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1 Spin Prelimnaries

1.1 2-D Spinors and Density Matrix

For spin 1/2 particles, such as the electron and proton, the spin observable is

determined by a ray in a 2-D Hilbert space. Since the ray is normalized to unity

and has an arbitray phase, two real numbers uniquely determine this ray. The

standard choice of these two parameters, so as to give a one-to-one correspondence

with the usual polar description of a unit directional vector in three dimensional

space is:

	n = ei�
�
cos (�/2) e�i'/2

sin (�/2) e+i'/2

�
$ n = (sin � cos'; sin � sin'; cos �): (1)

This correspondence may be extracted from the relationship:

~n = h	n~�	ni ; (2)

where the ~� are the two-by-two traceless Hermitian Pauli spin matrices. The

operators �i�j=2 generate rotations,

d	n

d�
= �

i

2
~� � �̂	n; (3)

and a Pauli matrix calculation con�rms the desired relationship:

dn

d�
=

�
d	n

d�
~�	n

�
+

�
	n~�

d	n

d�

�
= �̂� n: (4)

In quantum mechanics the rotation generator times i�h is the angular momentum

operator, hence it is usual to de�ne a spin S = �h~�=2. The spin vector can couple

with a classical magnetic �eld to give a scalar Hamiltonian. There is a free pro-

portionality constant, and it is usual to de�ne a magnetic moment ~� = ge=2mS,

with the Hamiltonian given by H = �~� �B. For orbital angular momentum the

proportionality constant is determined; g = 1, and ~� = e=2mL. The constant g

is called the Lande g factor. For the electron g � 2.
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The Hamiltonian is the generator of the time evolution,

d	

d�
=
�i

�h
H	 =

ge

2m

�
i

2
~� �B

�
	; (5)

hence the direction vector n characterizing 	 satis�es

dn

d�
= 
L � n; with 
L =

�ge

2m
B: (6)

The quantity j 
L j is called the Larmor precession frequency. The variable �

has been chosen to represent the time variable so as to draw attention to the fact

that the frame of reference is taken to be the rest frame of the particle. The

electron charge e is a negative quantity for the electron. The highest energy state

for the electron has the spin aligned with the magnetic �eld. Note that even for

a magnetic �eld of B = 1 Tesla, the energy �h
L = 10�4 eV, which is much less

than the kinetic energy of particles in accelerators. In other words, with very high

accuracy the spin motion will have no in
uence on the particle orbit motion.

For an ensemble U and any observable O, the expected value of O is given by

hOi = hh	O	ii	2U =
1

N
ni h	iO	ii; (7)

whereN = i ni; and ni is the number of occurences of 	i in the ensemble. If each

	i in the ensemble is expanded in some basis designated by �m, 	i = m cim�m;

and O is characterized by its matrix elements in this basis, Omn = h�mO�ni ;

then upon entering these expressions into the de�nition of hOi the expected value

of O is given by

hOi =
mn

1

N i
nic

�

incimOmn: (8)

All the information that is needed to characterize the ensemble is given by the

matrix � with

�mn =
1

N i
nic

�

incim: (9)

This matrix � is called the density matrix. From its de�nition it can be deduced

to be i) Hermitian, ii) positive, and iii) have Tr � = 1.
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Since all 2 x 2 Hermitian matrices are given by four numbers, � can be ex-

panded in the basis consisting of the unit matrix I and the three � matrices. Since

the �s are traceless and trace of � is unity, there are three unknown constants,

and they may be chosen to be components of a vector according to

� = 1/2 [I + (P � �)] : (10)

If the basis states de�ning � are rotated so that the z-axis is in the direction of

P, then

� =

�
(1 + Pz)/2 0

0 (1� Pz)/2

�
; (11)

and one can see that the positivity of � implies that j P j� 1. Further since it

may be veri�ed that

dP/d� = 
L �P; (12)

it is appropriate to interpret P as the polarization of the ensemble.

1.2 Thomas-BMT Equation1

If the particle orbit is given, then B(�) can be found from B(t) by transforming

to the rest frame of the particle. Such frames can be obtained by pure boosts

from the lab frame. If a particle is moving along an orbit, such that in time �t the

velocity has changed �v, from v1 to v2 = v1 + �v, Thomas2 noted that if O1 was

a frame of reference at rest with respect to the particle at time t1 obtained by a

boost from the lab frame, and O2 was a frame of reference at rest with respect to

the particle at time t2 also obtained by a boost from the lab frame, and if O0

2 was

a frame of reference at rest with respect to the particle at time t2 obtained by a

boost from the frame O1, then O0

2 is rotated with respect to O2 by an amount

��LP = � (
 � 1) ��O: (13)

(LP signi�es \as seen from the pure boost frames from lab", and O signi�es

rotation of orbit direction.) Thus in a sequence of pure boost frames, each at rest

with respect to the particle, a constant vector in the rest frame of the particle will

appear to precess in a sense opposite to the rotation determined by the sequence

of velocity vectors in the lab frame.
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Assuming for the moment that the particle is moving in a magnetic �eld, then

dv/dt = e/m
 (v �B) : (14)

The magnetic �eld in the pure boost frames at rest with respect to the particle

would have a �eld in those frames of

BLP = 
B? +Bk (15)

(? indicates the component perpendicular to and k the component parallel to

the velocity vector). The precesion frequency in the sequence of lab frames (use

d� = dt=
) would be


LP = �g
e

2m

�
B? +

1



Bk

�
: (16)

However in this set of frames, even were it constant, the spin would appear to

precess at the frequency (T for Thomas)


TP = (
 � 1)
e

m

B?: (17)

The sum of these gives an apparent precession frequency of


TLP = �
e

m

��
a+

1




�
B? +

a+ 1



Bk

�
; (18)

where a = (g � 2)=2 � 1:16� 10�3 for electrons, and a � 1:79 for protons.

