from the electron scattering amplitude

eH~e’H’ at non-zero momentum transfer q. The Dirac value in the point-like -

limit actually arises from the Wigner boost of the wavefunction from p to p+ q. A

detailed discussion of this and the resulting relativistic corrections to the moment

are given Ref. 48. On the ot her hand, the overlap of light-cone Fock wavefunctions

does provide a general method for the evaluation of hadronic magnetic moments
42

and form factors.

8 Regge Behavior of Deep
finctions

The high energy behavior s >> Q2 behavior

cross sections o~~f(s, Q2)

dictated by Regge theory.

Inelastic Structure

of the virtual photoabsorption

which underlay the deep inelastic structure functions is

In general, analyticity predicts that an hadronic ampli-
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tude at high energys > –t has the form of a sum of terms [l*exp(~~~R(~)]~(~)~”R(~)

where the + sign is determined by crossing symmetry. Each Reggeon corresponds

to systems of exchanged particles with specific global quantum numbers. The

longitudinal virtual photoabsorption cross sections a~,~(s, Q2) are related by the

optical theorem to the forward virtual Compton amplitude illustrated in Fig. 4(c);

thus Regge theory predicts OT,L x ~Rs aR(o)–l CR(Q2 ). The above form provides

an empirical method for extrapolating data into the Regge regime. One should

first analyze the Regge behavior of the virtual photoabsorption cross section at

fixed Q2, just as one does for hadronic cross sections such ~ ~(~+P) ‘~(~–P) in or-

der to set the domain where the Regge parameterization is applicable. The critical

issue is what happens in the Bjorken scaling limit. Do the Pomeron and Reggeon

contributions observed at fixed Q2 lead to Regge behavior of structure functions

~2(z, Q2) = ~~ CRX l–aR(o) at small x as a scaling function of x = Q2 /2Mv, or

do such terms decouple as Q2 increases?

The Regge behavior of structure functions can be analysed most simply within

the format of the “covariant parton model” developed by Landshoff, Polkinghorne

49 The virtual photoabsorption cross section has the space-time struc-and Short.

ture shown in Fig. 4(a).

The structure function F2(x, Q2) = Er,qe~xG~/N(x, Q2) can be thus written .

as an integration over quark- and antiquark-nucleon cross sections:
49

(29)

where ; = (k + p)2 is the subprocess energy squared and k2 = -~(~- k~) + -

XM2 – k~ is the interactingquark or antiquark virtuality.

The physics of the parton model corresponds to “aligned jet” regime where k~

and k2 are of order of hadronic scales. For this domain of kinematics F w – k2/z

for small x. Thus if orP(i, k2) N @“–l, then the structure functions will Bjorken-

scale and have the Regge behavior F2 (x, Q2) - xl–a” at small X. Additional

contributions to the structure functions also arise from the symmetric pair regime

where k2 w 0(Q2). For example, the leading twist contribution to FL(x, Q2)

which violates the Callan-Gross relation comes from this domain. However, in

this case

()
l–ffR

FL(z, Q2) - ~ CRa(Q2) ;

R

(30)
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Figure 4. Spacetime picture of deep inel~tic scattering in the target rest-frame. (a) Con-
tribution to the leading twist structure function from ~p interactions. (b) Tw@step scattering
process contributing to shadowing of nuclear structure functions. (c) Regge contributions to the
forward virtual Compton amplitude.

so that the Regge contributions to FL evidently do not scale if a~ < 1. Thus

aside from the Pomeron contribution, the non-leading Reggeons decouple from

the structure function contributions which arise from the k2 N 0(Q2) symmetric

jet regime.

It seems paradoxical that Regge behavior, which reflects soft hadron physics

and hadron exchange processes, could be compatible with the charge and mo-

mentum sum rules of the parton model. In fact if one considers the difference of

scattering of leptons on a proton and a gedanken “null” proton which consists of
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charge-less valence quarks, the Pomeron and Reggeon contributions to the deep

inel=tic structure functions cancel. An analysis of this problem is discussed in

Ref. 50.

g Polarization-Dependent Nuclear Shadowing

The space-time picture of deep inelastic scattering shown in Fig. 4(a) which

leads to Regge behavior of structure functions also provides the physical basis for

understanding the shadowing of deep inelmtic lepton-nucleus scattering cross sec-

tions~l In the small x domain, the q~ pair with mass M2 has an effective lifetime

T= O*= o (* )
in the nuclear target rest frame. Thus at small z, the

nuclear dependence of the virtual photoabsorption cross section will simply reflect

the nuclear dependence of the O~A(~) cross section at F = –k2/x. As in ordinary

Glauber theory, one must take into account “two-step” and higher multi-scattering

processes in a nuclear target, such as those shown in Fig. 4(b) where the quark

scatters coherently on an upstream nucleon N1 before interacting inelastically on

a nucleon N2 further inside the nucleus. Hung Jung Lu and I have shown 51 that

the Pomeron contributions to ~(~N) lead to destructive interference of the one-

step and multi-step scattering amplitudes, so that only the front nucleons in the

nucleus see the full hadronic structure of the incoming virtual photon, thus pro- .

ducing shadowing of the nuclear structure functions: a~*A(s, Q2) < A~~*~(s, Q2).

Conversely, the phase of the coherent Reggeon contributions to 3(~N) leads to

constructive interference of the one-step and multiple step amplitudes and hence

“antishadowing~: ~~*A(~, Q2) > Ao~.~(s, Q2) at moderateValuesof x - 0.13~~

52 The ratio of antishadowing tooriginally predicted by Nikolaev and Zakharov.

shadowing contributions is fixed from the observed Pomeron and Reggeon behav-

ior of the isospin singlet and non-singlet nucleon structure functions themselves.

Another interesting spin effect in QCD is the prediction that nuclear shad-

owing depends on the virtual photon polarization. In models where shadowing is

due to the deformation of nucleon structure functions in the nucleus, one would

not expect such any dependence on photon polarization. As noted above, nuclear

shadowing (in the target rest frame) arises from the destructive interference of

the multiple scattering of a quark (or antiquark) in the nucleus. The q~ pair is

formed at a formation time (coherence length) ~ ~ l/~bj~ before the target. In

order to get significant multiple scattering and interference one needs a coherence
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length comparable to the nuclear size. However, Hoyer, Del Duca, and I found53

that the coherence length is significantly shorter (bya factorof l/ti) for the

longitudinally polarized photon than the transverse cme. The re=on for this is

that the internal transverse momentum and hence the virtual mass and energy

of the q~ pair is larger by a nearly constant factor in the longitudinal case, thus

shortening its lifetime. Thus the nuclear attenuation is delayed to smaller values
54

of Xbj in the longitudinal compared to the transverse cross section. Nikol~v

has also recently discussed the possibility of smaller nuclear shadowing of OL on

the grounds that the q? system hw a smaller transverse size in the case of a lon-

gitudinally polarized photon, and it is thus more color transparent. In this case

diminished longitudinal shadowing would persist for all ~bj.

10 Connections between Global Spin Measures55

Light-cone quantization has a number of unique features that make it appeal-

ing for solving relativistic bound-state problems in the strong coupling regime.,

most notably, the ground state of the free theory is also a ground state of the

full theory, and the Fock expansion constructed on this vacuum state PrOVideS a

complete relativistic many-particle b~is for diagonalizing the full theory. 56 The

met hod seems therefore to be well-suited to solving quant urn chromodynamics. .

For practical calculations one approximates the field theory by truncating the Fock
57

space. The assumption is that a few excitations describe the essential physics,

and that adding more excitations only refines this initial approximation. This is

quite different from the instant formulation of QCD where an infinite number of

gluons is essential for formulating even the vacuum. In this paper we restrict our-

selves to an effective three-quark Fock description of the nucleon. In this effective

theory, all additional degrees of freedom (including zero modes) are parameterized

58 In such a theory the constituent quarks will also acquirein an effective potential.

effective masses and form factors.

After truncation, one could in principle obtain the mass M and light-cone

wavefunction [V) of the three-quark bound-states (see the Introduction) by solving

the Hamiltonian eigenvalues problem

Hf&tivelw)= M2[W). (31)

Given the eigensolutions [V) one could then compute the form factors and other
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properties of the baryons. Even without explicit solutions, one knows that the

helicity and flavor structure of the baryon eigenfunctions must reflect the =sumed

global SU(6) symmetry and Lorentz invariance of the theory. However, since we do

have an explicit representation for the effective potential in the light-cone Hamil-
tonian ~~& for three-quarks, we shall have to proceed by making an ansatz

for the momentum space structure of the wavefunction V. This may seem quite

arbitrary, but as we will show below, for a given size of the proton> the predictions

and interrelations bet ween observable at Q2 = O, such as the proton magnetic

moment pP and its axial coupling gA, turn out to be essentially independent Of

the shape of the wavefunction.

The light-cone model given in Ref. 59 provides a framework for representing

the general structure of the effective three-quark wavefunctions for baryons. The

wavefunction V is constructed as the product of a momentum wavefunction, which

is spherically symmetric and invariant under permutations, and a spin-isospin

wave function, which is uniquely determined by SU(6)-symmetry requirements. A

Wigner60 (Melosh61) rotation is applied to the spinors, so that the wavefunction

of the proton is an eigenfunction of J and J= in its rest frame. 62’63To represent

the range of uncertainty in the possible form of the momentum wavefunction we

choose two simple functions of the invariant mass M of the quark:

@H.0.(M2) = ~H.o. exp(-M2/2B2),

@P.Wer(M2) = ~Power(l + M2/@2)-p

where @ sets the scale of the nucleon size. Perturbative QCD

power-law fall off at large k~

can be written

where we used

and pi are the

as

(32)

predicts a nominal

corresponding to p = 3.5!8 The invariant mass M

(33)

the longitudinal light-cone momentum fractions xl = p: /~+ (~

nucleon and quark momenta, respectively, with ~+ = PO + ~Z).

The internal momentum variables Zl: are given by ~~~ = ~~; – xi~l with the

constraints ~ ~li = O and ~ xi = 1. The Melosh rotation has the matrix repre-
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61
sent at ion

(34)

with ; = (O, O, 1), and it becomes the unit matrix if the quarks are collinear

R~(Z;, O,m) = 1. (35)

Thus the internal transverse momentum dependence of the light-cone wavefunc-

tions also affects its helicity structure.

The Dirac and Pauli form factors F1 (Q2) and F2(Q2) of the nucleons are

given by the spin-conserving and the spin-flip vector current J~ matrix elements
(Q2 = _q2)42

F1(Q2) = (p+ q,t lJ; l~>t)>

(36)

(Ql - ~Q2)~2(Q2)= ‘2M(P + q! t lJ~lP> ~).

We then can calculate the anomalous magnetic momenta= lirnQ2-0 F2(Q2). [The .

total proton magnetic moment is pP = (e/2~)(1 + aP).] The same parameters aS

in Ref. 5g are chosen; namely, m = 0.263 GeV (0.26 GeV) for the UP- and down-

quark masses, and ~ = 0.607 GeV (0.55 GeV) for +POWer (@H.o. ) and p = 3.5.The
quark currents are taken as elementary currents with Dirac moments e~/2mq. All

of the baryon moments are well-fit if one takes the strange quark m=s as 0.38 GeV.

With the above values, the proton magnetic moment is 2.81 nuclear magnetons,

the neutron magnetic moment is – 1.66 nuclear magnetons* and the radius of the

proton is 0.76 fm; i.e. MPR1 = 3.63!9

In Fig. 5 we show the functional relationship between the anomalous moment

aP and its Dirac radius predicted by the three-quark light-cone model. The value

of R? = —6dF1 (Q2 )/dQ2 [Q2=0 is varied by changing @ in the light-cone wave-

function while keeping the quark mass m fixed. The prediction for the power-law

wavefunction @POWeris given by the continuous line; the broken line represents

@Ho.. Figure 5 shows that when one plots the dimensionless observable aPagainst

* The neutron value can be improved by relaxing the wumption of isospin symmetry.
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Figure 5. The anomalous magnetic momenta = Fz(0) of the proton = a function of ~PRl:
continuous line, pole type wavefunction; broken line, gaussian wavefunction. The experimental
value a = 1.79 at MPR1 = 3.63 is shown by the dotted lines. The model predictions are
essentially independent of the shape of the light-cone wavefunction.

the dimensionless observable MR1 the prediction is essentially independent of

the assumed power-law or Gaussian form of the three-quark light-cone wavefunc-

tion. Different values of p > 2 do also not affect the functional dependence of

ap(~p~l ) shown in Fig. 5. In this sense the predictions of the three-quark light-

cone model relating the Q2 ~0 observable are essentially model-independent. The .

only parameter controlling the relation between the dimensionless observable in

the light-cone three-quark model is m/MP which is set to 0.28. For the phys-

ical proton radius MPR1 = 3.63 one obtains the empirical value for aP = 1.79

(indicated by the dotted lines in Fig. 5).

The prediction for the anomalous moment a can be written analytically *

a = (~v)aNR, where a‘R = 2MP/3m is the non-relativistic (R~m) value and ~v
64

is given as

The expectation value (~v) is evaluated as+

(37)

t [d3k] = d~1d~zd~36(~1+ ~z + ~3). The third component of ~ is defined m k3i = }(zi~ –

(mz + z~i/~iM)). This mewure differs from the usual one used in Ref. 58 by the Jacobian
~ dkli/dzi, which can be absorbed into the wavefunction.
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(38)

We now take a closer look at the two limits R+m and R~O. In the non-

relativistic limit we let ~~0 and keep the quark m~s m and the proton mass

MP fixed. In this limit the proton radius R1 ~m and ap~2Mp/3m = 2.38 since

$ Thus the physical value of the anomalous magnetic moment at the(7V)+1 .

empirical proton radius MPR1 = 3.63 isreduced by 25% from its non-relativistic

value due to relativistic recoil and nonzero kl $.

To obtain the ultra-relativistic limit we let ~~m while keeping m fixed. In

this limit the proton becomes pointlike MPR1 +0 and the internal transverse mo-

menta k~~m. The anomalous magnetic momentum of the proton goes linearly to

zero as a = 0.43MPRl since (7v) ~0. Indeed, the Drell-Hearn-GerasimoV (DHG)

sum rule 35’36 demands that the proton magnetic moment becomes equal to the

Dirac moment at small radius. For a spin-~ system

(39)

where aP(~) is the total photoabsorption cross section with parallel (antiparallel)

photon and target spins. If we take the point-like limit, such that the thresh-

old for inelastic excitation becomes infinite while the mass of the system is kept

finite, the integral over the photoabsorption cross section vanishes and a = 0!2

In contrast, the anomalous magnetic moment of the proton does not vanish in

the non-relativistic quark model as R~O. The non-relativistic quark model does

not reflect the fact that the magnetic moment of a baryon is derived from lepton
48

scattering at non-zero momentum transfer ; i.e. the calculation of a magnetic

moment requires knowledge of the boosted wavefunction. The Melosh t ransfor-

mat ion is also essential for deriving the DHG sum rule and low energy theorems

(LET) of composite systems~8

$ This differs slightly from the usual non-relativistic formula 1+ a = E~(e~/e)(~P/~~) due to
the non-vanishing binding energy which results in MP # 3~~.

$ The non-relativistic value of the neutron magnetic moment is reduced by 31%.
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A similar analysis can be performed for the axial-vector coupling mewured in

neutron decay. The coupling gA is given by the spin-conserving axial current ~~

matrix element

9A(O) = (P, t lJj[P, t).

The value for gA can be written u gA = (7A)g~R
64,65

relativistic value of gA and with 7A as

(m+ XXM)2 -,.

(40)

‘R being the non-with gA

(41)

In Fig. 6 the axial-vector coupling is plotted against the proton radius ~pRl.

The same parameters and the same line representation as in Fig. 5 are used.

The functional dependence of gA(MpRl ) is also found to be independent of the

assumed wavefunction. At the physical proton radius MPR1 = 3.63 one predicts

the value gA = 1.25 (indicated by the dotted lines in Fig. 6) since (7A) = 0.75.

The measured value is gA = 1.2573+ 0.0028~6 This is a 25% reduction compared

to the non-relativistic SU(6) value gA = 5/3, which is only valid for a proton large ~

radius R1 >>1 /Mp. As shown by Ma and Zhang 65 the Melosh rotation generated

by the internal transverse momentum spoils the usual identification of the 7+75

quark current matrix element with the total rest-frame spin projection s%, thus

resulting in a reduction of gA.

Thus given the empirical values for the proton’s anomalous moment ap and

radius MPR1, its axial-vector coupling is automatically fixed at the ValuegA =

1.25. This prediction is an essentially model-independent prediction of the three-

quark structure of the proton in QCD. The Melosh rotation of the light-cone

wavefunction is crucial for reducing the value of the axial coupling from its non–

relativistic value 5/3 to its empirical value. In Fig. 7 we plot gA/gA (Rl +00)

versus ap/ap (Rl ~00) by varying the proton radius R1. The near equality of these

ratios reflects the relativistic spinor structure of the nucleon bound state, which is

essentially independent of the detailed shape of the moment urn-space dependence

of the light-cone wavefunction.

We emphasize that at small proton radius the light-cone model predicts not
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Figure 6. The axial vector coupling 9A of the neutron to proton decay w a function of
MP R1: line code as in Fig. 5. The experimental values 9A = 1.26 and MPR1 = 3.63 are shown
by the dotted lines.
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Figure 7. The ratio 9A/9A(Rl ~oo) versus the ratio aP/aP(Rl ~oo) obtained by varying
the proton radius R1. The experimental values are indicated by the dotted lines.

only a vanishing anomalous moment but also

lim gA(~p~l) =0.
RI-o

(42)

One can understand this physically: in the zero radius limit the internal transverse

momenta become infinite and the quark felicities become completely disoriented.

31



This is in contradiction with chiral models which suggest that for a zero radius

composite baryon one should obtain the chiral symmetry result gA = 1.