If an electric �eld is present the apparent rotation frequency is


TLP = �
e

m

��
a+

1




�
B? +

a+ 1



Bk �

�
a+

1


 + 1

�
v � E

c2

�
: (19)

The dominant term here is usually aB?. The Bk can be signi�cant at low energies

for particles in a solenoid. The last term is usually small for two reasons: typically

E=c � B (a 1-Tesla magnetic �eld has a strength equivalent to an electric �eld

of 3 MV/cm), and very often E is parallel to v.
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In a constant magnetic �eld in the labratory with motion given by dv=dt =

e=m
(v � B), a frame in the laboratory that rotates so that one axis is always

pointing in the direction of the velocity, rotates with a frequency called the cyl-

clotron frequency,


C = �
e

m

B?: (20)

If one observes the precession of the particle spin in frames of reference that are

pure boosts from this rotating frame in the lab, then the 1=
 B? cancels out.

Observed from this sequence of frames, and assuming a �eld perpendicular to the

velocity vector,


TLPO = 
a
C (21)

(TLPO signi�es a rotation observed in frames which are pure boosts from a lab

frame rotating with the orbit, accounting for the Thomas precession e�ect). We

have the very simple result that the spin in these frames rotates 
a times as fast as

the orbit rotation, i.e., for one orbit around an accelerator, the spin would precess


a times. This result is usually valid when other �elds are present because the

other terms are very small. For electrons 
a = E(GeV )=0:44065, and for protons


a = E(GeV )=0:52335, so for similar energies, the rotation angle of protons and

electrons is similar. The product 
a is called the spin tune. It is interesting to note

that the proportionality between the orbit change and the spin precession gives

a sense of the \sti�ness" of the spin. The orbit has to be substantially altered in

order to alter the spin direction.

For a particle in a circular accelerator, travelling in a horizontal plane with

dipole �elds in the vertical direction, there will be horizontal �elds from imperfec-

tions and from focussing in the quadrupoles. These �elds usually average to zero,

are weak, and act over short distances. However if these horizontal �elds occur

with a frequency that matches the spin frequency, they can cause the direction of

the spin to change. This condition is called a spin resonance and is discussed in

detail in Section 4.4.
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1.3 Spinor representation of classical precession

Since the precesion equation dn=dt = 
� n, with 
 = �ge=2mB, describes

the motion of the direction of the 2-D Hilbert space vector 	n under the action

of the generator G = �i~� � 
=2, it is acceptable and indeed often convenient to

analyze precessional motion by solving spinor equations. In anticpation of this

use, and assuming the precession equation to be analyzed is dn=dt = 
TLPO�n,

the generator is given by

G = �
i
2
~� �
TLPO

= ie
m


�

aBz (1 + 
a)Bx � i (1 + a)Bs

(1 + 
a)Bx + i (1 + a)Bs �
aBz

�
;

(22)

which for large 
 becomes

G = �
i

2
~� �
TLPO =

iea

m

�
Bz Bx

Bx �Bz

�
: (23)

2 Accelerator Physics Preliminaries

2.1 Linear Transport and Closed Orbit

The typical elements of an accelerator are: i) dipoles which have a con-

stant magnetic �eld to bend the beam; ii) quadrupoles which have a linear �eld

(By = kx;Bx = �ky) used to focus the beam; iii) sextupole pairs for chromatic

corrections; and, rarely, iv) octupoles for tune-shift-with-amplitude or other mi-

nor orbit adjustments. The fringe �elds of dipoles have a sextupole-like quality,

and the fringe �elds of quadrupoles have an octupole-like quality. Since the sex-

tupoles occur in pairs, in such a way that the sextupole aberrations cancel, and

the octupoles are very weak, it will be satisfactory for a �rst analysis to limit the

discussion to dipoles and quadrupoles.

The e�ect of a linear element, such as a drift or quadrupole, may be repre-

sented by a matrix. If the phase space state of a particle is represented by the
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four vector z = (x; x0; y; y0), then passage through a drift is represented by

z2 =MLz1; (24)

where ML is given by

ML =

2
6664
1 L 0 0

0 1 0 0

0 0 1 L

0 0 0 1

3
7775 :

A thin quadrupole kick can be represented by the matrix

MQ =

2
6664

1 0 0 0

�k 1 0 0

0 0 1 0

0 0 k 1

3
7775 : (25)

Each of these matrices has unit determinant and is symplectic. Thick quadrupoles

can be represented by a sequence of drifts and thin kicks, hence beam lines made

up of drifts and thick quadrupoles can be represented by products of the above

matrices. A tilted quad, indeed any linear transformation, may be represented by

a matrix.

Being a product of symplectic matrices, the one turn matrix of a storage ring

is necessarily symplectic. If � is an eigenvalue of a symplectic matrix, so is 1=�,

and since these are real matrices, so is its complex conjugate ��. Taking � = e�,

it follows that � is either real or purely immaginary. Real � unequal to zero

is excluded, for in such a case there would be an initial coordinate that would

become arbitrarily large after many turns. The pure complex case corresponds to

a stable ring.

The real and imaginary parts of the eigenvectors of the one turn matrix M

can be used to de�ne a simlarity transformation A which has the property

M = A�1

2
6664

cos�x sin�x 0 0

� sin�x cos�x 0 0

0 0 cos�y sin�y

0 0 � sin�y cos�y

3
7775A: (26)

Though the one turn matrix is a function of the starting place in the ring, all one

turn matrices are related by a similarity transformation, namely the transport
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matrix between the two starting points. Hence the eigenvalues of the one turn

matrix will not depend on the location at which the one-turn map is de�ned. The

quantities �x;y = �x;y=2� are called the tunes of the ring.

The dipole strengths are chosen to de�ne a closed orbit at the design energy.

However errors in dipole strengths and quadrupole mis-alignments will cause the

design orbit not to close exactly. However if the ring is stable, a closed orbit can

be found. Suppose after one turn the image of a particle represented by initial

coordinates a maps to the point b, then the point a+�a will map into b+M�a,

where M is the one-turn matrix. To �nd a �xed point it is necessary to solve

a+�a = b+M�a; or (1�M)�a = b� a: (27)

If unity is excluded as an eigenvalue, the matrix (1-M) is invertible, and a �xed

point can be found. The �xed point, and its image around the ring, is called the

\closed orbit".