The helicity measures Au and Ad of the nucleon each experience the same

reduction as gA due to the Melosh effect. Indeed, the quantity Aq is defined by

the axial current matrix element

Aq= (P,T lq?+v5ql~,T)) (43)

and the value for Aq can be written analytically w Aq = (~A)AqNRwith AqNR

being the non-relativistic or naive value of Aq and with VA given in Eq. (41).

@= Au+Ad
0.8 - ——— ——— ——

0.4 -

0
0 2 4 6

z-s. MRI 7**EM

Figure 8. The quantity AZ = Au+ Ad of the proton w a function of MPR1. The experi-
mental value MPR1 = 3.63 is indicated by the dotted lines.

Figure 8 shows the prediction of the light-cone model for the quark helicity

sum AZ = Au + Ad as a function of the proton radius R1. The same parameters

and the same line representation w in Fig. 5 are used. This figure shows that the

helicity sum Ax defined from the light-cone wavefunction depends on the proton

size, and thus it cannot be identified as the vector sum of the rest-frame con-
65

stituent spins. As emphasized by Ma, the rest-frame spin sum is not a Lorentz

invariant for a composite system. Empirically, one can measures Aq from the first

moment of the leading twist polarized structure function gl (z, Q). In the light-

cone and parton model descriptions, Aq = ~01dz[qt(z) – ql($)], where qt(~) and

ql (z) can be interpreted as the probability for finding a quark or antiquark with
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longitudinal momentum fraction z and polarization parallel or antiparallel to the

proton helicity in the proton’s infinite momentum frame!8 [In the infinite momen-

tum there i8 no distinction between the quark helicity and its spin-projection s..]

Thus Aq refers to the difference of helicitie8 at fixed light-cone time or at infinite

momentum; it cannot be identified with q(s~= +1)–q(sZ= –~),thespincarried

by each quark flavor in the proton rest frame in the equal time formalism.

One sees from Fig. 8 that the usual SU(6) values Au ‘R = 4/3 and AdNR =

–1/3 are only valid predictions for the proton at large MR1. At the physical

radius the quark felicities are reduced by the same ratio 0.75 as gA/g~R due

to the Melosh rotation. Thus for MPR1 = 3.63, the three-quark model predicts

Au = 1, Ad = –1/4, and AX = Au+Ad = 0.75. Although the gluon contribution

AG = O in our model, the general sum rule67

;A~+AG+Lz=: (44)

is still satisfied, since the Melosh transformation effectively contributes to LZ.

Suppose one adds polarized gluons to the three-quark light-cone model. The

flavor-singlet quark-loop radiative corrections to the gluon propagator will then

give an anomalous contribution 6(Aq) = –*AG to each light quark helicity~8 ~

The predicted value of gA = Au –“ Ad is of course unchanged. For illustration

we shall choose ~AG = 0.20. The gluon~enhanced quark model then gives the

values in Table 1, which agree well with the present experimental values. Note

that the gluon anomaly contribution to As has probably been overestimated here

due to the large strange quark m=s.

In summary, we have shown that relativistic effects are important for under-

standing the spin structure of the nucleons. By plotting dimensionless observable

against dimensionless observable we obtain model-independent relations indepen-

dent of the momentum-space form of the three-quark light-cone wavefunctions.

For example, the value of gA E 1.25 is correctly predicted from the empirical value

of the proton’s anomalous moment. For the physical proton radius ~P~l = 3.63

the inclusion of the Wigner (Melosh) rotation due to the finite relative transverse

momenta of the three quarks results in a R 25% reduction of the non-relativistic

predictions for the anomalous magnetic moment, the axial vector coupling, and

the quark helicity content of the proton.
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Table 1

Comparison of the quark content of the proton in the non-relativistic quark model

(NR), in our three-quark model (3q), in a gluon-enhanced three-quark model

(3q+g), and with experiment?g

Quantity NR 3q 3q+g Expt .

Au $ 1 0.80 0.80+ 0.04

Ad –~ –~ -0.45 –0.46 + 0.04

As O 0 -0.20 –0.13 * 0.04

I AZ 1 : 0.15 0.22* 0.10 I

In the next section I will discuss theoretical constraints on the shape of the

quark and gluon helicity distributions which follow from general QCD principles.

~ 11 Perturbative QCD Constraints on the Shape
of Polarized Quark and Gluon Distributionsg

The measurements of polarization correlations in high momentum transfer re- ~

actions provide highly sensitive tests of the underlying structure and dynamics

of hadrons. The most direct information on the light-cone momentum distribu-

tions of helicity-aligned and helicity-anti-aligned quarks in nucleons is obtained -

from deep inelastic scattering of polarized leptons on polarized targets. The re-

cent fixed-t arget measurements, the SMC muon-deuteron and muon-proton ex-

periments at CERN,69’2S and the electron-He3 experiments E142 and E143 at

SLAC ‘o are now providing important new constraints on the proton and neutron

helicity-dependent structure functions.

Although the Q2-evolution of structure functions is well-predicted by pertur-

bative QCD, the initial shape of these distributions reflects the non-perturbative

quark and gluon dynamics of the bound-state solutions of QCD. Nevertheless,

it is possible to accurately predict some aspects of the shape of the nucleon

structure functions from perturbative arguments alone. In fact as Burkardt and

Schmidt g and I have recently shown, one can derive an analytic parameterization

of the polarized quark and gluon distributions in the nucleons which incorporates

34



general constraints obtained from the requirements of color coherence of gluon

couplings at x ~ O and the helicity structure of perturbative QCD couplings at

x ~ 1. The predicted forms provide useful guides to the expected shapes of the

polarized structure functions.

As discussed in the introduction and appendix, the polarized quark and gluon

distributions G~/H (z, A, Q) and GglH (z, A, Q) of a hadron are probability distribu-

tions determined by the light-cone wavefunctions $n(~i, k~a, ~i), where ~~=1 xi =

1, and ~~=1 kli = 01. The square of the invariant mass of an n-particle Fock

State configuration in the wavefunction is M; = ~~=1 (~~i + ~~)/Xi. Thus the

kinematical regime where one quark has nearly all of the light-cone momentum

x ~ 1, and the remaining constituents have xi w 0, represents a very far off-shell

configuration of a bound state wavefunction. In the limit x+1, the Feynman vir-

tuality of the struck parton in a bound state becomes far off-shell and space-like:

k; – m2 = x(M; – M2)- – p2/(1 – x), where p is the invariant mass of the

system of stopped constituents. If one assumes that the bound state wavefunction

of the hadron is dominated by the lowest invariant mass partonic states, then the

constituents can attain far off-shell configurate ions only by exchanging hard gluons;

thus the leading behavior at large virtuality can be computed simply by iterating

the gluon exchange interaction kernel~l’72’58 This conforms to the usual ansatz ~

of perturbative QCD that hard perturbative contributions dominate amplitudes

involving high momentum transfer compared to the contributions arising from

non-perturbative sources.

Thus, because of asymptotic freedom, the leading order contributions in a~(k~)

to the quark and gluon distributions at x+1 can be computed in perturbative

QCD from minimally connected tree graphs. For example, in the case of the nu-

cleon structure functions, the dominant amplitude is derived from graphs where

the three valence quarks exchange two hard gluons. The tree amplitude is then

convoluted with the nucleon distribution amplitude #(xi, k;) which is obtained

by integrating the valence three-quark nucleon wavefunction @3(Xi, ~li, ~i), Over

transverse momenta up to the scale kF2 !8 The dkld~ azimuthal loop integrations

project out only the L. = Ocomponent of the three-quark nucleon wavefunction.

Thus, in amplitudes controlled by the short distance structure of the hadron’s

valence wavefunction, orbit al angular momentum can be ignored, and the valence

quark felicities sum to the hadron helicity.
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Thelimiting power-law behavioral z41 of the helicity-dependent distribu-

tions derived from the minimally connected graphs is

Gq/H ~ (1 – X)p, (45)

where

p=2n–l+2ASz. (46)

Here n is the minimal number of spectator quark lines, and AS, = [S: – S? I = O

or 1 for parallel or anti-parallel quark and proton felicities, respectively. 71 This

count ing rule reflects the fact that the valence Fock states with the minimum num-

ber of constituents give the leading contribution to structure functions when one

quark carries nearly all of the light-cone momentum; just on phase-space grounds

alone, Fock states with a higher number of partons must give structure functions

which fall off f~ter at x+1. The helicity dependence of the counting rule also re-

flects the helicity retention properties of the gauge couplings: a quark with a large

momentum fraction of the hadron also tends to carry its helicity. The antiparallel

helicity quark is suppressed by a relative factor (1 – X)2. Similarly, in the cme of

a splitting function such as q~qg or g+~q, the sign of the helicity of the parent .
73

parton is transferred to the constituent with the largest momentum fraction.

The counting rule for valence quarks can be combined with the splitting functions

to predict the x+1 behavior of gluon and non-valence quark distributions. In

particular, the gluon distribution of non-exotic hadrons must fall by at least one

power faster than the respective quark distributions.

The counting rules for the end-point-behavior of quark and gluon helicity dis-

tributions can also be derived from duality, i.e. continuity between the physics

of exclusive and inclusive channels at fixed invariant mass. 74 As shown by Drell

75 a quark structure function GgiH w (1 – X)2n–1 at X+1 if the cor-and Yan,

responding form factor ~(Q2) N (1 /Q2 )“ at large Q2. Recent measurements of

elastic electron-proton scattering at SLAC 76 are compatible with the perturbative

QCD predictions 12 for both the helicity-conserving ~1 (Q2) and helicity-changing

~2 (Q2) form factors: Q4~1 (Q2) and Q6~2(Q2) become approximately constant at

large Q2. The power-law fall-off of the form factors corresponds to the helicity-

parallel and helicity-antiparallel quark distributions behaving at z-1 as (1 – Z)3
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and (1 – X)5, respectively, in agreement with the counting rules. The leading ex-

ponent for quark distributions is odd in the case of baryons and even for mesons

in agreement with the Gribov-Lipatov crossing rule8 -

The counting rule predictions for the quark and gluon distributions are rele-

vant at low momentum transfer scales Q. - AQCD in which the controlling physics

is that of the hadronic bound state rather than the radiative corrections associated

with structure function evolution. At the hadronic scale one can normalize the

non-singlet quark helicity content of the proton and neutron using the constraint

from ~ decay: 66

Au – Ad = ~ = 1.2573 k 0.0028. (47)
9V

where A~i(~) = qj(x) – q,:(z) with i = u, d,s is the difference of the helicity-

aligned and helicity-anti-aligned quark distributions in the proton, and Aq; =

~~ d~qi(~) is the integrated moment. [In the standard notation q+(~,Q) =

Gq/p(z>A9 = ~p>Q) + Gr/p(z>~g= Ap,Q) so that both quark and anti-quark

contributions are included.] In addition, if one assumes SU(3) flavor symmetry,

hyperon decay also implies a polarized strange quark component in the proton
77, 78

wavefunction

Au+ Ad–2As =039

a.

Thus only one normalization is left undetermined.

. (48)

The presence of polarized gluons in the nucleon wavefunction implies that

polarized strange quarks contribute to the nucleon helicity-dependent structure

functions at some level. There is also evidence from neutrino-proton elastic scat-

tering that the proton has a significant polarized strange quark content!’

The helicity-dependent structure function gl (z, Q2) measured in deep inelas-

tic polarized-lepton polarized-proton scattering can be identified in the Bjorken

scaling region with the quark helicity asymmetry:

91(Z, Q2) = ~ ~ e~Aq(z, Q2) . (49)

i

The first moment of the proton-neutron difference has zero anomalous dimension

and satisfies the Bjorken sum rule 73 (Eq. (16)), including radiative corrections
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from hard gluon interactions in the electron-quark scattering process!g Thus the

QCD radiative corrections80 to the helicity-dependent structure functions can

modify the shape of the distributions, within the global constraint of the Bjorken

sum rule.

At high Q2, the radiation from the struck quark line increases the effective

power law fall-off (1 – z)P of structure functions relative to the underlying quark

distributions: Ap = (4CF/@l) log(log Q2/A2)/(log Q~/A2) where CF = 4/3 and

P1 = 11 – (2/3)n~. The counting rule predictions for the power p thus provide

a lower bound for the effective exponent of quark structure functions at high

Q2 > Q~. However, in the end-point region z w 1, the struck quark is far off-

shell and the radiation is quenched since one cannot evolve Q2 below Q; & k; =

–(p2/(1 – z)), the Feynman virtuality of the struck parton~l Furthermore, the

integral of the gl structure function is only affected by QCD radiative corrections

of order a$(Q2)/T.

Thus PQCD can give useful predictions for the power law fall-off of helicity-

aligned and ant i-aligned structure functions at x N 1. Higher order cent ribut ions

involving additional hard gluon exchange are suppressed by powers of ~g (k;).

Further iterations of the interaction kernel will give factors of fractional powers of

log(l – x) analogous to the anomalous dimensions logY” Q2 which appear in the ~

PQCD treatment of form factors at large momentum transfer~2 This is in contrast

to super-renormalizable theories such as QCD( 1+ 1) where the power-law behavior
82

in the endpoint region is modified by all-order cent ributions.

The fact that one has a definite prediction for the x N 1 behavior of leading

twist structure functions is a powerful tool in QCD phenomenology, since any

contribution that does not decrease sufficiently fast at large z is most likely due

to coherent multi-quark correlations. As discussed in Ref. 13, such contributions

are higher twist, but they arise naturally in QCD and are significant at fixed

(1 – X)Q2. Such coherent contributions are in fact needed in order to explain the

anomalous change in polarization seen in pion-induced continuum lepton-pair and

hadronic J/@ production experiments at high XF!3

At large x the perturbative QCD analysis predicts “helicity retention” —

i.e. the helicity of a valence quark with x N 1 will matches that of the parent

nucleon. This result is in agreement with the original prediction of Farrar and

Jackson72 that the helicity asymmetry Aq(x) approaches 1 at x+1. We also
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predict, in agreement with Ref. 72, that the ratio of unpolarized neutron to

proton structure functions approaches the value 3/7 for z+l.

In the following sections we will analyze the shape of-the polarized gluon and

quark distributions in the proton. First we will study the behavior of the gluon

asymmetry AG(z)/G(z) (polarized over unpolarized distributions) at small values

of x, where it turns out to be proportional to z with a coefficient approximately

independent of the details of the bound-state wavefunction. We then write down

a simple model for the gluon distributions which incorporates the counting rule

constraints at x+1. The same is done for the up, down and strange quark distribu-

tions. The extrinsic and intrinsic strange quark distributions are also discussed,

paying special attention to the inclusive-exclusive connection with the strange

quark contribution to the proton form factors.

12 Helicity-Dependent Gluon Distributions

The angular momentum of a fast-moving proton has three sources, the angular

moment urn carried by the quarks, the angular moment urn carried by the gluons,

and the orbit al angular momentum carried by any of the constituents. Angular

momentum conservation for J= at a

:( Au+ Ad+

fixed light-cone time implies the sum rule2’67

As) + AG + (L,) = ~. (50)

Here AG s ~01dxAG(z) is the helicity carried by the gluons, where AG(x) is

the difference bet ween the helicity-aligned and anti-aligned gluon distributions

G+(x) and G–(x); the unpolarized gluon distribution G(z) is the sum of these

two functions, G(x) s G+(x) + G-(z). The corresponding definitions for the

quark distributions Aq(x) = q+(x) – q–(x) and q(x) = q+(z) + q–(x) with q =

u, d,s. By definition, the antiquark contributions are included in Aq(x) and q(x).

As emphasized in Section 10 and by Ma~5 the helicity distributions measured

on the light-cone are related by a Wigner rotation (Melosh transformation) to

the ordinary spins S: of the quarks in an equal-time rest-frame wavefunction

description. Thus, due to the non-colinearity of the quarks, one cannot expect

that the quark felicities will sum simply to the proton spin.

In this section I shall discuss model forms for the gluon distribution functions

AG(x) and G(x) for nucleons which incorporate the known large-x counting-rule

39



constraints:

G+(z)~C(l – z)* (X+l) , (51)

G-(z)~C(l – X)6 (X+l) ; (52)

We shall also implement a basic constraint on the behavior of the gluon asymmetry

ratio AG(z)/G(x) for small x :

(%$))proton+i(:)‘X+o)o (53)

This last theoretical constraint will be demonstrated below. Here (l/y) stands for

the first inverse moment of the quark light-cone momentum fraction distribution

in the proton lowest Fock state. For this state we expect (l/y) R 3.

A simple form for baryon gluon distributions, which incorporates the limiting

behaviors presented above, is

AG(x) =+ [1 – (1 – X)2] (1 – X)4,

G(x) =+ [1+(1 – Z)2](1 – X)4.

In this model the momentum fraction carried by the gluons in the proton is (x~) ~

~~ dzxG(x) = #N, and the helicity carried by the gluons is AG - ~~ dxAG(x) =

(11/30)N. Taking the momentum fraction (x~) to be 1/2, we predict AG = 0.54.

Such large values for the gluon momentum fraction are inconsistent with the

assumption that the proton h~ a dominant three-quark Fock state probability;

a self-consistent approach thus requires taking into account gluon radiation from

the full quark and gluon light-cone Fock basis of the nucleon. Our main emphasis

here is to predict the characteristic shapes of the polarized quark and gluon dis-

tributions. The large x regime is clearly dominated by the lowest particle-number

Fock states. We thus expect that the qualitative features of the model to survive

in a more rigorous approach; in particular, it is apparent from the structure of the

model, that the gluon helicity fraction will be of the same order of magnitude as

the gluon momentum fraction.
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The prediction that AG = 0,5 is phenomenologically interesting. If one also

accepts the experimental suggestion from EMC that the quark helicity sum Au+

Ad is small, then this implies that gluons could carry a-large part of the proton

helicity JZ = 1/2. However, one then also expects significant orbital angular

moment urn L= which arises, for example, from the finite transverse momentum

associated with the q+qg gluon emission matrix element.