2.2 Betatron and Synchrotron Oscillations

After rede�ning the coordinate system so that the closed orbit is at the origin,

there exist four independent solutions, two for primarily horizontal motion and

two for vertical motion. In each pair there is one sine-like and one cosine-like

solution. These are de�ned as

z1 (s) = M (s)A�1 (1; 0; 0; 0) ;

z2 (s) = M (s)A�1 (0; 1; 0; 0) ;

z3 (s) = M (s)A�1 (0; 0; 1; 0) ;

z4 (s) = M (s)A�1 (0; 0; 0; 1) ;

(28)

where M(s) is the tranport matrix from the initial plane to a point a distance s

along the closed orbit, and A is the simlarity matrix de�ned above. For nC <

s < (n+1)C, where C is the circumference of the closed orbit, it follows from this

de�nition that

z1 (s) = cos (n�x) z1 (~s) + sin (n�x) z2 (~s) ;

z2 (s) = � sin (n�x) z1 (~s) + cos (n�x) z2 (~s) ;

z3 (s) = cos (n�y) z3 (~s) + sin (n�y) z4 (~s) ;

z4 (s) = � sin (n�y) z3 (~s) + cos (n�y) z4 (~s) :

(29)

where ~s = s� nC is between 0 and C. In other words only the functional form of

the four functions on the �rst turn is required to determine the orbit for all later
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turns. These oscillations of the particle around the closed orbit are called betatron

oscillations. Depending on intial coordinates the motion is a linear combination

of the four zk(s).

There also exist non-zero energy spread and bunch length. It is possible to

introduce two additional coordinates: 1) � = �E=E, the fractional departure from

the design energy, and 2) c� = �s, the longitudinal distance from the center of

the bunch. Particles oscillate about the design energy and about the center of

the bunch, and oscillations in this third degree of freedom are called synchrotron

oscillations. The closed orbit is slightly dependent on energy, de�ning a function

called the dispersion function, and there is a tune associated with the synchrotron

motion which is typically much smaller than the betatron tunes. This fact allows

the synchrotron motion to be treated as a modulation of the betatron oscillations

and leads to \sideband" phenomena.

3 Linear Accelerators

Figure 1 shows the layout of the Stanford Linear Accelerator (SLC). The

polarized electron source is at the bottom of the �gure. The arrows along the

electron beam line indicate the direction of the polarization as the beam proceeds

from the source through the pre-accelerator to the damping ring, then from the

damping ring to the main accelerator, and �nally to the north arc and the IP at

the top of the �gure.

3.1 Space Charge Depolarization in Injector

For the space charge �elds of cylindrical bunches (assuming no external �elds)

B = v � E
�
c2; and v �B = 0: (30)

hence Bk = 0, and remaining terms proportional to \a" cancel, leaving


 = �
e

m

�
1



�

1


 + 1

�
B? = �

e

m

1


 (
 + 1)
B?: (31)

This diminishes rapidly with increasing 
. Furthermore, since lines of B circle

the bunch and particle orbits oscillate back and forth across the bunch, the spin
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rotation direction changes sign and may cancel out. However, neglecting this

cancelation it is possible to estimate the rotation angle.

j
jmax =
e
��B�

��
m
 (
 + 1)

�
0:3Nrev

�r�z
 (
 + 1)
: (32)

The calculation of the maximum possible precession in the pre-accelerator, after

the injector, is given by Ref. 3:

��max = 
maxdt = 
dz/v � 0:3Nre
�
(�r�zd
/dz) d


�

2

� 0:06
�
1
�

i � 1

�

f
�
< 0:006;

(33)

where re = 2:8�10�15 m, �r = 4 mm, �z = 2 mm, N = 5�1010, 
i = 100, 
f = 2�

103, and d
=dz = 30m�1. One can conclude that there is no spin precession from

space charge after 
 = 100. Similar estimates for the injector region (
i < 100)

are shown in Fig. 2, where the bunch length is shown as a function of position.

The conclusion is that the total ��max < 0:06. Averaging over the radius of beam

yields a remaining polarization of at least hP i � 0:9Psource. This is a comforatable

situation since no cancellations were assumed.

3.2 Spin Manipulation into Damping Ring

Figure 3 shows the region following the pre-accelerator, leading to and from

the electron damping ring. Since 
a = 2:74 at the end of the pre-accelerator, the

polarization direction is rotated by 90� when the beam direction is rotated by

32:8�. The bend into the RTL (ring-to-linac transport line) has been chosen to be

�ve times 32:8� so that the polarization is perpendicular to the direction of motion.

This bend is followed by a straight section of beam line containing a solenoid. The

magnitude of the �eld in the solenoid is chosen so that the polarization is rotated

into the vertical direction. Thus the polarization is not a�ected by the subsequent

bend, and the beam enters the damping ring vertically polarized. This is essential

if the polarization is to be preserved in the damping ring where the beam travels

many revolutions and the energy spread would cause a complete depolarization

for horizontal polarization. The details of spin dynamics in the damping ring are

treated after a discussion of the spin dynamics of the north arc.
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3.3 Spin Rotation in SLC North Arc

In a planar ring or arc on the design orbit a particle would experience only a

vertical bending �eld (Bx = Bs = 0), and

dn

dt
= 
TLPO � n = 
a
C � n = 
a

c

� (s)
ẑ� n (34)

(ẑ is taken as a unit vector in the vertical direction, rather than ŷ, since the

conventions for spin usually have ẑ as the polarization axis). Converting c dt to

ds and letting ds=�(s) = d� be the change in direction of the orbit, the above

equation can be rewritten as

dn

d�
= 
aẑ� n = �spẑ� n; (35)
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where �sp is the tune spin, and �sp = 100 in the north arc.

Now add some small Bx in resonance with the spin precession. Without Bx

the spin just precesses about the z direction, but with a \resonant" Bx the set of

motions sketched in Fig. 4 may be realized. Even with a relatively small Bx, this

situation can result in spin 
ip. Figure 5 shows a particle orbit in the SLC north

arc that results from a small vertical kick, and shown superimposed is a plot of

the horizontal component of the spin. Note that, by a lucky coincidence, the spin

precesses one time in exactly an arc length corresponding to one vertical betatron

oscillation. When the particle is at a maximum in its trajectory, the quadrupole

�eld is bending the particle back toward the midplane, and since the spin at

these locations always has the same orientation, the resonant condition sketched

in the above sequence of drawings applies. Figure 5 also shows the slow growth

of the vertical component of the spin that results from this resonant condition.