We now proceed to prove Eq. (53) for the low-x behavior of the asymmetry

AGOG. In this region the quarks in the hadron radiate coherently, and we

must consider interference between amplitudes in which gluons are emitted from

different quark lines. An analysis of this type wa first presented in Ref. 84, and

in this note we extend and correct some of the results of that paper.

As an example, we first analyze the helicity content of positronium, where we

can ignore internal transverse momenta and non-collinearity. Consider the ortho-

positronium tw~fermion JZ = 1 Fock state in which the particles have felicities

+ +. Following the calculation of Ref. 84, we obtain

()AG(x)

()

1
Ex— E 2x (X+o) .

‘(x) .,tho(Jz=+l) y
(55)

In the case of para-positronium (and also for Jz = O ortho-positronium), in which ~

we start with a Fock state with felicities + —, the result is AG(x) = O. This is

because for every diagram in G+(x) there is a corresponding diagram in G– (x),

but with the felicities of all the particles reversed.

We now apply a similar analysis to the gluon distribution in the nucleon. We

start with a three-quark Fock state in which the quarks have felicities + + + as

would be appropriate for the helicity content of an isobar state A with JZ = 3/2.

Then the result found in Ref. 84, i.e.

()AG(x)

()

1
?x—

‘(x) A(J.=3/2) Y
(56)

follows.

In the nucleon case, however, we start with a three-quark Fock state with

felicities + + –. Thus clearly there is a cancellation between the squared terms

in which the gluon is emitted from one of the positive helicity quarks versus
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the contributions in which the gluon is emitted by a negative helicity quark.

The interference terms work similarly, ensuring a finite result for both G(x) and

AG(z) at zero kl, just as in the case of photon distributions in positronium. Then

the positive helicity quarks have a dominant G+(z) and contribute positively to

AG(z); similarly, the negative helicity quarks contribute negatively to AG(z). To

see this more clearly, consider the photon emitted by a single electron with J%=

+1/2. Then G~,~(z) = l/z and G~,~(z) = (1 – Z)2/Z. Thus AG(z)/G(z) = x

at x+O with unit coefficient in this case. The sign reverses for an electron with

J%= –1/2.

The generated gluon asymmetry distribution in the nucleon at low x is then

given by Eq. (53). The extra factor of 1/3 is due to the fact that all the quarks

contribute positively to G(x), but they give contributions proportional to the

sign of their helicity in AG(x). The main assumption setting the value of the

gluon asymmetry at x~O is the estimated value of the inverse moment (l/y).

For realistic wavefunctions this expectation value may receive very large (possi-

bly divergent) contributions from near y = O. However, one must be careful at

this point because in deriving Eq. (53) we assumed that x << y. In order to be

consistent with this assumption we will perturb around a constituent quark wave-

function which is strongly peaked around y = (y) = 1/3. We have furthermore .

assumed for simplicity that (y) is the same for all valence quarks, although this is

85 (One could improve the estimateinconsistent with results from QCD sum rules.

for (l/y) by allowing for different momentum fractions for the helicity-up and

helicity-down quarks. This would evidently reduce AG, since it is known that (y) -

is larger for helicity parallel quarks. Furthermore, in QCD we expect that higher

Fock states will contribute to reduce the value of (y) away from 1/3, which would

be the expected value if only the three-quark valence Fock state was present.)

13 The Shape of Helicity-Dependent Quark Dis-
tributions

As I have discussed in the previous sections, at x w 1 PQCD predicts that

the helicity-parallel quark distribution q+(x) is enhanced relative to the helicity-

antiparallel quark distribution q– (z) by two powers of (1 – x). The property of

helicity retention at large x is a direct consequence of the gauge theory couplings

between quarks and gluons. For the valence quarks in a nucleon the counting rules
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predict

q+(z) * (1 – Z)3 (X+l), (57)

and

q-(x) - (1 – X)5 (X+l). (58)

Thecase of thenon-valence strange quarks issomevvhat more complex and will

be discussed in detail in the next section. The result is

s+(x) - (1 – X)5 (X+l), (59)

s-(x) ~ (1 – X)7 (X41). (60)

For x w O the helicity correlation disappears since the constituent has infinite

rapidity Ay = log x relative to the nucleon’s rapidity.

The strange quark distribution in a nucleon can arise from both intrinsic and

extrinsic contributions. The intrinsic contribution is associated with the multipar-

ticle Fock state decomposition of the hadronic wavefunction, and it is essentially

of non-perturbative origin. This is in contrast to the extrinsic component, which

arises from S3 pair production from a gluon emitted by a valence quark, and is

associated with the self-field of a single quark in the proton. From evolution and

gluon splitting, the extrinsic strange contributions are known to behave as

S$(x) ~ (1 – X)5 (X+l) (61)

s;(x) - (1 –X)7 (X+l) . (62)

The Drell-Yan inclusive-exclusive connection relates the high Q2 behavior of

the hadronic form factors to the large x limit of the quark distribution functions;

i.e.

~(Q2) ‘>” —
(Q:). U Gq,p ‘s (1 _ x)2~-l+2ASz, (63)

where AS= = O or 1 for parallel or antiparallel quark and proton felicities, re-

spectively. If we naively apply this prescription to the extrinsic strange quark
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component, we would predict that the strange quark cent ribut ion to the electro-

magnetic proton form factor should fall as 1/Q6, since in this case n = 3. But

a direct calculation of the strange quark contribution to either the axial or vec-

tor form factor of the nucleon gives only a nominal l/Q4 behavior, which is the

same power-law fall-off = the valence quark cent ribut ion. In the leading order

calculations the loop integrals connecting a hard S3 loop to a valence quark all

have momenta 1 = O(Q), thus producing radiative corrections of order a$(Q), to

the exclusive amplitude with N = 2 (axial) or N = 3 (vector), rather than extra

25s The solution to this apparent contradiction is that we shouldpowers of l/Q .

apply the inclusive-exclusive connection for the strange quark contributions to a

transition form factor connecting an initial state with three quarks (uud) to a final

state in which a strange pair has been created (uuds~), as in the transition form

factor p4AK, at fixed final state mass. Since the internal hard-scattering matrix

element TH for (uud) + 7* ~suduz has three off-shell fermion legs! this transition

form factor falls off as (1/Q2 )3, and it correctly satisfies the inclusive-exclusive

connection (n = 3).

One can also consider the case where Q2 and the final state mass are both

large, but there is a K and A in the final state. This again corresponds tO a

* (1 – X)5 structure function. In the case of the transition p+p~, there is a color

mismatch in TH at lowest order. Thus this amplitude should be suppressed (Zweig

rule) by an extra power of as (Q2). Of course all of this holds for the analogous

charm systems as well.

The intrinsic strange components are associated with Fock states having at

least five particles; the distributions thus have the behavior

(64)

s;(z) ~ (1 – Z)g (X+l) , (65)

which corresponds to n = 4 in the spectator quark counting rules. It also satisfies

the inclusive-exclusive connection, since the intrinsic contribution to the form

factor falls as (1/Q2)4.
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For the complete parameterization we shall adopt the canonical forms:

U+(Z) = : [AU(l - X)3+ B.(1 - X)4],

d+(z) = ~ [A,(l - X)3+ B,(1 - X)4],
x~

u–(z) = + [cu(l - $)5+ D.(1 - X)6],

d-(x) = ~ [Cd(l - X)5+ D,(l - Z)6] ,
Xff

S+(Z) = # [A.(1 – X)5 + B.(1 – x)6] ,

s-(x) = : [C.(1 - X)7+ D.(1 - X)8],
Xff

(66)

(67)

(68)

(69)

(70)

(71)

where we require

Aq+B~=Cq+Dq (72)

to ensure the convergence of the helicity-dependent sum rules. Thus in our model,

the Regge behavior of the asymmetry Aq(z) w x ‘a~ is automatically one unit less

than the unpolarized intercept: ~R = a – 1. Isospin symmetry at low x (Pomeron

dominance) also requires

Aa+Bu+c.+Du=Ad+Bdtcd+Dd . (73)

We emphasize that these distributions include both the quark and antiquark con-

tributions.

Our parameterization of the helicity-dependent quark distributions is close in

spirit to the parameterization D~ for the unpolarized quark and gluon distribu-

tions given by Martin, Roberts and Stirling. 86 The MRS parameterization is a

good match to our unpolarized forms q(x) = q+(x) + q– (x) since the MRS forms

combine counting-rule constraints with a good fit to a wide range of perturbative

QCD phenomenology. We find that choosing the effective QCD Pomeron intercept
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a = 1.12 allows good match to the unpolarized quark distributions given by the

MRS parameterization Di at Q2 = 4 GeV2 over the range O.oo1c z <1. It alSO

predicts an increasing structure function F2(z, Q2) at small x x < 10–3, as sug-

gested the recent data from HERA. 8’ Thus we predict a~ = 0.12 for the helicity-

changing Reggeon intercept. The momentum fraction carried by the quarks (and

antiquarks), (xq) = JO1dzzq(z), where q(z) ~ q+(x) + q–($)! is assumed tO be

- 0.5.

The analysis by Ellis and Karliner 1’29 combining the SLAC ‘s, EMCsg and

NMC ‘o polarized electron-proton data provides the constraint:

I
dxg~(z) = 0.128A 0.013 (stat)+ 0.019 (syst.) (74)

at (Q2) = 10.7 GeV2. As discussed in Section 1, this value together with the

constraints from nucleon and hyperon decay leads to the following values for the
29

proton helicity carried by the different quarks:

Au = 0.82& 0.04, Ad= –0.44 + 0.04, As = –0.11 + 0.04. (75)

The relatively small value for the total quark helicity Ax = Au + Ad+ As =

0.27 + 0.10 is consistent with large NC predictions in QCD. 2 As discussed in

Section 10, the prediction of a three quark relativistic model is AE N 0.75. Thus

the empirical values also implies a significant contribution of the proton’s helicity -

is carried by gluon and orbital angular momentum. For the purposes of this

section I shall assume these three values as initial phenomenological inputs for

the proton; the neutron distributions then follow from isospin symmetry.

It is straightforward to find parameters for the polynomial forms which are

consistent with the above inputs as well as the MRS DI parameterization

A. = 3.361, Ad = 0.672, A, = 0.001, (76)

Bu = –3.188, Bd = –0.499, Bs = 0.073, (77)

C. = 1.574, cd = 3.286, Cs = 0.787, (78)
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D. = –1.401, Dd = –3.113, D. = –0.713 . (79)

With these set of parameters, the quark felicities in the proton are:

Au= 0.82, Ad= –0.44 , As = –0.11 , (80)

and the respective quark momentum fractions are:

(zu)= 0.322, (~d)= 0.214, (zs)= 0.04. (81)

Thus the helicity carried by the quarks with this parameterization is Aq = 0.27,

and the momentum carried by the quarks is then Zq (~g) = 0.57. The model

predicts that the helicity carried by the strange quark is quite large and negative
91

relative to the nucleon helicity.

Note that Ad(x) = d+(z) – d-(z) is positive at large x, and negative at small

to moderate values of x. One thus expects that Ad(x) will change sign and go

through zero at some physical value for x. With the above parameterization the

zero of Ad(x) occurs at x = 0.507.

We can also find a parameterization for the polarized gluon distributions which

are consistent with the x~O and x+1 helicity constraints, as well m the MRS

unpolarized gluon distribution:

G+(x) = > [A,(l - x)4+ B,(l - X)5] , (82)

G-(x) = ~ [A,(l - X)6+ B,(l - X)7] , (83)
xff9

with a~ = 1, A~ = 0.2381 and ~g = 1.1739. This form incorporates the coherence

constraint, Eq. (53), as well as momentum conservation: (xg) = 1 – X9 (xg) =

0.43. The result for the unpolarized distribution G(x) = G+(x) + G–(x) is in-

distinguishable from the phenomenological Di gluon distribution given by MRS.

With these values the helicity carried by the gluon in the nucleon is AG = 0.45.

If we require the same Pomeron intercept ag = a = 1.12, for the gluon and

quark distributions at x~O, then a fit to the MRS Di form gives parameters Ag =

2 and Bg = –1.25. The result for the helicity carried by the gluon, AG = 0.46,

is essentially unchanged from the ~g = 1 case. However, the agreement with the

shape of the MRS unpolarized parameterization is somewhat worse.
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14 Predictions for Polarized Structure Wnctions

In the following we will use the model forms for Aq(z) and q(z) to calculate

the polarized helicity structure functions of nucleons: -

and

(84)

(85)

and compare the results to the recent experiments. (Note that Aq(z ) refers to

the combined asymmetries from both quarks and antiquarks in the proton.) In

the final predictions we will, as in Ref. 77, include the normalization factor

NQCD = 1 – (as/T) w 0.92 arising from QCD radiative corrections. The Bjorken

sum rule for the difference of proton and neutron quark felicities is automatically

satisfied. The Ellis-Jaffe sum rule for the nucleon quark helicity is violated by the

model due to the presence of the strange quark contributions As.

We have emphasized that the dynamics of QCD implies helicity retention:

the quark with x close to 1 has the same helicity as the proton. Thus all of ~

the structure functions asymmetries become maximal at x+1, and the ratio of

unpolarized proton and neutron structure functions can be predicted.

According to the standard SU(6) flavor and helicity symmetry, the proba- -

bilities to find u and d quarks of different felicities in the proton’s three-quark

wavefunction are: ~(u+) = 5/9, ~(d+) = 1/9, P(u–) = 1/9, P(d–) = 2/9!2 Thus

the usual expectation from SU(6) symmetry is F2(n)/F2 (p) = 2/3 for all x. As

Farrar and Jackson pointed out ~ this naive SU(6) result cannot apply to the

local helicity distributions since the helicity aligned and helicity anti-aligned dis-

tributions have different momentum distributions. At large x u– and d– can be

neglected relative to u+ and d+, and thus SU(6) is broken to SU(3)+ x SU(3)–.

Our model retains the SU(6) ratio P(u+)) : P(d+)) = Au : Ad = 5:1, at large z

so that we predict F2 (n) /F2 (p) ~3/7 as x+1. The physical picture that emerges

is that the struck quark carries all the helicity of the nucleon, and the specta-

tors have SZ = O, although their total helicity is a combination of O and 1. This

wavefunction is just a piece of the full SU(6) wavefunction, but since it is the
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Figure 9. (a) Model prediction for the polarized helicity structure function of the proton
(4.1) compared with experiment. Full line: sum of all flavors; dashed: only up quarks; dotted:
only down quarks; dash-dotted: only strange quarks. The data is from the combined SLAC-
EMCS8’89 analysis. (b) same w (a) but for the neutron. The data are from the SLAC E142

70
experiment.

piece that contains the u+ and d+, and this part remains unchanged, the ratio

PAP is still 5/1.

Notice that the only empirical input into our model is the integrated values of

the various flavors obtained from the proton data. Only the shape is determined

by perturbative QCD arguments. The agreement with the shape of the SLAC and

EMC experimental data for the proton is quite good. (See Fig. 9.) For the neutron

we predict two new effects which are not present for the proton. First gfn tends

to fall f~ter than g~p for large X. This is because as in the Carlitz-Kaurg3 and

Farrar-Jackson72 models, the helicity aligned up-quark dominates the proton

distribution and the helicity down quark dominates the neutron structure function

at large x. A related effect is that g~n(x) changes sign as a function of x. This

is due to the fact that except for large x (where the helicity aligned down quark

dominates) g;” is dominated by the anti-aligned up quark distribution. Since
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s: dxAu.(z) = s: dzAdP(z) <0’7 it is clear that gin(z) must be negative at

small x.
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Figure 10. Polarized helicity structure function of the deuteron. The data are from Ref.
69. The prediction for the sum of proton and neutron contributions is multiplied by a D-
state depolarization factor 1 – (3/2)uD with WD = 0.058 and the PQCD correction factor
1 – (a./m) = 0.92.

A comparison of our model with the recent SMC data for the polarized

deuteron structure function g~(x) is shown in Fig. 10. The shape of the data

appears to be consistent with our predictions, except possibly at the largest x

point where the SMC data shows too little asymmetry. To make this prediction

we have, as in Ref. 69, assumed that the deuteron structure function is half of

the sum of the neutron and proton structure functions and included the D-state

depolarization factor with D-state probability 0.058. The model then predicts the

normalization

J J
dxgf(z) = ; dx(gf(~) + 9f(x))

(86)

[
= &(Au + Ad) + +As ] (l-;) (1-:w~) =0.038 ‘ ‘
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compared to the SMC result

I
dzgf(z) = 0.023+ 0.020 (stat.) + 0.015 (syst.) . (87)

We can also compare our model with the polarized neutron structure function

extracted by the E142 from its polarized electron polarized He3 measurements.

(See Fig. 9(b).) The predicted normalization assumes an 8% radiative leading

twist correction: (1 – a~/T) E (1 – 0.08), whereas the commensurate scale relation

analysis presented in the next section predicts a reduction of approximately 1470 at

Q2 = 2 GeV2. In addition, according to the DHG-constrained analysis of Burkert

and Ioffe, higher twist corrections give a further 2370 reduction to the prediction

for r? (Q2). The net overall reduction of 29% gives a good agreement of theory

and experiment for Fig. 9(b).

The distributions presented here have applicability to any PQCD leading-

twist processes which require polarized quark and gluon distributions as input.

The input parameters have been adjusted to be compatible with global parame-

ters available current experiments. The values can be refined as further and more

precise polarization experiments become available. A more precise parameteriza-

tion should also take into account corrections from QCD evolution, although this

effect is relatively unimportant for helicity-dependent distributions. Our cent ral .

observation is that the shape of the distributions is then predicted when one em-

ploys the constraints obtained from general QCD arguments at large x and small

x.

A remarkable prediction of this formalism is the very strong correlations be-

tween the parent hadron helicity and each of its valence-quark, sea-quark, and

gluon constituents at large light-cone momentum fraction x. Although the to-

tal quark helicity content of the proton is small, we predict a strong positive

correlation of the proton’s helicity with the helicity of its u quarks and gluon con-

stituents. The model is also consistent with the assumption that the strange (and

anti-strange) quarks carry 470 of the proton’s momentum and —1170 of its helicity.

We also note that completely independent predictions based on QCD sum rules

also imply that the three-valence-quark light-cone distribution amplitude has a

very strong positive correlation at large x when the u—quark and proton felicities

are parallel!5
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15 Commensurate Scale Relations: Relating Ob-
servable in QCD without Renormalization Scale
or Scheme Ambiguityg4

One of the most serious difficulties preventing precise tests of QCD is the scale

ambiguity of its perturbative predictions. Consider a measurable quantity such

as p = R~+~- (s) – 3Ee~ or the integral over structure functions contributing to

the Bjorken sum rule: r~–n – (gA/6). The PQCD prediction is of the form

[

a.(p)
p = roas(p) 1 + ~l(P)

1
y + r2(p) ~::2) + . . . . (88)

Here as(p) = g~/4n is the renormalizes coupling defined in a specific renormal-

ization scheme such as MS, and p is a particular choice of renormalization scale.

Since p is a physical quantity, its value must be independent of the choice of p

as well as the choice of renormalization scheme. Nevertheless, since we only have

N the predictionstruncated PQCD predictions to a given order in as , do depend
95,96

on p. In the specific case of R~+~-, where we have predictions through order

a:, the sensitivity to p has been shown to be less than 107o over a large range

of lnp?6 However, in the c=e of the hadronic beauty production cross section

(da/&~)(~p ~ B + X), which has been computed to next-to-leading order in

as, the prediction ‘7 for the normalization of the heavy quark ~ distribution at

hadron colliders ranges over a factor of 4 if one chooses one “physical value” such

as~=~r
mE + pT rather than an equally well motivated choice P =

m
There is, in fact, no consensus on how to estimate the theoretical error due

to the scale ambiguity, what constitutes a re~onable range of physical values, or

indeed how to identify what the central value should be. Even worse, if we consider

the renormalization scale p as totally arbitrary, the next-to-leading coefficient

rl (p) in the perturbative expansion can take on the value zero or any other value.

Thus it is difficult to assess the convergence of the truncated series, and finite-order

analyses cannot be meaningfully compared to experiment.

The p dependence of the truncated prediction fN is often used as a guide

to assess the accuracy of the perturbative prediction, since this dependence re-

flects the presence of the uncalculated terms. However, the scale dependence

of pN only reflects one aspect of the total series. For example, consider the
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ortho-positronium Jpc = 1–– decay rate computed in quantum electrodynam-

ics: r(e+e-) = r. [1 – 10.3 (a/m) + . ..] . The large next-to-leading coefficient,

rl = 10.3 shows that there is important new physics beyond Born approximation.

The magnitude of the higher order terms in the decay rate is not related to the

renormalization scale since the QED coupling a does not run appreciable at the

momentum transfers associated with positronium decay.

Thus we have a difficult dilemma: If we take p as an unset parameter in

PQCD predictions, then we have no reliable way to ~sess the accuracy of the

truncated series or the parameters extracted from comparison with experiment.

If we guess a value for p and its range, we are left with a prediction without an

objective guide to its theoretical precision. The problem of the scale ambiguity is

compounded in multi-scale problems where several plausible physical scales enter.

In fact three quite distinct methods to set the renormalization scale in PQCD

have

1.

2.

3.

been proposed in the literature:

Fastest Apparent Convergence (FAC).’8 This method chooses the renor-

malization scale p so that the next-to-leading order coefficient vanishes:

Tl(p) = o.

The Principle of Minimum Sensitivity (PMS). ‘g In this procedure, one

argues that the best scale is the one that minimizes the scale dependence of .

the truncated prediction RN, since that is a characteristic property of the

entire series. Thus in this method one chooses p at the stationary point

dRN/dp = O.

Brodsky-Lepage-Mackenzie (BLM). 100 In the BLM scale-fixing method, the

scale is chosen such that the coefficients C~ are independent of the number of

quark flavors renormalizing the gluon propagators. In practice, one chooses

the scale so that Nf does not appear in the next-to-leading order coefficient.

That is, if rl(p) = rlo(p) + rll(p)Nf, where ~lo(P) and ~ll(P) are Nf

independent, then one chooses the scale p given by the condition rll (p) =

O. This prescription ensures that, as in quantum electrodynamics, vacuum

polarization contributions due to fermion pairs are all incorporated into the

coupling constant a(p) rather than the coefficients.

These scale-setting methods can give strikingly different results in practical

applications. For example, Kramer and Lampe have analyzed
101

the application

of the FAC, PMS and BLM methods for the prediction of jet production fractions
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in e+e– annihilation in PQCD. Jets are defined by clustering particles with in-

variant m=s less than @, where y is the resolution parameter and @ iS the

total center-of-m=s energy. Physically, one expects the-renormalization scale p

to reflect the invariant mass of jets, that is, p should be of order ~. For exam-

ple, in the analogous problem in QED, the maximum virtuality of the photon jet

which sets the argument of the running coupling a(Q) cannot be larger than @.

Thus one expects p to decrease u the resolution parameter yjO. However, the

scales chosen by the FAC and PMS methods both do not reproduce this behavior

(see Fig. 11): The predicted scale p rises without bound at low values for the jet

fraction y. On the other hand, the BLM scale h~ the correct physical behavior

as y~O. Since the argument of the QCD running coupling constant becomes very

small, the BLM method indicates that perturbation theory QCD results are not

likely to be reliable in the y <0.02 domain. However, the scales chosen by PMS

and FAC give no sign that the perturbative expressions break down in the soft

region.

0.8
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Figure 11. The scale p/~ according to the BLM (dashed-dotted), PMS (dashed), FAC
(full) and @ (dotted) procedures for the three-jet rate in e+e- annihilation, as computed by

Kramer and Lampe.l”l Notice the strikingly different behavior of the BLM scale from the PMS
and FAC scales at low y. In particular, the latter two methods predict increasing values of p M
the jet invariant mass M < fius) decreases.

In this section we shall use the BLM method to show that all perturbatively

calculable observable in QCD, including the annihilation ratio Ret ~- (Q2 ), the

heavy quark potential, and the radiative corrections to the Bjorken sum rule can

be related to each other at fixed relative scales. The “commensurate scale relation”
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for observable A and B in terms of their effective charges has the form

aA(QA)=a~(Q~) (l+rA/~:+.’.) . (89)

The ratio of the scales JA/~ = QA/QB ischosen so that the coefficient r~,~

is independent of the number of flavors nF contributing to coupling constant

renormalization, which guarantees that the observable A and ~ pass through

new quark thresholds at the same physical scale. The value of ~A/B is unique at

leading order. We also find that the relative scales satisfy the transitivity rulelo2

(90)

This is equivalent to the group property defined by Peterman and Sttickelberglo3

which ensures that predictions in PQCD are independent of the choice of an inter-

mediate renormalization scheme C. 104 In particular, scale-fixed predictions can

~ be made without reference to theoretically constructed renormalization schemes

such as MS; QCD can thus be tested by checking that the observable track both

in their relative normalization and commensurate scale dependence.

It is interesting that the task of setting the renormalization scale has never

been considered a problem or ambiguity in perturbative QED. For example, the

leading-order parallel-helicity amplitude electron-electron scattering has the form

M ..+..(++; ++)=: ~(~)+ ~ ~(~) . (91)

Here a(Q) = a(Qo)/(l – H[Q2, Q~, a(Qo)]) is the QED running coupling which

sums all vacuum polarization insertions H into the renormalizes photon prop-

agator. The value a(0) is conventionally normalized by Coulomb scattering at

t = –Q2 = O. Notice that both physical scales i and u appear in the argument

of the running coupling constant in the cross-section; if one chooses any other

scale for the running coupling constant, in either the direct or crossed graph am-

plitude, then One generates a spurious geometric series in nf (~/r) ln(–~/P2) or

nf (a/~) en (—u/p2) where nf represents the number of fermions contributing to

the vacuum polarization of the photon propagator.
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In general, the “skeleton” expansion of Feynman amplitudes in QED guaran-

tees that all dependence of an observable on the variable nf is summed into the

running coupling constant; the coefficients in QED perturbation series are thus

always nf-independent once the proper scale in a has been set. Note that the

variable n f is defined to count only vacuum polarization insertions, not light-by-

light loops, since such contributions do not contribute to the coupling constant

renormalization.

The use of the running coupling constant a(Q) in QED allows one to sum in

closed form all proper and improper vacuum polarization insert ions to all orders,

thus going well beyond ordinary perturbation theory. For example, consider the

perturbative series for the lepton magnetic anomalous moment:

(92)

the values Q* = e‘5J4mt, etc., can be determined either by the explicit inser-

tion of the running coupling into integrand of the Feynman amplitude and the

mean value theorem, or equivalently, by simply requiring that the coefficients Cn

be independent of nf. (Light-by-light scattering contributions are not related to

coupling constant renormalization and thus enter explicitly in the order a3 coef- .

ficient.) Thus the formula for the anomalous moment using the running coupling

is form invariant, identical for each lepton e, p, ~, since the dependence on lepton

vacuum polarization insertions is implicitly contained in the dependence of the

running coupling constant. These examples are illustrations of the general prin-

ciple that observable such as the anomalous moments can be related to other

observable such as the heavy lepton potential V(Q2) = –4ma(Q2 )/Q2 which can

be taken as the empirical definition of the on-shell scheme usually used to define

a(Q2).

The same procedure can easily be adopted to non-Abelian theories such as

QCD.loo One of the most useful observable in QCD is the heavy quark potential

since it can be computed in lattice gauge theory from a Wilson 100P, and it can

be extracted phenomenologically from the heavy quarkonium spectrum. If the

interacting quarks have infinite mms, then all radiative correction are associated

with the exchange diagrams, rather

to write the heavy quark potential

than the vertex corrections. It is convenient

as V(Q2) = —4TCFav(Q)/Q2. This defines
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the “effectivecharge” aV(Q2)/Q2 where by definition the “self-scale” Q2=–tis

the momentum transfer squared. The subscript V indicates that the coupling is

defined through the potential.

In fact, any perturbatively calculable physical quantity can be used to define

an effective charge ‘8 by incorporating the entire radiative correction into its

definition; for example

[ aR:Q)l>
R.t.-(Q2) = R~te-(Q2)” 1 + (93)

where R“ is the Born result and Q2 = s = E~m is the annihilation energy squared.

An important result is that all the effective charges aA(Q) satisfy the Gell-Mann-

Low renormalization group equation with the same PO and ~1; different schemes

or effective charges thus only differ through the third and higher coefficients of

the ~ function. Thus, any effective charge can be used as a reference running cou-

pling constant in QCD to define the renormalization procedure. More generally,

each effective charge or renormalization scheme including ~ is a special case of

the universal coupling function 105 a(Q, ~n ). Peterman and Stuckelberg 103 have

shown that all effective charges are related to each other through a set of evolu-

tion equations in the scheme parameters ~~. physical results relating observable .

must of course be independent of the choice of any intermediate renormalization

scheme.

Let us now consider expanding any observable or effective charge ~A(QA) in

terms of aV :

~A(QA) = ~V(~) [1 + (AVP ‘F + ~) ; + . . .] . (94)

Since av sums all vacuum polarization contributions by definition, no coefficient

in the series expansion in aV can depend on nF; i.e. all vacuum polarization

contributions are already incorporated into the definition of av. Thus we must
100

shift the scale p in the argument of aV to the scale Qv = e3AVP(~)p:

aA(QA) = OV(QV) [1+Tf’v~
+...1 ‘

(95)

‘/v = B+ (33/2) Avp is the next-to-leading coefficient in the expansion ofwhere rl

the observable A in scheme V. Thus the relative scales between the two observable
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~AJv = QA/Qv is fixed by the requirement that the coefficients in the expansion

in av scheme are independent of vacuum polarization corrections. Alternatively,

one can derive the same result by explicitly integrating the one loop integrals in

the calculation of the observable A using av(12 ) in the integrand, where 12 is the

four-momentum transferred squared carried by the gluon. (In practice one only

2 ?06) One can eliminate the nFneeds to compute the mean-value of ene2 = enQv

vacuum polarization dependence that appears in the higher order coefficients by

allowing a new scale to appear in each order of perturbation theory. However,

usually only the leading order commensurate scale is required in order to test

PQCD to good precision.

We can compute other observable B and even effective charges such = am
107

as an expansion in av scheme:

“v% +...] ‘
aB(QB) = av(Qv) [1 + rl (96)

B/V
where QV = - and again rlAB/” must be independent of vacuum polarization

contributions. We can now substitute and eliminate av(Qv) :

“A% +...] ‘
aB(QB) = ~A(QA) [1 + rl

B/A B/V ‘/v. Note also thewhere QA/QB = ~B/A = ~B/v/~A/v> and ~1 = rl — rl

symmetry property JB/A~A/B = 1. Alternatively? we can compute the commen-
B/A

surate scale QA = a directly by requiring rlAB/A to be n~-independent. The

result is in agreement with the transitivity rule: the BLM procedure for fixing the

commensurate scale ratio between two observable is independent of the interme-

diate renormalization scheme. The scale-fixed relation between the heavy quark

potential and am is 100 ~v(Q) = aw(e ‘5f6Q)[l - 2(a~/T) + . . .].

The transitivity and symmetry properties of the commensurate scales are the

scale transformations of the renormalization “group”, as originally defined by

Peterman and Stuckelberg~03 The predicted relation between observable must

be independent of the order one makes substitutions; i.e. the algebraic path one

takes to relate the observable. It is important to note that the PMS method,

which fixes the renormalization scale by finding the point of minimal sensitivity to

p, does not satisfy these group properties. The results are chaotic in the sense that
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the final scale depends on the path of applying the PMS procedure. Furthermore,

any method which fixes the scale in QCD must also be applicable to Abelian

theories such as QED, since in the limit ~c~O the perturbative coefficients in

QCD coincide with the perturbative coefficients of an Abelian analog of QCD. 108

The commensurate scale relations provide a new way to test QCD: One can

compare two observable by checking that their effective charges agree both in

normalization and in their scale dependence. The ratio of commensurate scales

~A/B is fixed uniquely: it ensures that both observable A and B pass through

heavy quark thresholds at precisely the same physical point. Theoretical calcula-

tions are often performed most advantageously in ~ scheme, but all reference to

such constructed schemes may be eliminated when comparisons are made between

observable. This also avoids the problem that one need not expand observable

in terms of couplings which have singular or ill-defined functional dependence.

Table 2

Leading Order Commensurate Scale Relations

Q~(o.435Q)

a~b(l.67Q) 0T(2.77Q)

aT(l.36Q) av(Q) a~(0.614Q)

~G~s(l.18Q) ag, (l.18Q)

aM, (0.904 Q))

The physical value of the commensurate scale in aV scheme reflects the mean

virtuality of the exchanged gluon. However, in other schemes, including MS,

the argument of the effective charge is displaced from its physical value. The

relative scale for a number of observable is indicated in Table 2. For example,

the physical scale for the branching ratio T+YX when expanded in terms of aV

is (1/2. 77)MT N (1 /3) MT, which reflects the fact that the final state phase space

is divided among three vector systems. (When one expands in ~ scheme, the

corresponding scale is O.157~y. ) Similarly, the physical scale appropriate to the

hadronic decays of the qb is (1/1.67)Mv, w

After scale-fixing, the ratio of hadronic
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to leptonic decay rates for the T has



the form 100

r(T~hadrons)

r(T+p+p-)

1O(T2 – 9) ~~(o.157~T) -
=

81re~ ~2ED [1 - 14.0(5)*+] ~ (98)
Q

Thus as is the case of positronium decay, the next to leading coefficient is very

large,’ and perturbation theory is not likely to be reliable for this observable.

Onthe other hand , the commensurate scales for the second moment of the non-

singlet structure function M2 and the effective charges in the Bjorken sum rule

(and the Gross-Llewellyn Smith sum rule) are not far from the physical value

Q when expressed in av scheme. At large n the commensurate scale for M.

is proportional to 1/@ at large n, reflecting the fact that the available phase-

space for parton emission decreases as n increases. In multiple-scale problems, the

commensurate scale can depend on all of the physical invariants. For example,

the scale controlling the, evolution equation for the non-singlet structure function

depends on ~bj as well as Q. log

A number of examples of commensurate scale relations between various single-

scale observable based on published three-loop MS calculations are given in Table

3. For simplicity we have used the leading order scale determined by eliminating

the nf dependence from the next-to-leading coefficient. We take n! = 3 to fix

the higher order term. We can improve these relations by requiring that all co-

efficients must be nf-independent in aV scheme. As in the example of the muon

anomalous moment, the commensurate scale appearing in argument of the higher

order contributions differs from the scale of the next-to-leading order term. The

three-loop results 110 have a remarkable simple form: For example for NC = 3

~g, (Q*) ~R(Q*) ~R(Q*)2 +aR(Q**)3 +....—= (99)
T T T T

The extension of the BLM procedure to higher orders has also been discussed
111

recently by Grunberg and Kat aev
96

and by Samuel and Surguladze.
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Table 3

Commensurate Scale Relations For Effective Cha~ges to Order a:

a~(Q) = am(0.70759Q) 1 + (1/12) (a~/T) – 15.7331 (a&/r2) + . . .