By adjusting two vertical bumps in the last section of the north arc, it has been

possible to completely control the polarization orientation at the IP.
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This situation can be analyzed quite nicely using the spinor representation

for the precession equation, as described in Section 2.3. Without Bx the spinor

equation is
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d	

d�
=
�i
a

2

�
1 0

0 �1

�
	(�) ; (36)

which has the solution

	 (�) = exp

�
�i
a�

2
�z

�
�	(0) : (37)

With Bx the equation is

d	

d�
=
�i
a

2

�
1 �e� (�)Bx (�)/p

�e� (�)Bx (�)/p �1

�
	(�) ; (38)

where p is the longitudinal momentum, and p/e is often referred to as the magnetic

rigidity B�. It could arise that a quadrupole with Bx 6= 0 is located in a straight

section where � does not advance. Then �d� = ds, and it is necessary to integrate

Bx(s) along the trajectory through the straight region. If the o� diagonal element

is Fourier analyzed on the particle orbit

e
a � � (�)Bx (�)

p
=

1

k=�1

"ke
�ik�; (39)

and one term is dominant; the equation for 	 then becomes

d	

d�
=

i
a

2

�
1 �"ke

�ik�

�"�ke
ik�

�1

�
	(�) : (40)

Note that Bx(�) can come from either imperfections in the lattice or from betatron

oscillations as described above. To solve this equation it is convenient to move to

a co-rotating frame by substituting

	 (�) = exp

�
�ik�

2
�z

�
� � (�) (41)

resulting in an equation for �:

d�

d�
= �i

�
�� �"k

�"�k �

�
� (�) =

�i

2
~� � ~�� (�) ; (42)

where �z = � = �sp � k, �x = Re("), �y = Im("), and j ~� j= �2 + "2. This
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may be solved to yield

�(�) = exp(�i~� � ~��=2)�(0): (43)

Thus the resultant motion is a precession about the direction ~� with frequency

j ~� j, which all is precessing about ẑ. Letting � be the polar angle of ~�, then

cos� = �= �2 + "2 has the value +1 for large positive �, �1 for large negative

�, and is 0 for � = 0 (exactly on resonance). If the spin tune is changed \slowly",

say by changing the energy, so that � moves from +1 to {1, then a particle whose

spin is primarily in the +z direction will precess about ~� as ~� moves from the +z

to the {z direction. The spin will end up pointing in the {z direction. The width

of this \resonance" region is seen to be about 2". \Slowly" changing the spin

tune should be interpreted to mean that the change of � from �" to +" should

require many oscillations. Letting d�=d� = �, the resonance passage would occur

in �� = 2"=�. Many oscillations would require j � j �� � 2�. Since j � j� ",

this condition may be written �� "2=�.

3.4 Damping Ring Considerations

Particles enter the damping ring with large betatron amplitudes and are

damped through the mechanism of synchrotron radiation followed by energy make-

up. Polarization or depolarization that can occur through the radiation process

is discussed in Section 6.2. It is a slow process compared to the several damping

times which electrons spend in the damping ring. Hence the resonant analysis

described in the previous section is su�cient to understand the behavior of par-

ticles in the SLC damping ring. To understand the behavior of the spin we must

analyze the function Bx(�). Following Courant and Ruth,5 this can be found by

analyzing the particle orbit:

eBx/p = eBxc/pc = (dpz/dt)/pc = (dpz=ds)=p = d2z
�
ds2: (44)

The last equality made use of the relationship pz=p = dz=ds. Hence to �nd the

Fourier analysis of the o�-diagonal element, one may Fourier analyze d2z=ds2.

Resonances arising from the betatron motion are called intrinsic resonances,

and resonances arising from machine errors are called imperfection resonances.
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The imperfection resonances can cause a vertical excursion of the closed orbit. A

Fourier analysis of the closed orbit could have components at any integer. For the

betatron motion z(s), it was shown in Section 2.2 that on the nth turn

z (s) = cos (n�z) z1 (~s) z0 + sin (n�z) z2 (~s) z
0

0; (45)

where z0 and z00 are the initial position and slope, z1(~s) and z2(~s) are the cosine-

like and sine-like orbits on the �rst turn, 0 � ~s = s � nC < C (C being the

circumference), and �z is the betatron phase advance of each turn associated with

motion in the z (vertical) direction. The fourier integral required is

1

�1

e�i��� (�) z00 (�) d�

=
�

n e
�i�2�n cos (n�z)

� 2�

0

e�i��� (�) z001 (�) d� + : : :

=
�

m �
�
�� �z

2� +m
�� 2�

0

e�i��� (�) z001 (�) d� + : : :

(46)

Therefore there are resonances at �sp = � = ��z=2� +m = ��z +m, for m any

positive or negative integer, where �z is the tune of the vertical betatron motion.

Figure 6 shows what would be expected if the damping ring energy (spin tune)

were near a resonance. Assuming the spin was in the z direction upon injection

into the ring, it would then begin to precess about some vector ~�i. This vector

would precess about the z axis. When the particle is ejected from the ring, ~�i

will have precessed to some �nal vector ~�f , which without damping would have

the same polar angle with respect to the z axis. However, the particle spin which

is precessing now about ~�f will not usually be pointing in the z direction, and

so the component of the spin in the z direction is generally smaller at extraction

than on injection. In the presence of damping the amplitude of the betatron

oscillation is reduced, so the resonance strength changes, and the polar angle of

~�f will adiabatically change, as indicated in Fig. 6.

Figure 7 shows a simlulation of the exit polarization expected as a function of

the spin tune in the neighborhood of the design spin tune (� 2:7). Experimentally

the polarization can be measured at the end of the main linac with a Moeller

polarimeter. The beam can be sent directly down the linac from the injector

or sent into the damping ring to be damped. Experimentally no decrease in

polarization is observed from passage through the damping ring.
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Figure 6. A sketch of the entry and exit polararization for the SLC damping ring illustrating
that near a resonant condition the exit polarization will be less than the entry polarization.6

4 Proton Rings

In proton rings there is no polarization mechanism, as there often is in electron

rings (see Section 6), so the only hope for having polarized beams is to polarize the

beam at its source and preserve the polarization through the entire acceleration

cycle. Since the spin tune changes with energy, many resonances are crossed. This

section discusses the various methods that have been devised to cross resonances

without losing beam polarization.

4.1 Resonance Crossing

We have already noticed that as the spin tune passes through a resonance

the ~� vector changes sign, from up to down, or vice-versa. If the resonances are

crossed slowly the polarization will follow the ~� vector, so the beam will remain

polarized having only changed the sign of the polarization. This strategy has been

used successfully. The main problem with this method is that the weak resonances

must be crossed very slowly, and there are just too many resonances: one resonance

every 0.52 GeV for a 10 TeV accelerator amounts to 20,000 resonances to cross.

19



2.6 3.0 3.4
γa = νsp 7634A73–94

0

50

100

S
f/

S
i  

 (
%

)

νsp=6–νz

νsp=3

γa expected

νsp= νz

Figure 7. The results of a simulation of the exit polarization from the SLC damping ring as a
funtion of spin tune (which is proporional to damping ring energy). The design tune spin is

indicated. The potential depolarization from three separate resonants is evident.6

Froissart and Stora7 were able to exactly solve the equations for passage

through a resonance assuming a constant � = d�=d�. They found

Pz (+1)

Pz (�1)
= 2 exp

�
�
�"2

2�

�
� 1: (47)

This shows that for very fast passage through a resonance (d�=d� � �"2=2) the

polarization is not changed. This strategy has also been used succesfully. However

the problem with higher energy accelerators is that the strength of the resonances

increases to values greater than unity.

The resonant strength is proportional to the integral

" �

2�

0

e�i��� (�)Bx (�) d�; (48)

which is just the integrated strength of the Bx �eld along the orbit. The Bx �eld

arises primarily in quadrupoles. The inverse focal length of the quadupole is given
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by

1

f
=

eBTLQ

ap
; (49)

where p is the particle momentum, a is the quadrupole aperture, BT is the pole tip

�eld, and LQ is the length. The number of quadrupoles in the ring is proportional

to C=f , the circumference divided by the focal length of the quadrupoles. The

�eld experienced by the particle will be the gradient times the vertical o�set of

the particle from the quadrupole axis. Putting this together

e�i��� (�)Bx (�) d� = ei��(s)Bx (s) ds

� �zBT

a LQC � �z
Cf ;
(50)

where we have taken Bx = �zBT =a, which can be non-zero for a length LQ.

The number of such contributions can be C=f . With random signs the integral

should increase like C=f . As machines get larger C=f increases, but in a given

machine where C and f are constant one expects the imperfection resonances to

increase linearly with energy ("imp � 
), since �z arises from vertically displaced

quadrupoles and is constant. For the intrinsic resonances, �z is the amplitude of

the betatron oscillations. Since the emittance decreases with energy, this ampli-

tude decreases like 1= 
. Hence "int � 
. These estimates are evident in the

calculations assembled in Fig. 8. Note that for the SSC the imperfection reso-

nances have a strength of 10 to 100. Since imperfection resonances occur at every

integer, the resonances will be highly overlapping, and the theory of Froissart and

Stora is not applicable.

Imperfection resonances have been eliminated by putting in small closed orbit

bumps with the right periodic structure until the strength of the resonance is

compensated by the bump (harmonic matching). However for high energies, there

are just too many resonances. They overlap, and none of these techniques is

adequate.

21



|ε|

3–94

Imperfection

CPS
SPS
RHIC

70 GeV Booster (SSC)
AGS (BNL)
AGS Booster

TeV Booster (SSC)
Tevatron (FNAL)

β∗ = 1 m
β∗ = 5.6 m

SSC TLD 1

γ1/2

γ

102

10–2

100

10–4

100 102 104

γ 7634A8

Figure 8. A compilation of the intrinsic and imperfection resonance strengths for several proton
accelerators. Note that in any given machine the imperfection resonance strengths scale with
energy and the intrinsic resonance strengths scale with the square root of energy.8

4.2 Siberian Snakes

Consider a particle moving along the closed orbit of a storage ring. Because

of imperfections, or because of the presence of spin rotators sometimes inserted

to ensure spin in the direction of the beam at interaction points, the spin is not

always vertical. For one turn we may write

	 (� + 2�) = M (�)	 (�) ; (51)

whereM(�) is the one turn matrix for the spin precesion, beginning and ending at

the location designated by �. It is clearly possible to �nd such a matrix because

there is a spin transport matrix for every element of the ring, and the rotation

for the complete ring will be given by the product of these matrices. Now every

rotation can be characterized by an axis of rotation and an angle of rotation. The
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angle of rotation will be the same for all � since i) the rotation angle is given

by the eigenvalues of the matrix, and ii) the one turn matrix at any position is

related through a similarity transformation to the one turn matrix at any other

position. The spin tune �sp is de�ned to be this angle divded by 2�. The axis

of the rotation is denoted by a unit vector n(�). A particle whose spin is aligned

with n(�) at any � will remain aligned with n(�) for all �. Given M(�) the spin

tune and the precession axis can be determined from the relations:

cos (��sp) =
(TrM)

2
; and n =

i

2 sin (��sp)
Tr (~�M) : (52)

This may be veri�ed by writing

M = exp (�i~� �
) = cos (j
j/2)� i~� �
 sin (j
j/2) ; (53)

forming the quantities speci�ed and taking the traces.

The idea of a Siberian Snake was described by Derbenev and Kondradenko9

in '74. The snake described by Fig. 9 is designated a Type I snake. Assume there

is a spin rotator designated S that rotates the spin 180� about the longitudional

axis. The top sketch of Fig. 9 begins at position A and follows an up vertical spin

around the ring. It comes back to position A pointing down (drawn with dashes

and designated by a number 2). The middle sketch follows a horizontal spin, and

the bottom sketch follows a longitudinal spin. The angle designated � in these

drawings is the angular precession traveling from A to B (modulo 2�), and A is

chosen so that this is the same angle as going from C to A. The net outcome is

rotation of 180� about the longitudinal axis, independent of �. In other words the

spin tune is one-half for all energies! This can also be veri�ed by calculating Tr

M. For this ring (letting � = 
a)

M = exp
�
�i�
2
��z

�
exp

�
�i�
2
��y

�
exp

�
�i�
2
��z

�
= exp

�
�i�
2
��y

�
exp

�
+i�
2
��z

�
exp

�
�i�
2
��z

�
= exp

�
�i�
2
��y

�
= �i�y:

(54)

Hence Tr M = cos(��sp) = 0, implying �sp = 1=2.
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Figure 9. Sketches showing the progression of polarization axes in a type I siberian snake.8

The type I snake has the defect that the rotation axis n(�) is in the horizontal

plane. The type II snake shown in Fig. 10 does not have this problem. This ring

contains two rotators, one which rotates 180� about the longitudinal and another
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which rotates 180� about the vertical. This snake has �sp = 1=2, and the axis

n(�) is up for one-half of the ring and down for the other half. For this ring

M = exp
�
�i�
2
�x
�
exp

�
�i�
2
��z

�
exp

�
�i�
2
�y
�
exp

�
�i�
2
��z

�
= exp

�
�i�
2
�x
�
exp

�
+i�
2
�y
�

= (i�x) (i�y) = �i�z:

(55)

Hence again TrM = cos(��sp) = 0, and �sp = 1=2.