~g, (Q) = ~~(0.36788Q) 1 – (11/12) (a~/m) + 0.21527 (a~/m2) + . . .

a~(Q) = a~, (l.92344Q) [1 + (agl/n) – 14.115 (~~1/~2) + . ..]

ag, (Q) = a~(0.519903Q) [1 – (a~/m) + 16.115 (~~/~2) + . ..]

a~(Q) = ar(2.20707Q) [1 + O(ar/m) – 5.94141 (~;/m2) + . ..]

a,(Q) = aR(0.45309Q) [1 + O(aR/m) + 5.g4141 (~~/~2) + . ..]

~g, (Q) = ~.(1.14746Q) [1 - (ar/m) + 10.1736 (a;/m2) + . ..1

~r(Q) = ~gl (0.87149Q) [1 + (aal /~) – 8.17363 (a;, /m2) + . ..1

An interesting illustration of commensurate scale relations is the connection

~ between the effective charge for the Bjorken sum rule for the first moment of the

isospin non-singlet helicity-dependent structure functions: rp–n s (gA/6) [1 —

(agl (Q)/n)] and the effective charge for the annihilation cross section:

~g,(Q) = a~(0.52Q) [1 -~+...] . (loo)
T

Mattingly and Stevenson 112 have recently obtained an empirical form for a~(Q)

by smearing the annihilation cross section data and fitting to the three loop form

using the PMS scale. Since the PMS and BLM scale are nearly coincident in

this case, we can use their determination for a~(Q) to predict the Bjorken sum
113

rule correct ions. For example, at the scale appropriate to the E142 spin-

dependent structure function measurements at SLAC, Q2 = 2 GeV2, one finds

~R(0.52Q)/m N 0.16 and hence agl (1.4 GeV)/r R 0.14 which corresponds tO

rp–n = 0.180. The predictions for the Bjorken sum rule at EMC and SMC momen-

tum transfers Q2 = 10.7 GeV2 and Q2 = 4.6 GeV2 are ~g, (3.27 GeV)/~ ~ O.Og

and agl (2.14 GeV)/~ R 0.11, corresponding to rp–n = 0.190 and rp–n = 0.186,

respectively. Alternatively, for the E142 data, we can use the commensurate scale



relation

~g, (Q) = ~r(l.145Q)[l - ~ + . . .] , (101)
T

and the empirical determination ar(mr) R 0.19 to find a consistent determination

a~l (1.55 GeV)/r & 0.15. The uncertainty in the PQCD radiative corrections is
114

thus considerable smaller than usually ~sumed.

The commensurate scale relations between observable can be tested at quite

low momentum transfers, even where PQCD relationships would be expected to

break down. It is likely that some of the higher twist contributions common to the

two observable are also correctly represented by the commensurate scale relations.

In contrast, expansions of any observable in ~~ (Q) must break down at low

momentum transfer since am(Q) becomes singular at Q = Am (For example>

in the ‘t Hooft scheme where the higher order ~~ = O for n = 2,3, ..., a~(Q) has

a simple pole at Q = Am.) The commensurate scale relations allow tests of QCD

without explicit reference to schemes such as MS. It is thus reasonable to expect

that the series expansions are more convergent when one relates finite observable

to each other.

The BLM scale has also recently been used by Lepage and Mackenzie 106 and

their co-workers to improve lattice perturbation theory. By using the BLM method

one can eliminate ~L~ttiCe in favor of av thus avoiding an expansion with arti-

ficially large coefficients. The lattice determination, together with the empiri-

cal constraints from the heavy quarkonium spectra, promises to provide a well-

determined effective charge av(Q) which could be adopted as the QCD standard.

After one fixes the renormalization scale p to the BLM value, it is still useful

to compute the logarithmic derivative of the observable d/nRN/dlnp at the BLM-

determined point. If this derivative is large, or equivalently, if the BLM and PMS

scales strongly differ, then one knows that the truncated perturbative expansion

cannot be numerically reliable, since the entire series is independent of p. Note that

this is a necessary condition for a reliable series, not a sufficient one, as evidenced

by the large coefficients in the positronium and quarkonium decay widths which

appear when the scales are set correctly. In the case of the three and four-jet

decay fractions, the BLM and PMS scales strongly diverge at low values of the jet

discriminant y. Thus, by using this criterion, we establish that the leading-order

perturbation theory must fail in the small y regime, requiring careful resummation

of the a~lny series.
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However, if we restrict the analysis to jets with invariant mass M < @,

with 0.14 > y > 0.05 we have an ideal situation, since both the PMS and FAC

scales nearly coincide with the BLM scale when one computes jet ratios at in the

MS scheme. (See Fig. 11.) the renormalization scale dependence in this cwe is

minimal at the BLM scale, and the computed NLO coefficient is nearly zero. In

fact, Kramer and Lampe find that the BLM scale and the NLO PQCD predictions

give a consistent description of the LEP 2-jet and 3-jet data for 0.14 > y >

0.05. This allows a determination of a, with remarkably small theoretical error:

a~(~z) = o.1o7 + 0.003, which corresponds to A%= 100 + 20 MeV.

The BLM method and the commensurate scale relations presented in this

sect ion can be applied to the whole range of QCD and standard model processes,

making the tests of theory much more sensitive. The method should also improve

precision tests of electroweak, supersymmetry and other non-Abelian theories.

16 Quark Helicity Distributions and Hadron He-
licity Retention in Inclusive Reactions at Large

‘F
Consider a general inclusive reaction AB+CX at large XF where the felicities

Ac and AA are measured. To be precise, we shall use the boost-invariant light-

cone momentum fraction xc = k~/k~ = (k” + kZ)C/(ko + ~z)A. Hadron helicity

retention implies that the difference between AC and AA tends to a minimum at

Xc ~ 1. Hadron helicity retention follows from the helicity structure of the gauge .

theory interactions, and it is applicable to hadrons, quarks, gluons, leptons, or

photons. For example, in QED the radiation of a photon in lepton scattering has

the well-known distribution dN/dx m [1 + (1 – X)2]/x. The first term corresponds

to the cwe where the photon helicity has the same sign as the lepton helicity; the

opposite-sign helicity production is suppressed by a factor (1 – X)2 at x ~ 1:73

the projectile helicity tends to be transferred by the leading fragment at each step

in perturbation theory.

One of the most important testing grounds for hadron helicity retention is J/@

production in ~ – N collisions. The helicity of the J/@ can be measured from the

angular distribution 1 + ~ COS29P of one of the muons in the leptonic decay of the

J/@. At low to medium values of XF the Chicago-Iowa-Princeton Collaboration 115

finds that A * O. However, at large XF > 0.9 the angular distribution changes
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markedly to sin2 OP; i.e. the J/@ is produced with longitudinal polarization. The

sudden change to longitudinal polarization must mean that a new heavy quark

116 In fact, it is easy to guess theproduction mechanism is present at large XF.

relevant process which can produce high momentum charm quark pairs. [See Fig.

12(a).] Since nearly all of the pion’s momentum is transferred to the charmonium

system, one needs to consider diagrams where each valence quark in the incoming

pion emits a fast gluon. The two gluons then fuse to make a fast C7pair. At large

momentum fraction x, each gluon’s helicity tends to be parallel to the helicity of

its parent quark. Thus the angular momentum JZ of the gluon pair is transferred

to the c~ pair. The angular momentum tends to be preserved by any subsequent

gluon radiation or gluon interaction from the heavy quarks. The J/@ then tends

to have the same helicity as the projectile at high light-cone momentum fraction.

2.0 I I
(b)

1.6 –

x c)

1.2 –
●

0.8 – {I
I I

I

(a) o~ _
o - j-ti-t+-~4-t-ll_{ _____

A tt- 0 -

–0.5 - -0.4 – . NA3 r 150 GeV

I I I

o CIP r 225 GeV
-0.8 –

-1.0 - 1 I 1 1

0.25 0.50 0.75 1.00 0 0.4 0.8
,.s3 x~ x, 7333A2

Figure 12. The CF dependence of the polarization parameter J for (a) J/@ production 115
117.

and (b) continuum lepton pair production inT — ~ Collisions W a fUnctiOn Of ZF.

Thus there is a natural mechanism in QCD which produces the J/# in the

same helicity as the incoming beam hadron; the essential feature is the involve-

ment of all of the valence quarks of the incoming hadron directly in the heavy

-. quark production subprocess. Since such diagrams involve the correlation between

the partons of the hadron, it can be classified as a higher-twist “intrinsic charm”
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amplitude; the production cross section is suppressed by powers of ~r /“Q~ rel-

at ive to conventional fusion processes. Although nominally higher twist, such

diagrams provide an efficient way to transfer the beam momentum to the heavy

quark system while stopping the valence quarks.

The intrinsic charm mechanism also can explain other features of the J/@

hadroproduction~ 18’llg’120The observed cross section persists to high XF in excess

of what is predicted from gluon fusion or quark anti–quark annihilation subpro-

cesses; furthermore the cross section at high XF has a strongly suppressed nuclear

dependence, A@(ZF) N 0.7. The nuclear dependence actually depends on XF not

X2 which rules out leading twist mechanisms. The higher-twist intrinsic charm

e.g. Iuudc?) Fock state wavefunctions have maximum probability when all of the

quarks have equal velocities, i.e. when xi a
4

m2 + k~,. This implies that the
t

charm and ant i–charm quarks have the majority of the moment urn of the proton

when they are present in the hadronic wavefunction. In a high energy proton–

nucleus collision, the small transverse size, high–x intrinsic C7system can penetrate

the nucleus, with minimal absorption and can coalesce to produce a charmonium

state at large XF. Since the soft quarks expand rapidly in impact space, the main

interaction in the target of the intrinsic charm Fock state is with the slow valence

quarks rather than the compact c~ system~3 Thus at large XF the interaction in ~

the nucleus should have the A-dependence of normal hadron nucleus cross sec-

tions. N A“.7. Note that at high energies, the formation of the charmonium state.

occurs far outside the nucleus. Thus one predicts similar Aa(ZF)-dependence of

the J/@ and $’ cross sections. These predictions are in agreement with the results

reported by the E–772 experiment at Fermilab~lg

17 Anomalous Polarization of Massive Lepton
Pairs in Hadronic Collisions

One of the most surprising polarization anomalies violating perturbative QCD

expectations is the strong and rapidly changing angular correlations observed in

massive lepton pair hadroproduction by both the NA-10 experiment at CERN and

.. the CIP experiment at Fermilab?17 Both experiments measured mN4p+p-N

in nuclear targets.

65



The angular distribution of the p+ in

r- + Nd~* + Xhp+ + p– + X (102)

may be parameterized in general = follows:

1 do—— N l+ Jcos20+psin20cos#+ ~ sin2 e cos 24.
0 d~

(103)

Here e and # are angles defined in the muon pair rest frame and J, p and v are

angl~independent coefficients. The parton model (Drell–Yan picture 121) views

the production of the virtual photon 7* in Eq. (102) as originating from the

annihilation of two uncorrelated constituent quarks, resulting in an angular dis-

tribution of the form 1 + COS2e; i.e. A = 1 and v = p = O. This result follows

simply from the fact that the virtual photon is produced transversely polarized in

the annihilation of two on-shell fermions.

In order to describe the lepton pair transverse momentum distribution #a/dQ$

in QCD one has to take into account radiative corrections to the Drell–Yan model.

The Q~-distribution has been calculated in the QCD-improved parton model to

the order of O(as) with resummation of the soft gluons at the leading double log-

arithmic accuracy (see Ref. 122 and references therein). This approach was used .

in Ref. 123 to compute the angular distribution at fixed transverse momentum.

The deviations from the 1 + COS2e behavior were found to be less than 5% in the

range O < QT <3 GeV. 123

However, the NA-10 and CIP measurements show a quite different behavior.

In the limit where the momentum fraction x of one of the pion constituents is very

close to 1 and for moderate transverse momenta of the muon pair, the value of A

turns strongly negative Ref. 117, consistent with a sin2 e distribution. This im-

plies that in this kinematic limit the virtual photon is produced with longitudinal

polarization, rather than transverse. Furthermore, the data117’124’125 is observed

to have a strong azimuthal modulation (nonzero p and v in (2)), an effect which

is missing in standard QCD. The Lam–Tung sum rule, 1261 – A – 2V = O, which

follows from the approach used in Ref. 123 is also badly violated by the experi-

mental data. Moreover, the inclusion of hard O(a~ ) corrections does not resolve

.. 127 Thus the standard QCD parton model approach cannot explainthe problem.

the observed angular distribution.
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In fact, inthelargez~ region, theoff-shell nature of the annihilating quark

from theprojectile becomes crucial, and thus theoperative subprocess must in-

volve the correlated multi-parton structure of the projectile. In effect the domi-

nant subprocess in the off-shell domain is MqSf?q. Berger and I have shown that

this five particle amplitude gives a dominant A = – 1 longitudinal contribution at

large XF and fixed Q2. 128 In the higher-twist subprocess diagram, Fig. 13(b), the

lepton pair tends to have the same helicity as the beam hadron at large XF. For ‘

example, consider ~–N+p+ p–X at high XF. The valence d quark emits a f~t

gluon which in turn makes a fast-u, slow-fi pair. Because of the QCD couplings,

the fast u then carries the helicity of the d. The valence ti then annihilates with

the fwt u to make the lepton pair at XF w 1. The lepton pair thus tends to have

the helicity (JZ = O) of the pion, in agreement with hadron helicity retention. A

detailed calculation shows that the subprocess amplitude can be normalized to

the same integral over the pion distribution amplitude ~ dx~(x, Q)/(l – z) that~
129

controls the pion form factor. Thus the normalization of these processes can

be interrelated.

>
n

,-,s

7335A,, (a) (b)

Figure 13. Higher twist mechanisms for producing (a) J/@ and (b) m~sive lepton pairs at
high ZF in meson-nucleon collisions.

The data from both NA-10 and CIP also show that the, coefficient v grows to

values as large as 0.3 at large p = QT/Q; i.e. the azimuthal correlation cos 24 be-

comes sizeable at large lepton pair transverse momentum in strong contrast to the

predictions of leading-twist PQCD. Brandenburg, Mirkes, and Nachtmann 127have

suggested an intriguing non-perturbative explanation for this anomaly. In their

model the annihilating quark and antiquark interact through the chromomagnetic

QCD gluon condensate and becbme polarized transverse to the scattering plane

in much the same way that electrons become transversely polarized relative to the
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plane of a storage ring. The model leads to a parameterization:

(104)

with V. = 0.34 and mT = 1.5 GeV which gives a good fit to the observed depen-

dence of v found by the NA-10 experiment for m–W~p+p–X data at pl.b = 194

GeV/c, and Q = 8 GeV.

However, it is also interesting to check the effect of the higher twist contribu-

tions. Recently, Arnd Brandenburg, Valya Khoze, Dieter Mfiller, and 1130 have

found that large values for the azimuthal coefficients p and v—with the correct

sign—are predicted from the mq+l~q subprocess , assuming that the pion distri-

bution amplitude has the broad two-humped shape predicted by QCD sum rules.

In contrast, a very narrow pion distribution amplitude, characteristic of weak

hadronic binding, predicts the wrong sign for the observed azimuthal angular

coefficients p and v. I will briefly review this analysis here.

In order to go beyond the standard treatment we need to take into account the
128J12g~131To treat the bound state problem perturbatively,pion bound state effects.

we will restrict ourselves to a specific kinematic region in which the momentum .

fraction x of one of the pion constituents is large, x >0.5. In fact, in the large

x region the off-shell nature of the annihilating quark from the projectile is cru-

cial, and thus the operative subprocess must involve the correlated multi-parton

structure of the projectile. The dominant subprocess in the off-shell domain is

thus n–q~p+p- q. We resolve the pion by a single hard gluon exchange. 58 The

main contribution to reaction Eq. (102) then comes from the diagrams of Fig.

14(a,b)~28’12g’131 We see from diagram la that the u quark propagator is far off-

shell, ~ = —Q~/( 1 —XZ). The second diagram is required by gauge invariance.

(In a physical gauge the contribution of the second diagram is purely higher twist.)

The leading contribution to the amplitude M for the reaction

u + T–+7* + X+p+ + p– + x (105)

is obtained58 by convoluting the partonic amplitude ~(u+zd~y* +d~p++p– +d)

68



(c)
I
I

1-Z1 -% I 1-Z2

l-w I

%

Z1
I p-

;
I % S-94

7648A1

Figure 14. Diagrams (a) and (b) give the leading contribution to the amplitude of reaction
(4). The cut of diagram (c) gives a typical (one out of four) contribution to the cross section.117

with the pion distribution amplitude 4(z, ~2)~2

1

J
M = dz +(Z, Q2) T , (106)

o

where ~2 N Q~/ (1 – x) is the cutoff for the integration over soft momenta in the

definition of ~. For the hadronic differential cross section we have

Q2du(~-N*p+p-X)
1 1

= (2:)4:4 J J

x~
—— dxuGu/N(xu)

dQ2dQ$dxLdQ
IM[2dXZ1 _ XZ + Q$/Q2

o 0

6(XL– XE+XU – Q;s-l(l –XZ)-l) 6(Q2 –sz.xw+Q;(l ‘XW)-l)+{u+~,=+d} .

(107)

Here Q~ is the four-momentum of Y* in the hadronic center of mass system, xu(ti)

is the light-cone momentum fraction of the u(a) quark and GUIN is the parton
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distribution function of the nucleon. Thelongitudinal momentum fraction of the

photon is defined as XL = 2QL/@ and it should be noted that its maximum

value, x~ax = 1 – s–l (Q2 + Q;) is slightly less than 1. The second term on

the right hand side of Eq. (107) is the same as the first one with quark flavors

interchanged. This term gives the contribution from the nucleon sea. In Fig.

14(c) we show a typical contribution to the hadronic cross section.

We note that no primordial or intrinsic transverse momenta have been intro-

duced. The single gluon exchange is the source of QT in the model discussed. We

have also neglected the quark masses and the mass of the projectile which are

small compared to ~.

In analogy to Eq. (103) we parametrize the angular distribution as follows,

Q2d~

( )

Q2d0 ‘1
=

dQ2dQ$dxLd0 dQ2dQ~dxL

:*(1 + Acos20+psin20cos#+ ~sin20cos2~) , (108)

where the angular distribution coefficients A, p and v are now functions of the

kinematic variables XL, Q~/Q2 and Q2/s.

We work in the Gottfried-Jackson frame where the 2 axis is taken to be the ~

pion direction in the muon pair rest frame and the j axis is orthogonal to the

r– N plane. Using Eqs. (106)-(108), we arrive at an expression of the form,

{

Z1Z2

where

(
11

+ (z1 + z2) ml

nl ()
10

+ mo

no

7 (109)

~{z1z2 r2+(zl+z2) Tl+ro} ,
—

(110)
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and

(111)

The variable Z acts to resolve the distribution amplitude much like the Bjorken

variable resolves the structure functions. The coefficients ii, ~ij ni and ri (~ =

0,1, 2) depend only on Z and Q$/Q2. Their explicit forms are given in Ref. 130.

The factors l/z in Eq. (109) come from the gluon propagators and the factors

l/(z +3– 1+ic) arise from the quark propagator of Fig. 14(b). In COntrWt tO Refs.

131 and 132 we did not omit terms 0( Q~/Q2(l – x=)) and O( Q$/Q4(l – ~a)-l)

and of higher orders.

We note that the internal quark line of Fig. 14(b) can go on-shell. The

amplitude M of Eq. (106), however, is always regular due to the z-integration
132

for realistic choices of +(z, 62). This also can be read off from Eq. (109). The fact

that the internal line goes on-shell does not cause a Sudakov suppression since our

diagrams are the lowest order contribution of an inclusive process. In other words

gluon emission to the final state will occur in the higher order corrections. Only

when Xz approaches unity, where gluon emission is prohibited by kinematics> the

Sudakov suppression will arise.

Our model is not to be considered as a correction to the parton model result. ~

The diagrams of Fig. 14(a,b) give the whole leading order contribution in the

131 This is so because thespecific kinematic region of large enough XZ, Xa > 0.5.

gluon exchange is the resolution of the pion bound state and not a radiative

correct ion.

In Fig. 15 we plot the predictions of the higher twist model for ~, p, v and

2V– (1 – A) versus x= for
w-

2 – 0.25 for different choices of 4(z, ~2 ) together

with the data of Ref. 125. The dotted line corresponds to the delta function

distribution amplitude, ~(z) = 6(z – 1/2), the dashed-dotted line corresponds to

the asymptotic one, #(z) = 62(1 – z) and the dashed line shows the results for a

two-humped distribution amplitude~5 d(z) = 26z(l – z)(1 – 50/13 z(1 – z)). For

the two-humped distribution amplitude we have chosen the evolution parameter

~2 to be effectively * 4 GeV2.

In Fig. 16 the same quantities are shown versus
r Q; for XT = 0.6 and

@ = 6 GeV. The data points in this case are averaged over intervals 4.05<

@ <8.55 GeV and 0.2< XZ <1 and taken from Ref. 125. We would rather
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Figure 15. The angular distribution coefficients~, p and v and the Lam-Tung combination,
2V– (1 – ~), in the Gottfried-Jackson frame, versus x= for ~m = 0.25. The dotted line
corresponds to ~(z) = 6(z – 1/2), the dashed-dotted line corresponds to +(z) = 62(1 – z) and
the d~hed line shows the results for the two humped distribution amplitude, +(z) = 26z(1 – z).
(1 – 50/13 z(1 – z)). The solid line is the result for the tw~humped 4(z) where powers of
(Q$/Q2)”J2 were dropped for n ~ 3. We note that corrections to our model may induce
such terms; thus the difference between the dashed and the solid lines should be viewed w
the uncertainty of our predictions. We also show the data points of Ref. 125 averaged in the
intervals 4.05< @ <8.55 GeV and O< @ <5 GeV.

prefer to use the unaveraged data which are not

over-zti data in Fig. 16 required us to fix the

prediction which is rather low for our model

applicability.

available. The use of the averaged-

value Xa = 0.6 for our theoretical

and pushes it to the limits of its

In principle, bound state effects require a non-perturbative analysis. The

perturbative approximation makes sense only at large enough x. The contribution

of soft gluons to the pion bound state is taken into account in the evolution of the

distribution amplitude. The contribution of more than one hard gluon exchange

will be suppressed by powers of as. The contribution of the higher Fock states of
58

the pion is expected to be suppressed when x is large enough.

Thus detailed measurements of the angular distribution of lepton pair in

hadron-hadron collisions provides a microscope to probe the structure of hadrons

at the amplitude level. It is clearly important to have detailed measurements of
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Figure 16. Thesame quantities as in Fig. 15 are shown. versus
~ ~=6GeV.

~ for z~=0.6 and

the lepton pair coefficient functions ~(z~, m), P(ZL, ~), and ~(~~, ~) at large

XL > 0.6 for the reactions Hp~l~X for the whole range of projectiles H =

m, K, F,p, and n. In each case the deviations from the parton model predictions

provide a unique sensitivity to the fundamental non-perturbative structure of the

projectile wavefunction. In the case of ~*pal?X, one could identify the “point-

like” and “resolved” components of the distribution amplitude for both real and

virtual photons.

The above analysis shows that the coefficient functions J, p, and v at large

x >0.5 in the Drell-Yan process are very sensitive to the shape of the projectile’s

distribution amplitude +(z, 62), the basic hadron wavefunction which describes

the distribution of light-cone momentum fractions in the lowest-particle number
5s

valence Fock state. Measurements of meson form factors and other exclusive and

semi-exclusive processes 133 at large momentum transfer can only provide global

constraints on the shape of 4(z, 62 ); in contrast, the angular dependence of the

lepton pair distributions can be used to provide local measurements of the shapes

of these hadron wavefunctions. Detailed measurements of the angular dist ribut ion

of leptons in hadron-hadron collisions will open up a new window on the structure
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of hadrons at the amplitude level.

Our analysis shows that the broad, tw~humped, distribution amplitude for

the pion which was predicted from QCD sum rules
85

can account for the main

features of the Drell-Yan data. In contrast, narrow momentum distributions,

characteristic of weak hadronic binding, predicts the wrong sign for the observed

azimuthal angular coefficients p and v.

It is clearly important to have detailed measurements of the lepton pair distri-

butions as a function of both z and QT for the reactions Hp~4+l-X for the whole

range of fixed target beams H = m, K, P, p, and n. In each case, the deviations

from the parton model predictions will provide a unique sensitivity to the fun-

damental non-perturbative structure of the projectile wavefunction. In the c~e

of ~*p~l+4– X, one can also in principle identify the “point-like” and ‘resolved”

components of the distribution amplitude for both real and virtual photons.

We also note that if either the higher twist explanation or a more exotic non-
130

perturbative explanation of the azimuthal correlations are correct, then one

expects the same type of anomalous cos 2+ azimuthal correlation will be seen in

other QCD processes such as e+e–~H+H– X, lp~lHX, and pp~ H1 H2X.

18 Hadron Helicity Conservation in Hard Exclu-
sive Reactions

There are also strong helicity constraints on form factors and other exclusive

amplitudes which follow from perturbative QCD 12 At large momentum transfer,

each helicity amplitude contributing to an exclusive process at large momentum

transfer can be written as a convolution of a hard quark-gluon scattering ampli-

tude TH which conserves quark helicity with the hadron distribution amplitudes

~(~i, Q), which are the L, = Oprojection of the hadron’s valence Fock statewave-

function: ~(~i, ~i, Q) = ~[~kl] ~(~ij ~li, ~i)o(~~i < Q2) where +(~i~ ~~i~ ~i) iS

the valence wavefunction. Since # only depends logarithmically on Q2, the main

dynamical dependence of FB(Q2) is the power behavior (Q2)-2 derived from the

scaling behavior of the elementary propagators in TH.

As shown by Botts, Li, and Sterman!34 the virtual Sudakov form factor sup-

presses long distance contributions from Landshoff multiple scattering and z N 1

integration regions, so that the leading high momentum transfer behavior of hard

exclusive amplitudes are generally cent rolled by short-dist ante physics. Thus
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quark helicity conservation of the basic QCD interactions leads to a general rule

concerning the spin structure of exclusive amplitudes: 14 to leading order in l/Q,

the total helicity of hadrons in the initial state must equal the total helicity of

hadrons in the final state. This selection rule is independent of any photon or

lepton spin appearing in the process. The result follows from (a) neglecting quark

mass terms, (b) the vector coupling of gauge particles, and (c) the dominance of

valence Fock states wit h zero angular moment urn projection. The result is true

in each order of perturbation theory in as.

For example, PQCD predicts that the Pauli Form factor F2(Q2) of a baryon is

suppressed relative to the helicity-conserving Dirac form factor F1 (Q2). A recent

experiment at SLAC carried out by the American-University/SLAC collaborate ion

is in fact consistent with the prediction Q2F2 (Q2 )/Fl (Q2 )~ const. 135 Helicity

conservation holds for any baryon to baryon vector or axial vector transition am-

plitude at large spacelike or timelike momentum. Helicity non-conserving form

factors should fall as an additional power of l/Q2?4 MeMurements 136of the tran-

sition form factor to the J = 3/2 N( 1520) nucleon resonance are consistent with

JZ = +1/2 dominance, as predicted by the helicity conservation rule~4 One of the

most beautiful tests of perturbative QCD is in proton Compton scattering, where

there are now detailed predictions available for each hadron helicity-conserving

137 In the case of spin-oneamplitude for both the spacelike and timelike processes.

systems such as the p or the deuteron, PQCD predicts that the ratio of the three

form factors have the same behavior at large momentum transfer as that of the

W in the electroweak theoryf”

Another interesting application of helicity retention in exclusive processes is

the exclusive production of vector mesons in high energy electroproduction. 138At

large photon virtuality Q2 the longitudinal couplings of the virtual photon domi-

nate. This polarization is then retained in the diffractive production of the vector

meson. The amplitude for this process can be factorized as a convolution of (a)

the photon wavefunction, (b) the scattering amplitude for the quark and anti-

quark system to scatter through the exchange of two gluons to the target system,

and (c) the vector meson distribution amplitude. Thus measurements of forward

high energy diffractive leptoproduction can lead to fundamental checks on the

normalization of the gluon structure function at low x, as well as moments of the

vector meson wavefunction. Further details and references are given in Ref. 138.
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Hadron helicity conservation in large momentum transfer exclusive reactions

is a general principle of leading twist QCD. In fact, in several outstanding cases,

it does not work at all, particularly in single spin =ymrnetries such as AN in pp

scattering, and most spectacularly in the tw~body hadronic decays of the J/@.

The inference from these failures is that non-perturbative or higher twist effects

must be playing a crucial role in the kinematic range of these experiments.

The J/@ decays into isospin-zero final states through the intermediate three-

gluon channel. If PQCD is applicable, then the leading contributions to the

decay amplitudes preserve hadron helicity. In the case of e+e– annihilation into

vector plus pseudoscalar mesons, Lorentz invariance requires that the vector meson

will be produced transversely polarized. Since this amplitude does not conserve

hadron helicity, PQCD predicts that it will be dynamically suppressed at high

momentum transfer. Hadron helicity conservation appears to be severely violated

if one compares the exclusive decays J/@ and @’ + px, ~*~ and other vector-

pseudoscalar combinations. The predominant two-body hadronic decays of the

J/~ have the measured branching ratios

BR(J/~~K+K-) = 2.37+ 0.31 X 10-4

~R(J/@~pn) = 1.28+ 0.10 X 10-2 (112)

BR(J/#~I{+K-*) = 5.0+ 0.4 X 10-3.

Thus the vector-pseudoscalar decays are not suppressed, in striking contrast to

the PQCD predictions. On the other hand, for the ~’:

BR(@’+K+K-) = 1.0 ● 0.7 x 10-4

~~(@’+p~) <8.3 X 10-5 (90% CL) (113)

~R(@’4K+J{-*) <1.8 X 10-5 (90% CL) .

From the standpoint of perturbative QCD, the observed suppression of ~’ to

vector-pseudoscalar mesons is expected; it is the J/@ that is anomalous. 139 What

can account for the apparently strong violation of hadron helicity conservation?

One possibility is that the overlap of the cz system with the wavefunctions of the p

and x is an extremely steep function of the pair mass, as discussed by Chaichian

140 However, this seems unnatural in view of the similar size ofand Tornqvist.

the J/@ and +’ branching ratios to K+K–. Pinsky 141 has suggested that the
.
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~’ decays predominantly to final states with excited vector mesons such u p’r,

in analogy to the absence of configurate ion mixing in nuclear decays. However,

this long-distance decay mechanism would not be expected to be important if the

charmonium state decays through C7 annihilation at the Compton scale 1/mC.

Another way in which hadron helicity conservation might fail for J/@ +
gluons ~ mp is if the intermediate gluons resonate to form a gluonium state 0.

If such a state exists, has a mass near that of the J/@, and is relatively stable,

then the subprocess for J/~ - Tp occurs over large distances and the helicity

conservation theorem need no longer apply. This would also explain why the

J/@ decays into zp and not the @’. Tuan, Lepage, and 1139 have thus proposed,

following Hou and Soni!42 that the enhancement of J/$ ~ K*R and J/@ + pr

decay modes is caused by a quantum mechanical mixing of the J/@ with a Jpc =

1–- vector gluonium state 0 which causes the breakdown of the QCD helicity

theorem. The decay width for J/@ ~ pm via the sequence J/@ + 0 + pm

must be substantially larger than the decay width for the (non-pole) continuum

process J/@ ~ 3 gluons ~ pm. In the other channels the branching ratios of

the 0 must be so small that the continuum contribution governed by the QCD

theorem dominates over that of the 0 pole. A gluonium state of this type was

first postulated by Freund and Nambu143 based on 021 dynamics soon after the .

discovery of the J/@ and +’ mesons. The most direct way to search for the 0 is

to scan ~p or e+e– annihilation at @ within N 100 MeV of the J/@, triggering

on vector/pseudoscalar decays such as ~p or KK* and look for enhancements

relative to K+ K-. Such a search has recently been proposed for the BEPC.

19 Anomalous Spin Correlations and Color ~ans-

parency Effects in Proton-Proton Scattering

The perturbative QCD analysis of exclusive amplitudes assumes that large

moment urn transfer exclusive scat tering reactions are controlled by short dist ante

quark-gluon subprocesses, and that corrections from quark masses and intrinsic

transverse momenta can be ignored. Since hard scattering exclusive processes

are dominated by valence Fock state wavefunctions of the hadrons with small

impact separation and small color dipole moments, one predicts that initial and

final state interactions are generally suppressed

particular, since the formation time is long at
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the attenuation of quasi-elastic processes due to Glauber inelwtic scattering in a

nucleus will be reduced. This is the color transparency prediction of perturbative

QCD.144 A test of color transparency in large momentum transfer quasiel=tic pp
scattering at OCrnN m/2 has been carried out at BNL using several nuclear targets

(C, Al, Pb)~45 The attenuation at plab = 10 GeV/c in the various nuclear targets

was observed to be in fact much less than that predicted by traditional Glauber

theory. The expectation from perturbative QCD is that the transparency effect

should become even more apparent as the momentum transfer rises. However, the

data at pl.b = 12 GeV/c shows normal nuclear attenuation and thus a violation

of color transparency.

An even more serious challenge to the PQCD predictions for exclusive scat-

tering is the observed behavior of the normal spin-spin correlation asymmetry

ANN = [d~(f~) – da(~J)]/[d~(~t) + da(t~)] measured in large momentum trans-

fer pp elastic scattering. At plab = 11.75 GeV/c and 6cm = T/2, ANN rises to

= 60%, corresponding to four times more probability for protons to scatter with

their incident spins both normal to the scattering plane and parallel, rather than

11 In contrast, the unpolarized data is to first approximationnormal and opposite.

l“do/dt(pp ~ pp) = ~(OCM ) expectedconsistent with the fixed angle scaling law s

from the perturbative analysis.

suggests new degrees of freedom

Guy De Teramond and 1146

The onset of new structure at s = 23 GeV2 ~

in the t we-baryon system.

have noted that the onset of strong spin–spin

correlations, as well as the breakdown of color transparency, can be explained w

the consequence of a strong threshold enhancement at the open-charm threshold

for pp+ACDp at ~ = 5.08 GeV or plab N 12 GeV/c. At this energy the charm

quarks are produced at rest in the center of mass. Since all eight quarks have zero

relative velocity, they can resonate to give a strong threshold effect in the J =

L = S = 1 partial wave. (The orbital angular momentum of the pp state must be

odd since the charm and anti–charm quarks have opposite parity.) The J = L =

S = 1 partial wave has maximal spin correlation ANN = 1. A charm production

cross sect ion of the order of 1 pb in the threshold region can have, by unitarity,

a large effect on the large angle elastic pp~pp amplitude since the competing

perturbative QCD hard-scattering amplitude at large momentum transfer is very
147

small at ~ = 5 GeV. In fact as recently shown by Manohar, Luke, and Savage,

the QCD trace anomaly predicts that the scalar charmonium-nucleus interaction is

78



0.8

0.4

‘NN

o

! I I I I

o 5 10

la
pkb (GeVlc) =8

Figure 17. ANN w a function of plabat dc~ = T/2. The data 11are from Crosbie
et al. (solid dots), Lin et al. (open squares) and Bhatia et al. (open triangles). The peak
at p lab = 1.26 GeV/c corresponds to the pA threshold. The data are well reproduced
by the interference of the broad resonant structures at the strange (pl,b=2.35 GeV/c)
and charm (plab= 12.8 GeV/c) thresholds, interfering with a PQCD background. The
value of ANN from PQCD alone is 1/3.

148
strongly amplified at low velocities and can lead to nuclear-bound charmonium.