Apparently, if resonance widths are less than 1/2 then the spin should never go

through a resonance. There are two e�ects which complicate this simple picture.

When sextupoles and octupoles are included, the fourier anlaysis of orbits has

components at frequencies other than the integers (k), and k � �z as indicated

above following Eq. 46. There are also components at k + kz�z + kx�x + ks�s,

where k, kz, kx, and ks are all integers. Hence, there is potentially a resonance

condition with a snake whenever

1/2 = k + kz�z + kx�x + ks�s: (56)

Figure 11 shows the possible location of such resonances in the (�x; �z) tune plane

taking k = ks = 0 and j kz j + j kx j � 2. These nonlinear resonances could

apparently be avoided with proper choice of the betatron working tune (�x; �z).

There is another e�ect: the presence of errors can shift the tune spin from 1/2.

Suppose the particle is being accelerated through a resonance and � = 
a = k.

Then, using Eqs. 41 and 43,

M (�1 ! �2) = exp

�
�i

k (�2 � �1)

2
�z

�
exp

�
�i~" � ~� (�2 � �1)

2

�
; (57)

since �z = 0, �x =j " j cos', �s =j " j sin'. For one turn of the type I snake

M = exp
�
�i�
2
k�z

�
exp

�
�i�
2
~" � ~�

�
exp

�
�i�
2
�y
�
exp

�
�i�
2
k�z

�
exp

�
�i�
2
~" � ~�

�
= exp

�
�i�
2
k�z

�
exp

�
�i�
2
~" � ~�

�
exp

�
+i�
2
k�z

�
exp

�
�i�
2
�y
�
exp

�
�i�
2
~" � ~�

�
= exp

�
�i�
2
~" � ~�

�
exp

�
�i�
2
�y
�
exp

�
�i�
2
~" � ~�

�
;

(58)

where the + sign holds for odd k and the { sign for even k. This can be further
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reduced to

M = exp

�
�i�

2
~" � ~�

�
exp

�
�i�

2
~"T � ~�

�
(i�y) ; (59)

where "T = (�"x; "y). Expanding the exponential and taking the trace one �nds

1
2
TrM = 1

2
Tr � sin (� j"j) (�~" � ~� � ~"T � ~�)

�y
j"j

= f0 if k odd; sin' sin(�j"j) if k eveng:
(60)

Hence �sp = 1=2 for k odd but could lie in a band from 1=2� j " j< �sp < 1=2+ j " j

for k even. Of course an arbitrary integer could also be added to the tune. This

would suggest that this snake would be e�ective if j " j< 1=2.

Following the same analysis with the type II (double snake) leads to

cos (��sp) = � cos 2' sin2 (� j"j/2) ; (61)

which cannot have an integer �sp if j " j< 1. Multiple double snakes lead to the
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condition

cos (��sp/N) = � cos 2' sin2 (� j"j/N) : (62)

This equation will have no integer solution if sin2(� j " j =N) < sin(�=2N), which

implies a condition

j"j < 2N/� (63)

This suggests that the number of snakes must increase as the square of the res-

onance width. There is some debate in the literature on this point, and other

estimates yield a limit that increases linearly with the resonance width. The lat-

est estimate is that 26 double snakes would be required in the SSC to ensure

absence of spin resonances.11 Of course there is also the requirement of a properly

chosen working tune to avoid nonlinear resonances.

A nice sequence of experiments has been performed with siberian snakes at

the University of Indiana cyclotron facility. Krisch et al ('89)12 and J. Goodwin

('90)13 published results showing that the type I snake performed as expected.

Also M. Minty, ('91)14 veri�ed that a type I snake removed resonance behavior

for imperfection, betatron, and synchrotron resonances. Results are illustrated in

Fig. 12.

Overlapping resonances have also been recently investigated at this facility by

Baiod et al. ('93),15 with an rf resonance overlapping an imperfection resonance.

The snake was e�ective in removing the depolarization that occurred without the

snake. See Fig. 13.

5 Electron Rings

5.1 Characteristic Times

Figure 14 shows the characteristic times for di�erent processes that occur in

electron storage rings. The ring of this example has an energy of 25 GeV, but

these times may be easily scaled to other energies using the fact that the radii of

these rings scale like the second power of energy (� � 
2). The photon energy

radiated per second for a particle in a constant magnetic �eld is given classically
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by

dU

dt
� P
 =

2

3

cre

�2
mc2
4 (� 1) ; (64)

and the so called critical energy for these photons is

�h!c =
2

3

�

�
mc2
3 (� 
) :

The average photon energy is about 0.3 times the critical energy. An important

ratio, the critical energy divded by the particle energy, is indepedent of energy

and has a value of about 10�6:

� =
�h!c
E

=
2

3

�

�

2 � 10�6 (� 1) :

The number of photons radiated per second is P
 divided by the average photon

29



Po

Pt

1.515
frf  (MHz)

1.516 1.517 1.518 1.519

   Snake On
   Snake Off
106.4 MeV

0

0.5

1.0

3–94
7634A13

0.2

0.4

0.6

0.8

0

1.0

   Snake On
   Snake Off
106.4 MeV

0.02
νsp ∼ ∫ B.dl   (T.m)

0.040–0.02

Pt

rf
 +

 Im
pe

rf
ec

tio
n 

O
ve

rla
pp

in
g

rf
 O

nl
y

Figure 13. Experiment at the Indiana Univerty Cyclotron Facility showing the preservation of
polarization with a snake in the case of overlapping resonances.15

30



��

0

2

4

–2

–4

–6

–8

–10

������

10–20

log10 τ(sec)

Depolarization: τd > 10 τp~
Polarization: τp ~ ρ3/cλcr0 γ5

τp = 0.4 1 ~106
ξτE

Radiation Damping: τrad ~ 3ρ2/2cr0 γ3

Synchrotron Oscill: τs ~ 10 τrev 

Revolution: τrev ~ 2πρ/c

Betatron Oscill: = 

Orbit Harmonics: < 

Precession: τrev/γa  
~

100
Duration of Quantum Emission: ρ/cγ

Interval between Quanta: ρ/αcγ

τrev/ Qβ

~ γ
~ γtq
~ γte

~ γ2

~ γ

~ γ

ξ ≡ 
hωc = 2 λ γ2
E ρ3 ~10–6

τ p
 =

 3
/ξ

2 ~
10

12
t q

3–94
7634A14

~ 1

Figure 14. Characteristic times of a 25 GeV electron storage ring.8

energy:

dN

dt
=

5 3

6

�c

�



�
� 
�1

�
:

The number of seconds per quanta radiated in the inverse of this number radiated

per second is

t
 =
2 3

5

�

�c

(� 
) :

The duration time of an emission process is given by

te =
�

c

(� 
) :

This is the time in which the angular change in orbit direction is 1=
, and t
=te =

2 3=(5�) � 100. In other words the emission time is always much shorter than

the time between emissions. Of course the revolution time is

�R =
2��

c

�
� 
2

�
:

The spin precession rate is 
a per period, so the time for one precession is �R=
a.
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The energy oscillation (synchrotron oscillations) damping time is given by the

particle energy divided by the rate of radiated photon energy:

�E =
E

P

=

3

2

�2

rec
3
(� 
) :

The damping time for the betatron oscillations is two times the energy damping

time:

�x = 2�E (� 
) :

5.2 Self Polarization

Sokolov and Ternov16 found that the spin-
ip transition rate during syn-

chrotron radiation depends on the direction of the spin. The spin-
ip transition

rate is given by

W =
1

2�p

"
1 +

8 3

15
(n � ẑ)

#
;

where

�p =
8 3

15

�3

�cre
5
(� 
) :

The down state is preferred over the up state, and in the steady state the beam

will have obtained a polarization

Pmax =
W "#

�W #"

W "# +W #"
=

8 3

15
� 0:92

Baier, Katkov, and Strakhovenko17 found an additional term for the case in which

the polarization has a component in the direction of the beam.

W =
1

2�p

"
1 +

8 3

15
(n � ẑ)�

2

9
(n � ŝ)2

#
;

(n � ŝ) is usually quite small.
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If the beam is completely unpolarized at time t = 0, the polarization will grow

according to the formula

P (t) = �
B

A

�
1� e�At

�
;

where

A =

�
1

�p

�
1�

2

9
(n (�) � ŝ)2

��
and B =

�
1

�p

�
n (�) � b̂

�2�
:

Here b̂ is a unit vector in the direction of the magnetic �eld component perpen-

dicular to s. The average is taken over the closed orbit. Recall that n(�) is the

axis of the one turn rotation matrix. The beam will polarize in this direction. The

charactieristic polarization time is �p, also shown in Fig. 14. It is much longer

than most other characteristic times.

5.3 Spin Di�usion and Depolarization

In addition to a polarization mechanism, there is a depolarization mechanism.

Whether the beam actually polarizes depends on the relative rates of the these

processes.

When a particle emits a photon it changes energy discontinuously. Particles

of the new energy have a di�erent closed orbit, so the particle is all of a sudden

not on the closed orbit, and will begin to execute oscillations about the new closed

orbit. The derivative of the closed orbit with frational change in energy is called

the dispersion vector ~�(s). Since the position and slope of the orbit do not change

during the emission process, the amplitude of the betatron oscilation is given by

z0 = �~�(so)�o (this is a phase space four component vector), where so is the posi-

tion in the ring at which the quanta was emitted, and �o is the fractional change

in energy. In a perfectly planar ring the dispersion vector will lie in the horizontal

plane, and the betatron oscillation will also lie in this plane. In such a case the

particle would experience no horizontal �elds, and the polarization vector will re-

main unchanged. However in real rings, because of quadrupole misalignments and

slight tilting of bend and quadrupole magnets, the dispersion vector has vertical

components, and the horizontal and vertical betatron motion are slightly coupled.

The analysis of Section 3.2 concludes that even in such a situation the betatron

motion can be completely described by four functions.
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Though impossible, assume for a moment that the betatron amplitude after

emission was zero. Then the motion would be along a deviated closed orbit de-

scribed by ~�(s)�. As the particle travels along this orbit it may encounter a small

horizontal �eld, say in a displaced quadrupole. This rotates the spin slightly about

the horizontal axis, creating a very small component of spin in the longitudinal

direction. Micro-radians will be shown later to be the relevant rotation scale.

Continuing around the ring to the starting point, this small component of spin

precesses, until at the end of the �rst turn, though it will lie in the horizontal

plane, it will have components both perpendicular and parallel to the direction

of motion of the orbit. Other displaced quadrupoles would similarly contribute

a spin component in the horizontal plane. Since these contributions are so very

small, the spin vector at each small horizontal �eld is almost vertical. Hence all

of the horizontal vector components can be taken to add linearly. Let the sum of

all these horizontal components be �S1.