An analytic model which contains all of these features is given in Ref. 146. The

background component of the model is the perturbative QCD amplitude with S–4 ~

scaling of the pp ~ pp amplitude at fixed Ocm and the dominance of those am-

plitudes that conserve hadron helicity~4 A comparison 149 of the magnitude of

cross sections for different exclusive two-body scattering channels indicate that .

quark interchange amplitudes 150 dominate quark annihilation or gluon exchange

contributions. The most striking test of the model is its prediction for the spin

correlation ANN shown in Fig. 17. The rise of ANN to E 60% at Plab = 11.75

GeV/c is correctly reproduced by the high energy J=l resonance interfering with

@(PQCD). The narrow peak which appears in the data of Fig. 17 corresponds to

the onset of the pp + pA(1232) channel which can be interpreted as a uuuuddq~

3F3 resonance. The heavy quark threshold model also provides a good description

of the s and t dependence of the differential cross section, including its “oscilla-

tory” dependence 151 in s at fixed Ocm, and the broadening of the angular distri-

bution near the resonances. Most important, it gives a consistent explanation for

the striking behavior of both the spin-spin correlations and the anomalous energy

dependence of the attenuation of quasielastic pp scattering in nuclei. A threshold
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enhancement or resonance couples to hadrons of conventional size. Unlike the

perturbative amplitude, the protons coupling to the resonant amplitude will have

normal absorption in the nucleus. Thus the nucleus acts -as a filter, absorbing the

non–perturbative contribution to elastic pp scattering,Whileallowingthe hard-
scat tering perturbative QCD processes to occur additively throughout the nuclear

152Conversely, in the momentum range plab = 5 to 10 GeV/c one predictsvolume.

that the perturbative hard-scattering amplitude will be dominant at large angles.

It is thus predicted that color transparency should reappear at higher energies

(plab>16 GeV/c), and also at smaller angles (oc~ N 60°) at Plab = 12 GeV/c

where the perturbative QCD amplitude dominates. If the resonance structures in

ANN are indeed associated with heavy quark degrees of freedom, then the model

predicts inelastic pp cross sections of the order of 1 mb and lpb for the produc-

tion of strange and charmed hadrons near their respective thresholds. In fact,

the neutral strange inclusive pp cross section measured at plab = 5.5 GeV/c is

0.45 +0.04 mb~53 Thus the crucial test of the heavy quark hypothesis for explain-

ing ANN is the observation of significant charm hadron production at plab 2 12

GeV/c.

Ralston and Pire 152have suggested that the oscillations of the pp elastic cross

section and the apparent breakdown of color transparency are associated with the

dominance of the Landshoff pinch contributions at /s N 5 GeV. The oscillat-

ing behavior of da/dt is then due to the energy dependence of the relative phase

between the pinch and hard-scattering contributions. They assume color trans-

parency will disappear whenever the pinch contributions are dominant since such -

contributions could couple to wavefunctions of large transverse size. However, the

large spin correlation in ANN is not readily explained in the Ralston-Pire model

unless the Landshoff diagram itself has ANN w 1.

20 Conclusions

In these lectures I have emphasized polarization phenomena which can provide

new insights into hadron dynamics and structure. Spin physics has benefited

from a remarkably close interplay between theory and experiment. A number of

experiments have reported unexpectedly strong spin correlations that challenge a

straightforward interpret at ion in quant urn chromodynamics:

1. Two experiments, NA-10 at CERN and Chicago-Iowa-Princeton (CIP) at
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FermiLab~l’ have reported strong deviations from leading twist pertur-

bative QCD predictions for the polarization of the virtual photon in the

Drell-Yan process rN+p+p–X. The strong azimuthal and polar angular

correlations observed in these experiments require the consideration of dy-

namical higher twist subprocesses in which the multi-quark structure of the

projectile enters. Thus these measurements can provide new constraints on

the structure of the pion at the amplitude level~30

2. The CIP collaboration
115

has also reported that the J/@ produced in m

nucleon collisions becomes strongly longitudinally polarized at large mo-

mentum fraction XL. The result is consistent with the general principle of

hadron-helicity retention and leads to new constraints on the multi-quark

Fock state structure of the pion~16

3. The measured branching ratio for the decay of the J/~ into pm and other

psuedoscalar-vector two-body exclusive decays strongly violate perturbative

QCD predictions for hadron helicity conservation. No such anomaly is ob-

served for the ~’. The result could signal the mixing of the J/@ with a
142,139

nearby 1‘– tri-gluonic bound state. However, as yet there is no clear

evidence for any gluonium state in this mass range.

4. A remarkably strong spin-spin correlation has been observed in wide-angle ~

elastic polarized proton polarized proton scattering at ANL and BNL. The

sudden increase in the spin correlation ANN at new quark thresholds and the

observed breakdown of color transparency at @ w 5 GeV in quasi-elastic

pp scattering may reflectthe strong attraction at the charm production

threshold 146
147

predicted from the QCD trace anomaly. The large values

observed for the single spin asymmetry AN may be due to higher twist

correct ions.

The new measurements of the polarized structure functions in deep inelastic

lepton scattering from SLAC and CERN are now providing fundamental checks on

QCD sum rules, as well as a detailed look at the underlying spin structure of the

nucleon. The integral of the non-singlet polarized structure function g~–n (Z ~Q)
appears compatible wit h the Bj orken sum rule, alt bough a number of uncert aint ies

due to higher twist and Regge extrapolations still remain. In these lectures I have

discussed several theoretical advances

QCD sum rules:

which will allow more definitive tests of the
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1.

2.

3.

4.

5.

QCD provides important constraints on the z-dependence of the quark dis-

tributions which reflect the helicity retention properties of the underlying

gauge couplings at large x and the decorrelation -of felicities at small x.

Measurements appear to be consistent with these constraints.

The leading twist perturbative QCD corrections to the Bjorken and Gross–

Llewellyn Smith sum rules are identical, up to “light-by-light” scattering

cent ributions of order [a$ (Q2 )n] 3. Thus measurements the ratio of the sum

rules can provide a highly precise test of QCD. 1° The extrapolation of the

ratio of the truncated sum rule integrals to ~min~0 should greatly eliminate

uncertainties due to Regge behavior.

The leading twist perturbative QCD corrections to the Bjorken sum rule can

be directly related to measurements of the annihilation cross section ratio

R.+e- and other observable such as the ~ hadronic width using commen-

10 These relations are convention independent; theysurate scale relations.

have no ambiguity due to the choice of renormalization scale or scheme. The

relation bet ween the effective charges for the Bjorken sum rule and the an-

nihilation cross section is now known to third order in ag (Q2), thus allowing

precise tests of the gauge theory predictions by tracking both the relative

normalization and dependence in moment urn transfer.

Higher twist-corrections to the Bjorken and Ellis-Jaffe sum rules due to the

intrinsic composite structure of the nucleons are constrained at small Q2 by

a corresponding Drell-Hearn Gerasimov sum rule:

The relativistic corrections to the quark model are highly non-trivial and

lead to a number of unexpected results! The values of the magnetic moment

and axial coupling gA of the proton are strongly correlated, independent of

~he actual shape of the three-quark wavefunction. An important physical

effect is that the Melosh transformation (Wigner rotation) of the constituent

spinors to the light-cone causes a net disorientation of the quark felicities

relative to their rest frame spin projection SZ. In the zero-radius limit the

anomalous moment and the axial coupling of the nucleon vanish. For the

physical size of the proton, relativistic binding leads to a 25% reduction of

the quark felicities Aq and gA from their naive values.

Polarization measurements thus provide some of the most

quantum chromodynamics. An entire new class of polarization
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ments can be carried out at the SLC using polarized electron-positron collisions.

In addition to the fixed target experiments now being done at SLAC and CERN,

the new polarization facilities such as HERMES at DESY, the proposed polar-

ized proton collider at RHIC, and the highly polarized 50 GeV electron beam

facility at SLAC will allow a wide range of exclusive and inclusive spin physics

studies. There is also a critical need for me~urements of the polarized gluon

distributions in the nucleon from experiments such as direct photon production

in polarized proton collisions and J/~ production in polarized photon-polarized

proton interactions.

21 Appendix A: Light-Cone Wave-finctions

A simple way to encode the properties of hadrons in terms of their quark

and gluon degrees of freedom is the light-cone Fock expansion. 154 For example,

a proton with momentum E = (PL % ‘ “ “ .. - .
. *

singlet eigenstates of the free QCD

‘ , P ~) is described by expansion over color-

light-cone Hamiltonian:

+.. ~aP+,XIP~ + ~~i,~i)@n/m(Xi, ~Li> ~i)

(114) ~

where the sum is over all Fock states and felicities starting with the valence

three-quark state, and where

~l=qd’i’(l-;x~)
(115)

The wavefunction @n/~(x~, Iii) ~~) isthe amplitude forfinding partons in a SPeCifiC

light-cone Fock state n with momenta (xlP+, xa~l + ~L;) in the proton. The Fock

stat e is off the light-cone energy shell: ~ k$: > P–. The light-cone moment urn
+

coordinates xa, with ~~=1 xl and ~~;, with ~~=1 ~~i = O ~) are actually relative

coordinates; i.e. they are independent of the total momentum P+ and PL of the
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bound state. The light-cone wavefunctions do not depend on the total momentum

since Za is the longitudinal momentum fraction carried by the ith-parton (O s xi S

1), and ~1~ is its momentum ‘transverse” to the direction of the meson. Both

of these are frame-independent quantities. The ability to specify wavefunctions

simultaneously in any frame is a special feature of light-cone quant izat ion.

The coefficients in the light-cone Fock state expansion thus are the parton

wavefunctions ~n/H (xl, z~l, ~i ) which describe the decomposition of each hadron

in terms of its fundamental quark and gluon degrees of freedom. The light-cone

variable O < xi < 1 is often identified with the constituent’s longitudinal mo-

mentum fraction xi = k~/PZ, in a frame where the total momentum ~Z~ inf.

However, in light-cone Hamiltonian formulation of QCD, xl is the boost-invariant

light-cone fraction,

._g= k; + k:
‘s = p+ po+pz’ (116)

independent of the choice of Lorentz frame.

Given the light-cone wavefunctions, @./H (Xi, ~li> ~i), One Can cOrnPUte VirtU-

ally any hadronic quantity by convolution with the appropriate quark and gluon

matrix elements. For example, the leading-twist structure functions measured in

deep inelastic lepton scattering are immediately related to the light-cone proba- .

bility distributions:

F2(x7 Q)2MFl(x, Q) =
x w ~e~G~,p(x,Q)

a
(117)

is the number density of partons of type a with longitudinal momentum fraction

x in the proton. This follows from the observation that deep inelastic lepton

scattering in the Bjorken-scaling limit occurs if Xbj matches the light-cone fraction

of the struck quark. (The ~b is over all partons of type a in state n.) However,

the light-cone wavefunctions contain much more information for the final state of

deep inelwtic scattering, such m the multi-parton distributions, spin and flavor

correlations, and the spectator jet composition.
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The spacelike form factor is the sum of overlap integrals analogous to the

corresponding nonrelativistic formula:

Here eais the charge of the struck quark, A2>~~,and

(120)

The general rule for calculating an amplitude involving wavefunction @iA),

describing Fock staten in a hadron with ~=(P+, ~1), hastheform58

where ~~A)
is the irreducible scattering amplitude in LCPTh with the hadron

Fock state n. The light-cone Fock expansion thus allows a definitionreplaced by

of the parton model and wavefunctions. By using the light-cone gauge, A+ = 0, .

only physical non-ghost degrees of freedom appear in the Fock expansion even

for non-Abelian theories. Furthermore in this gauge, the numerator couplings

of soft gluons inserted into hard scattering expansions remain finite in the high

moment urn transfer limit. Thus this formalism is ideal for proving factorization

theorems, i.e. the isolation of hard and soft contributions at high momentum

transfer.

22 Acknowledgements

Much of the work reported in these lectures is based on collaborations with

colleagues. I wish to particularly thank Michael Boulware, Arnd Brandenburg,

Matthias Burkardt, Lance Dixon, Vittorio del Duca, John Ellis, Leonid Frankfurt,

Jack Gunion, Tom Hyer, Paul Hoyer, Marek Karliner, Valya Khoze, Peter Lepage,

Hung Jung Lu, Al Mueller, Dieter Muller, Michael Peskin, Ivan Schmidt, Felix

Schlumpf, Mark Strikman, Wai-keung Tang, Mikko Vanttinen, Ramona Vogt, and

Kai Wong for helpful discussions.

85



This work was supported by the Department of Energy, contract DE-AC03-

76SFO0515.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

J. Ellis and M. Karliner CERN-TH-7022-93, (1993). Plenary talk at 13th

International Conference on Particles and Nuclei, PANIC ’93, Perugia,

Italy.

S. J. Brodsky, J. Ellis, and M. Karliner, Phys. Lett. 206B, 309 (1988). For

a detailed discussion, see M. Karliner, TAUP- 1932-91 (Tel-Aviv), invited

talk at International Symposium on r N Physics and the Structure of

the Nucleon, Bad Honnef, Germany, September 9-13, 1991; PRINT-89-

0966 (Tel-Aviv), Lecture at Summer School in High Energy Physics and

Cosmology, Trieste, Italy, June 26-August 25, lg8g; TAUP-1730-89, (Tel-

Aviv), invited talk given at 24th Rencontres de Moriond: New Research in

Hadronic Interactions, Les Arcs, France, March 12-18, 1989.

Emlyn Hughes, these proceedings.

V. D. Burkert and B. L. Ioffe, Phys. Lett. B296, 223 (1992); CEBAF

preprint (1993). M. Anselimino, B. L. Ioffe, E. Leader, Sov. J. Nucl. Phys. ~

49, 136 (1989). The experimental validity of the DHG sum rule for the

proton-neutron difference is not clear. See R. L. Workman and R. A. Arndt,

Phys. Rev. D45, 1789, (1992).

An explicit calculation of the soft multi-gluonic Fock states for heavy

quarkonium is given in A. H. Mueller, Columbia University preprint CU-

TP-609, (1993).

S. Dailey and I. R. Klebanov, Phys. Rev. D47, 2517 (1993). K. Demeterfi,

I. R. Klebanov, and Gyan Bhanot, Princeton University preprint PUPT-

1427 (1993).

S. J. Brodsky and F. Schlumpf, SLAC-PUB-6431 (1994).

V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15,438 and 675 (1972).

S. J. Brodsky, M. Burkardt, and I. A. Schmidt, SLAC-PUB-6068 (1994).

S. J. Brodsky and H. J. Lu, SLAC-PUB-6389 (1993), published in the

Proceedings of the Leipzig Workshop on Quantum Field Aspects of High

Energy Physics, Kyfiauser, Germany (1993).

86



[11] For references to the data and a review, see A. Krisch, Proceedings of the

10th International Symposium on High-Energy Spin Physics, Nagoya, Japan

(1992).

[12] S. J. Brodsky, G. P. Lepage, in “Perturbative Quantum Chromodynamics”,

edited by A. H. Mueller, World Scientific Publishing Company (1989).

[13] S. J. Brodsky, P. Hoyer, A. H. Mueller, W. K. Tang, Nucl. Phys. B369, 519

(1992).

[14] S. J. Brodsky and G. P. Lepage, Phys. Rev. D24, 2848 (1981).

[15] By S. J. Brodsky, T. A. DeGrand, R. Schwitters, Phys. Lett. 79B, 255

(1978).

[16] H. J. Lipkin, Phys. Lett. B256, 284-288 (1991).

[17] J. D, Bjorken, Phys. Rev. 148,1467 (1966); Phys. Rev. Dl, 1376 (1970).

[18] J. Kodaira, Nucl. Phys. B259, 129 (1980).

[19] S. A. Larin, F. V. Tkachev, and J. A. M. Vermaseran, Phys. Rev. Lett.

66, 862 (1991); S. A. Larin and J. A. M. Vermaseran, Phys. Lett. 259, 345

(1991); S. G. Gorishny and S. A. Larin, Phys. Lett. B172, 109 (1986).

[20] S. J. Brodsky, G. P. Lepage, and p. B. Mackenzie, phys. Rev. D28, 228

(1983).

[21] S. J. Brodsky and H. Lu, to be published.

[22] E. B. Zijlstra and W. L. van Neerven, University of Leiden preprint INLO-

PUB-3/93.

[23] J. Ellis and R. L. Jaffe, Phys. Rev. D9, 1444 (1974).

[24] G. Altarelli and G. G. Ross, Phys. Lett B212, 391 (1988). A. V. Efremov and “

O. V. Teryaev, Dubna report E2-88-287 (1988), published in the Proceedings

of the International Hadron Symposium, Bechyne, Czechoslovakia (1988).

For a complete discussion and additional references, see E. Reya, Proceedings

oj the Workshop on QCD - “20 Years Later”, Aachen (1992).

[25] H. Fritzsch, Proceedings oj the Leipzig Workshop “Quantum Field Theory

Aspects oj High Energy Physics”, Bad Frankenhausen, Germany (1993).

[26] G. T. Bodwin and J. Qiu, Phys. Rev. D41, 2755 (1990). S. D. Bass,

B. L. Ioffe, N. N. Nikolaev, and A. W. Thomas, J. Moscow Phys. Sot. 1,

317 (1991).

[27] R. D. Carlitz, J. C. Collins, and A. H. Mueller, Phys. Lett. B214, 229

(1988).

87



[28] SMC Collaboration preliminary results, presented by V. Hughes, at the

International Workshop on Deep Inelastic Scattering and Related Subjects,

Eilat, Israel, February, 1994.

[29] For recent analyses of the data and comparisons with theory, see J. Ellis and

M. Karliner, Phys. Lett. B313, 131 (1993); F. E. Close and R. G. Roberts,

Phys. Lett. B316, 165 (1993); M. Karliner, 1989 Summer School in High

Energy Physics and Cosmology, Trieste (1990).

[30] For a discussion of the analogous effects in inelmtic lepton-nucleus scatter-

ing, see S. D. Drell, Proceedings oj the 1992 SLAC Summer Institute.

[31] See S. Dasu, et al.. SLAC-PUB-5814, (1993) and references therein.

[32] A. H. Mueller, Phys. Lett. 308355, (1993).

[33] X. Ji and P. Unrau, preprint MIT-CTP-2232 (1993).

[34] M. Karliner, private communication.

[35] S.D. Drell and A.C. Hearn, Phys. Rev. Lett. 16,908 (1966).

[36] S.B. Gerasimov, Sov. J. Nucl. Phys. 2,430 (1966).

[37] F. Low, Phys. Rev. 96, 1428 (1954); M. Gell-Mann and M.L. Goldberger,

Phys. Rev. 96, 1433 (1954); see also K. Bardakci and H. Pagels, Phys. Rev.

166, 1783 (1968).

[38] M. Hosoda and K. Yamamoto, Prog. Theor. Phys. 36,426 (1966); see also ~

S. J. Brodsky and J. R. Primack, Ann. Phys. 52,315 (1969).

[39] I. Karliner, Phys. Rev. D7, 2717 (1973).

[40] S. J. Brodsky and J. R. Hiller, Phys. Rev. D46 2141, (1992).

[41] W.-K. Tung, Phys. Rev. 176,2127 (1968).

[42] S.J. Brodsky and S.D. Drell, Phys. Rev. D22, 2236 (1980).

[43] L. F. Abbott and E. Farhi, Phys. Lett. 101B, 69 (1981); Nucl. Phys. B189,

547 (1981).

[44] M. Claudson, E. Farhi, and R. L. Jaffe, Phys. Rev. D34, 873 (1986).

[45] R.L. Jaffe and Z. Ryzak, Phys. Rev. D37, 2015 (1988).

[46] S. J. Brodsky and R. W. Brown, Phys. Rev. Lett. 49, 966 (1982); R. W.

Brown, K. L. Kowalski and S. J. Brodsky, Phys. Rev. D28, 624 (1984); R.

W. Brown and K. L. Kowalski, ibid. 29, 2100 (1984). See also K. Mi&lian,

M. A. Samuel, and D. Sahdev, Phys. Rev. Lett. 43, 746 (1979).

[47] M. A. Samuel, G. Li, N. Sinha, R. Sinha, and M. K. Sundaresan, Phys.

Rev. Lett. 67, 9 (1991) and references therein.

88



[48] S. J. Brodsky and J. R. Primack, Annals Phys. 52,315 (1969); Phys. Rev.

174, 2071 (1968).

[49] P. V. Landshoff, J. C. Polkinghorne, and R. Short, Nucl. Phys. B28, 225

(1971). S. J. Brodsky, F. E. Close, and J. F. Gunion, Phys. Rev. D8, 3678

(1973).

[50] S. J. Brodsky and I. A. Schmidt, Phys. Rev. D43, 179 (1991).

[51] S. J. Brodsky and H. J. Lu, Phys. Rev. Lett. 64,1342 (1990).

[52] N. N. Nikolaev and V. I. Zakharov, Phys. Lett. 55B, 397 (1975).

[53] V. Del Duca, S. J. Brodsky, P. Hoyer, Phys. Rev. D46, 931 (1992).

[54] N. N. Nikolmv, Proceedings oj the 10th International Symposium on High-

Energy Spin Physics, Nagoya, Japan (1992).

[55] This section is based on work done in collaboration with Felix Schlumpf,

SLAC-PUB-6431 (1994).

[56] A recent review of this approach can be found in S. J. Brodsky, G. McCartor,

H. C. Pauli and S. S. Pinsky, Particle World 3, 109 (1993), and references

therein.

[57] R. J. Perry, A. Harindranath and K. G. Wilson, Phys. Rev. Lett. 65,2959

(1990); M. Krautgartner, H. C. Pauli and F. Wolz, Phys. Rev. D45, 3755

(1992).

[58] G. P. Lepage and S. J. Brodsky, Phys. Rev. D22, 2157 (1980).

[59] F. Schlumpf, Phys. Rev. D47, 4114 (1993); Mod. Phys. Lett. A8, 2135

(1993); Phys. Rev. D48, 4478 (1993); J. Phys. G (to be published).

[60] E. Wigner, Ann. Math. 40,149 (1939).

[61] H. J. Melosh, Phys. Rev. D9, 1095 (1974); L. A. Kondratyuk and M. V. Ter-

ent’ev, Yad. Fiz. 31, 1087 (1980) [Sov. J. Nucl. Phys. 31, 561 (1980)];

D. V. Ahluwalia and M. Sawicki, Phys. Rev. D47,5161 (1993).

[62] F. Coaster and W. N. Polyzou, Phys. Rev. D26(1982) 1349; P. L. Chung,

F. Coester, B. D. Keister and W. N. Polyzou, Phys. Rev. C37, 2000 (1988).

[63] H. Leutwyler and J. Stern, Annals Phys. 112,94(1978).

[64] P. L. Chungand F. Coaster, Phys. Rev. D44,229 (1991).

[65] Bo-Qiang Ma, J. Phys. G17. L53(1991); Bo-Qiang Maand Qi-Ren Zhang,

Z. Phys. C58, 479 (1993).

[66] Particle Data Group, Phys. Rev. D45Part 2,1(1992).

[67] R. L. Jaffeand A. Manohar, Nucl. Phys. B337,509 (1990).

89



[68] A. V. Eframov and O. V. Teryaev, Czech. Hadron Symposium 1988,
. 302 (1988); G. Altarelli and G. G. Ross, Phys. Lett. B212, 391 (1988);

R. D. Carlitz, J. C. Collins and A. H. Mueller, Phys. Lett. B214, 229

(1988).

[69] B. Adeva, et al., Phys. Lett. B302, 533 (1993).

[70] P. L. Anthony, et al., SLAC-PUB-6101 (1993).

[71] R. Blankenbecler and S. J. Brodsky, Phys. Rev D1O, 2973 (1974); J. F. Gu-

nion, Phys. Rev. D1O, 242 (1974). S. J. Brodsky and G. P. Lepage, Proceed-

ings oj the 1979 Summer Institute on Particle Physics, SLAC, (1979). For

a recent systematic analysis in scalar field theory, see D. Mfiller, published

in the Proceedings oj the Leipzig Workshop on Quantum Field Aspects oj

High Energy Physics, Kyfiauser, Germany (1993).

[72] G. R. Farrar and D. R. Jackson, Phys. Rev. Lett. 35,1416 (1975).

[73] J. D. Bjorken, Phys. Rev. Dl, 1376 (1970).

[74] E. Bloom and F. Gilman, Phys. Rev. Lett. 25,1140 (1970).

[75] S. D. Drell and T.-M.Yan, Phys. Rev. Lett. 24,181 (1970).

[76] A. Lung, et al., Phys. Rev. Lett. 70,718 (1993).

[77] See also R. L. Jaffe and A. Manohar, Nucl. Phys. B321, 343 (1989);

S. D. Bass, A. W. Thomas, Cavendish preprint-HEP-93-4, (1993).

[78] M. Bourquin et al., Z. Phys. C21, 27 (1983).

[79] For recent analyses of the radiative corrections to the Bjorken sum rule

see J. Ellis and M. Karliner, Refs. 1, 29, and S. Brodsky and H. J. Lu,

SLAC-PUB-6389 (1993).

[80] An analysis of the evolution of the helicity-dependent quark and gluon

structure functions is given in E. L. Berger and J. Qiu, Phys. Rev. D40,

3128 (1989).

[81] For further discussion, see S. J. Brodsky and G. P. Lepage, Ref. 71.

[82] M. B. Einhorn, Phys. Rev. D14, 3451 (1976).

[83] S. J. Brodsky, Proceedings of the 10th International Symposium on High-

Energy Spin Physics, Nagoya, Japan (1992).

[84] S. J. Brodsky and I. A. Schmidt, Phys. Lett. B234, 144 (1990). Coherence

effects are also discussed in: S. J. Brodsky and J. F. Gunion, Phys. Rev.

D19, 1005 (1979). Applications to atomic and molecular systems are dis-

cussed in: M. Burkardt, Nucl. Phys. B373, 371 (1992); see also M. Kalufia,

90



A. G. Schneider-Neureither and H. Pirner, Universit5t Heidelberg preprint

(1993).

[85] V. L. Chernyak and A. R. Zhitnitsky, Phys. Rept. 112,173 (1984).

[86] A. D. Martin, W. J. Stirling, and R. G. Roberts, Phys. Lett. B306, l45

(1993).

[87] ZEUS Collaboration, Phys. Lett. B315,481 (1993).

[88] M.J. Alguard et al., Phys. Rev. Lett. 37, 1261 (1976); 41, 70 (1978);

G. Baum et al., ibid 51, 1135 (1983).

[89] J. Ashman et al., Phys. Lett. B206, 364 (1988); Nucl. Phys. B328, 1

(1989).

[90] P. Amadruz, etal., Phys. Lett. B295,159 (1992).

[91] Foranalternative parameterization of thestrange quark distributions, see

G. Preparata, P. G. Ratcliffe, and J. Soffer, Phys. Lett. B273 306, (1991).

[92] See for example: W. M. Gibson and B. R. Pollard, in Symmeiry Principles

in Elementary Particle Physics, Cambridge University Press (1976), page

330.

[93] R. D. Carlitz and J. Kaur, Phys. Rev. Lett. 38,673 (1977); J. Kaur, Nucl.

Phys. B128, 219 (1977). For recent empirical models, see Ref. 80 and

K. Kobayakawa et al., Phys. Rev. D46, 2854 (1992).

[94] The work in this section was done in collaboration with Hung Jung Lu, Ref.

10.

[95] S. G. Gorishnii, A. L. Kataev, S. A. Larin, Phys. Lett. B309, 273 (1991),

B275, 512(E) (1992).

[96] L. R. Surguladze, M. A. Samuel, Phys. Lett. B309, 157 (1993).

[97] P. Nason, S. Dawson, and R. K. Ellis, Nucl. Phys. B303, 607 (1988); Nucl.

Phys. B327, 49 (1989).

[98] G. Grunberg, Phys. Lett. B95, 70 (1980); Phys. Lett. B11O, 501 (1982);

Phys. Rev. D29, 2315 (1984).

[99] P. M. Stevenson, Phys. Lett. B1OO, 61 (1981); Phys. Rev. D23, 2916

(1981); Nucl. Phys. B203, 472 (1982); Nucl. Phys. B231, 65 (1984).

[100] S. J. Brodsky, G. P. Lepage and P. B. Mackenzie, Phys. Rev. D28, 228

(1983).

[101] G. Kramer and B. Lampe, Zeit. Phys. A339, 189 (1991).

[102] Si J. Brodsky and H. J. Lu, SLAC-PUB-6000 (1993).

91



[103] E. C. G. Stuckelberg and A. Peterman, Helv. Phys. Acts 26,499 (1953),

A. Peterman, Phys. Rept. 53 C, 157 (1979).

[104] We thank A. Kataev for an illuminating discussion on this point.

[105] S. J. Brodsky and H. J. Lu, Phys. Rev. D48, 3310-(1993).

[106] G. P. Lepage, P. B. Mackenzie, Phys. Rev. D48, 2250 (1993).

[107] The one-loop calculation of aV in ~ scheme is given in W. Fischler,

Nucl. Phys. B129, 157 (1977), A. Billoire, Phys. Lett. 92 B, 343 (1980),

W. Buchmuller, G. Grunberg and S. H. H. Tye, Phys. Rev. Lett. 45, 103

(1980); 45, 587(E) (1980).

[108] We thank Patrick Huet and Eric Sather for conversations on this point.

[109] W.-K. Wong, et al., (in preparation).

[110] S. J. Brodsky and H. Lu, to be published.

[111] G. Grunberg and A. L. Kataev, Phys. Lett. B279, 352 (1992). G. Grunberg,

Phys. Rev. D46, 2228 (1992). J. Chyla and A. L. Kataev, Phys. Lett. B297,

385 (1992). A. Kataev, CERN-TH.6485 (1992), published in the Proceedings

of the XX VIIth Recontre de Moriond, edited by J. Tran Than Van (1992).

[112] A. C. Mattingly and P.M. Stevenson, Phys. Rev. D49, 437 (1994).

[113] For a comprehensive recent analysis of the radiative and higher twist

corrections to the Bjorken sum rule, see M. Karliner and J. Ellis, Phys. .

Lett. B313, 131 (1993).

[114] An analysis using CSR through order a: is in preparation.

[115] C. Biino, Phys. Rev. Lett. 58,2523 (1987).

[116] S. J. Brodsky, W. Tang, P. Hoyer, and M. Vanttinen, in preparation. “

[117] J. G. Heinrich, et al., Phys. Rev. D44, 1909 (1991); M. Guanziroli, et al.,

Z. Phys. C37, 545 (1988).

[118] J. Badier, et al., Z. Phys. C20, 101 (1983).

[119] D. M. Aide, et al. Phys. Rev. Lett. 66,133 (1991).

[120] R. Vogt, S. J. Brodsky, P. Hoyer, Nucl. Phys. B360, 67 (1991).

[121] S. D. Drell and T.M. Yan, Phys. Rev. Lett. 25,316 (1970).

[122] G. Altarelli, R. K. Ellis, M. Greco and G. Martinelli, Nucl. Phys. B246, 12

(1984).

[123] P. Chiappetta and M. Le Bellac, Z. Phys. C32, 521 (1986).

[124] NA1O Collaboration, S. Falciano et al., Z. Phys. C31, 513 (1986); NA1O

Collaboration, M. Guanziroli et al., Ref. 117.

92



[125] J. S. Conway et al., Phys. Rev. D39, 92 (1989).

[126] C. S. Lam and W. K. Tung, Phys. Rev. D21, 2712 (1980).

[127] A. Brandenburg, O. Nachtmann and E. Mirkes, Z. .Phys. C60, 697 (1993).

[128] E. L. Berger and S. J. Brodsky, Phys. Rev. Lett. 42,940 (1979).

[129] S. J. Brodsky, E. L. Berger, G. P. Lepage, SLAC-PUB-3027, published

in the Proceedings oj the Workshop on Dre~l- Yan Processes, Batavia, IL,

(1982).

[130] A. Brandenburg, S. J. Brodsky, V. Khoze, and D. Muller, SLAC-PUB-6464

(1994)

[131] E. L. Berger, Z. Phys. C 4,289 (1980).

[132] S. Matsuda, Phys. Lett. B 119,207 (1982).

[133] A. V. Efremov and A. V. Radyushkin, Phys. Lett. B94, 245 (1980);

M. K. Chase, Nucl. Phys. B167, 125 (1980); S. J. Brodsky and G. P.

Lepage, Phys. Rev. D24,1808 (1981); E. Braaten, Phys. Rev. D28,524

(1983); E. Maina and G. Farrar, Phys. Lett. B 206, 120 (1988); T. Hyer,

Phys. Rev. D48, 147 (1993).

[134] J. Botts, Phys. Rev. D44, 2768 (1991); H. Li, G. Sterman, Nucl. Phys.

B381, 129 (1992).

[135] P. Bested, et al., Phys. Rev. Lett. 68,3841 (1992).

[136] V. D. Burkert, CEBAF-PR-87-006. P. Stoler, Phys. Rev. D44, 73 (1991).

[137] A.S. Kronfeld B. Nizic, Phys.Rev. D44, 3445 (1991); ibid. D46, 2272

(1992). T. Hyer, SLAC-PUB-5889 (1992).

[138] S. J. Brodsky, J. F. Gunion, L. Frankfurt, A. H. Mueller, and M. Strikman, “

SLAC-PUB-6412 (1994).

[139] S. J. Brodsky, G. P. Lepage and San Fu Tuan, Phys. Rev. Lett. 59, 621

(1987).

[140] M. Chaichian, N. A. Tornqvist, Nucl. Phys. B323, 75 (1989).

[141] S. S. Pinsky, Phys. Lett. B236, 479 (1990).

[142] Wei-Shou Hou and A. Soni, Phys. Rev. Lett. 50,569 (1983).

[143] P. G. O. Freund and Y. Nambu, Phys. Rev. Lett. 34,1645 (1975).

[144] S. J. Brodsky, A. H. Mueller, Phys. Lett. 206B, 685 (1988).

[145] A. S. Carroll, et a~., Phys. Rev. Lett. 61,1698 (1988).

[146] S. J. Brodsky and G. de Teramond, Phys. Rev. Lett. 60,1924 (1988).

[147] M. Luke, A. V. Manohar, M. J. Savage, Phys. Lett. B288, 355 (1992).

93



[148] S. J. Brodsky, I. A. Schmidt, and G. F. de Teramond, Phys. Rev. Lett. 64,

1o11 (1990).

[149] G. C. Blazey et ai., Phys. Rev. Lett. 55,1820 (1985).

[150] J. F. Gunion, R. Blankenbecler, and S. J. Brodsky, Phys. Rev. D6, 2652

(1972).

[151] A. W. Hendry, Phys. Rev. D1O, 2300 (1974).

[152] J. P. Ralston and B. Pire, Phys. Rev. Lett. 57,2330 (1986); Phys. Lett. 117B,

233 (1982); University of Kansas preprint 5-15-92, (1992). See also G. P. Ram-

sey and D. Sivers, Phys. Rev. D45, 79 (1992); and C. E. Carlson,

M. Chachkhunashvili, and F. Myhrer, Phys. Rev. D46, 2891 (1992).

[153] G. Alexander et al., Phys. Rev. 154,1284 (1967).

[154] See, e.g. Ref. 58 and S. J. Brodsky and H.-C. Pauli, SLAC-PUB-5558

(1991), published in the Proceedings of the 30th Schladming Winter School

in Particie Physics.

94