On the second turn two things will have happened: i) the energy will have

changed slightly and will begin following a synchrotron oscillation, so that on

subsequent turns the energy will be given by �j = cos(j�s)�o, and ii) the en-

ergy will have decreased very slightly due to further radiation. Taken together

�j = exp(�j�R=�E)cos(j�s)�o. The ratio 1=N = �R=�E is typcially between 10�3

and 10�4. Thus the contribution to the horizontal spin on the second turn is

�S1 = e�1=Ncos(�s)�S1. To this must be added the contribution of the �rst

turn which will have precessed by 2��sp = 2�
a � �sp. Representing the hori-

zontal spin vectors by complex numbers, and letting �S1 = "ei'; it follows that

�S2 = exp(�1=N)cos(�s)"e
i', and the total horizontal spin after two turns will

be

��2� �S1e
i�sp + �S2 = 1 + e�1/N cos (�s) e

�i�sp "ei('+�sp):

After j turns

��j � �S1e
ij�sp + �S2e

i(j�1)�sp + : : :+�Sj

= 1 + e�1/N cos (�s) e
�i�sp + :::+ e�j/N cos (j�s) e

�ij�sp "eij('+�sp)

Because of the small damping the in�nte sum can be carried out, then the limit
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N !1 can be taken:

��j!1! "eij('+�sp)
1

2

�
1� ei(�s��sp)

�1

+ 1� ei(��s��sp)
�1
�

=
i

4
"eij'+(j�1/2)�sp

(
ei�s/2

sin ((�sp � �s)/2)
+

e�i�s/2

sin ((�sp + �s)/2)

)
:

A non-zero horizontal component of the spin is left which is precessing about the

vertical. Note the denominators which vanish when �sp = ��s. This is typical,

and illustrates a large depolarization at this resonance condition. Away from the

resonance the sum has the order of magnitude of the �rst turn contribution to the

spin which should be very small for reasons mentioned above plus the fact that all

of the contributions from the quadrupoles around the ring also will tend to cancel

one another. Note that if �S1 had been calculated starting at a di�erent place

along the orbit, the value of " would remain unchanged, and ' would advance

by �sps=C around the ring. The magnitude of " is proportional to �, the energy

fraction of the radiated photon.

The betatron motion can be treated in exactly the same way. In this case there

are four contributions: two modulated by the horizontal betatron tune, and two

modulated by the vertical betatron tune. Letting z(s) be the phase space vector of

Section 2.2, and A the matrix found from the eigenvectors of the one-turn matrix,

the motion resulting from the quantum emission will be given by

z (s) = �k zk (s) qk;

where qk may be found from

q = �A~��:

In this case it is required to �nd the contribution to the horizontal spin vector that

accrues along the �rst turn trajectory de�ned by zk(~s). Later turn contributions

are modulated by cos(j�x), sin(j�x), cos(j�y), or sin(j�y) just as the closed orbit

example was moulated by cos(j�s). The contribution of each can be summed, then

added together and to the closed orbit sum, to give the total change in the spin

vector as the result of the quantum emission. Each contribution is proportional
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�, the energy fraction emitted. Derbenev and Kontratenko18 de�ne a vector �,

which they call the spin-orbit coupling function, by

�n = ��;

where �n is the small rotation vector that would give the horizontal spin com-

ponent ��1 (summing together betatron and closed orbit contributions). As a

result of N repeated emissions there will be a random walk in the horizontal vector

n given by

j �n j=j �(�n)2 j1/2 =
�
N�2�2

�1/2
:

During a polarization time �p there are N = �p=�q = 3=�2 emissions ( recall

� = �h!c=E � 10�6). Also � � �h!c=E = �. Hence in a polarization time,

j �n j� 3 j � j. To achieve a polarized beam, j � j should be small compared

to unity, implying the one-turn �n(= ��) must be small compared to 10�6.

The polarization time development will now follow the equation

P (t) = �
B

A

�
1� e�At

�
;

with

A =

�
1

�p

�
1�

2

9
(n (�) � s)2 +

11

18
j � j2

��
and B =

�
1

�p
(n (�) � b)2

�
:

Unfortunately the theory described above is not adequate to totally explain the

depolarization measurements; a theory which includes nonlinear e�ects is required.

The details of such a theory are beyond the scope of these lectures, but they pro-

ceed very much like the linear theory. Normal form theory establishes that there

are four variables (as q above, which reside in a 2-degrees-of-freedom phase space)

which determine the orbit at some starting position and which advance turn-by-

turn according to a block diagonal rotation, as in the linear theory. The particle

position along the orbit can be expanded as a power series in these variables,

the coe�cients being functions of the distance along the orbit. So just as in the

linear theory, a set of functions (the coe�cients of the power series mentioned)

for one revolution determine the orbit for all revolutions. The contribution to

36



the change of the spin vector of each term of the power series can be calculated,

much as for the linear theory, taking into account that for some magnets, like

sextupoles, the horizontal magnetic �eld may be a quadratic or a higher power of

the position variable. Thus a contribution to the change in spin vector comes to

be modulated by a higher power of the rotation functions, e.g., cos2(n�x). The

in�nite sum of such terms will contain a denominator that is zero for a condition

like �sp � 2�x = n.

There are computer codes which calculate �. In order of increasing sophisti-

cation and date of development, examples are SLIM,19 SMILE,20 and SODOM.21

Figure 15a shows depolarization data from SPEAR22 A curve was �t through

the data points to aid the eye, and resonance locations were identi�ed. There is

clear evidence of nonlinear resonances. Figure 15b shows the results of nonlinear

theory as computed by S. Mane.23 The �t is remarkably good. Some resonances

were identi�ed with this �t that were not explicitly called out in the original data

analysis.

5.4 Beam Energy Measurements

Using spin depolarization to measure beam energy was �rst suggested by

Serednyakov ('76).24 A fast kicker magnet with a horizontal magnetic �eld is

inserted into the ring. If the phase advance per turn of the kicker magnetic �eld

(2��dep�R) equals the phase advance of the spin (2��sp) plus or minus an integer

multiple of 2�(�2�n), then the spin should be depolarized by the kicker. This

equation can be written

�dep = (�sp � n) �R;

where �dep and �R can be measured accurately, and since �sp = 
a, and a is

known accurately, an accurate value for 
 is obtained. The data shown in Fig. 16

were taken at Doris ('83).25 The energy is determined to a part in 105. Similar

measurements were performed in Novosibirsk,26 and it is standard operating pro-

cedure at LEP to perform this measurment several times per week.27 To perform

the measurement at LEP it is necessary to move some 880 MeV o� of the Z0

peak, slightly change the tunes, install some bumps to compensate the solenoid,

and dump the e+ beam. An interesting side note is that a periodic variation in the

energy was observed which was ultimately attributed to the tides of the moon.28
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Figure 15. SPEAR depolarization data22 and theoretical calculations of depolarization by S.
Mane.23

The polarization time is very long at LEP, on the order of three hours. A num-

ber of re�nements, namely improved orbit measuerement and magnet realignment,

harmonic spin matching, change in phase advance per cell in the vertical plane

optics, and an improved polarimeter have resulted in an assymptotic polarization

of perhaps 40% to 50%.
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