
.

SLAC-PUB-@42
February 1994
(A)

Calibration of the X-Ray Ring Quadruples,

BPMs, and Orbit Correctors Using the Mefiured

Orbit Response Matrix *

J.Safranek
NationalSynchrotronLightSource,BrookhavenNationalLaboratory,

Upton, New York 11973

M.Lee
Stanford Linear Accelerator Center, Stanford

Stanford, California 94309
University

Abstract

The quadruple strengths, beam position monitor (BPM) gains, and
orbit correction magnet strengths were tijusted in a computer model of
the NSLS X-Ray ring in order to best fit the model orbit response matrix

- to the measured matrix. The model matrix was fit to the 4320 data points
in the measured matrix with an rms difference of only 2 to 3 microns,

which is due primarfly to noise in the BPM measurements. The strengths
of the 56 individud quadruples in the X-Ray ring were determined to
an accuracy of about 0.270. The BPM and orbit corrector c~brations
were dso accurately determined. A thorough analysis of both random
and systematic errors is included.

1 Introduction

At the NSLS, there are a number of different models of the X-Ray ring in
use. The models differ by a couple percent in quadruple family strengths, so
it is hard to say what the real strengths of the quadruples are. For many
of the accelerator physics projects, one needs to know the ring opti~, so we

have developed a computer code to calibrate the X-Ray ring quadruples using
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the measured orbit response matrix. The work we have done builds upon and
borrows ideas from the computer cod= CALIF [1] and RESOLVE [2].

The high accuracy BPMs at the NSLS yield very precise information about
the ring optics. [3] In the X-Ray ring there are 51 horizontal correctors and 39
vertical correctors, and the closed orbit can be me=ured in both planes at 48
BPMs. When we measure the change in orbit at each BPM for a change in
each corrector magnet, we have (51 + 39)48 = 4320 very accurate pieces of data
describing the magnetic field gradient around the ring. With this data we are
able to find all the quadruple strengths in the ring ss well = the BPM and
corrector calibrations.

2 Method

We used the COMFORT [4] accelerator optics modeling program to calculate
the model response matrix. The quadruple, BPM, and corrector calibrations
were varied in order to best fit the model matrix to the memured one. The
orbit response matrix is defined by

where M is either the model or the me=ured matrix which gives the change in
orbit x, y with a change in corrector strengths O=,y. To minimize the difference
between the model and measured matrices, we made a vector, V, with the
elements of V equal to the difference between the me~ured and model response
matrices. V h= 4320 elements, which is the number of horizontal and vertical
correctors times the number of BPMs. Then the equation

m“ m <AGj + dV

v = dI(j ‘1<~ + ~Ao~ + dGj d(Ap/p)j
A(Ap/p)j (1)

was solved for changes in quadruple strengths (I<j ), corrector strengths (Oj ),

the BPM gains (Gj ), and (AP/P)j in order to best fit the measured to model
response matrices. The parameter (AP/P)j is the electron energy shift that

t h horizontalcorrector strengthis changed by ej. This energyoccurs when the ~
shift causes a shift in orbit proportional to the dispersion that is just large
enough to keep the total path length of the electron trajectory fixed. The

“ements ‘f & are equal to the horizontal dispersion. This orbit shift can
be large in the X-Ray ring, so it must be included to get a good fit between the
measuredand model responsematrices.

In equation 1 we varied 57 ]{j’s for the 56 individual quadruples in the
X-Ray ring plus the gradient in the dipoles. We varied 51 (AP/P)j’s for the 51
horizontalcorrectors, and we varied96 Gj’s for the 48 horizontal BPMs and the
48 vertical BPMs. We could not independentlyvary all the BPM Gj’s and all

-..
-- 2



r .

. .

thecorrector Oj's, because there would beadegeneracy in the solution. All the

BPM gains could be increased while all the corrector Oj’s were decre~ed, and
the model matrix would stay constant. To avoid this degeneracy, we ~sumed

one horizontal corrector and one vertical corrector were calibrated correctly.
We fixed these two corrector strengths, and calibrated all the other correctors
and BPMs relative to these two correctors. Thus we varied 50 ej’s for the 51
horizontal correctors and 38 ej’s for the 39 vertical correctors. This gave us a
total of 292 varied parameters to fit the 4320 meaured data points. Equation
1 can be written x .. .

(2)

with the 292 parameters denoted by Xj ‘s.

Actually the equation we solved ww a slightly modified version of equation
2. Different BPMs in the ring have different noise levels wociated with their
orbit measurements. We me~ured the noise level for each BPM by me~ur-
ing the orbit many times in succession without changing any corrector magnet
strengths. The rms orbit shift between successive orbits for the k~h BPM, uk,
gave the noise level msociated with that BPM. The rms noise levels ranged from
1.1 pm to 5.1 pm, with a typical noise level of about 2 pm. We gave greater
weight to those BPMs with lower noise by solving

In this way we were minimizing the X2 deviation
surements, where

4320v?x2=~$.
i=l

(3)

of the model from the mea-

(4)

The change in the model matrix with quadruple strengths is nonlinear,
so equation 3 was solved iteratively. The parameter changes from the first
iteration were put into COMFORT, and a new model matrix w= calculated.
Then equation 3 was solved again, and so on until the solution converged to
the minimum Xz. After convergence, the rms difference between the model and
me~ured matrices W= 2.7 pm which is very close to the BPM noise level of 2.0
pm. Figure 1 shows the very good agreement between the me~ured and model

response from one of the vertical correctors,

3 Error Analysis

Once the algorithm had converged to minimize Xz, we had calibrations for the
quadruples, BPMs, and correctors that gave a very good fit to the memured
data. Then we had to determine if these magnet strengths and BPM calibrations

-..
-- 3



I .

were really the ones in the ring, We had to address both random and systematic
errors.
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Figure 1: The measured and model response from one of the vertical correctors
at the 48 BPMs.

3.1 random errors

The ~~iest way to determine how much the fitted parameters vary due to ran-
dom errors in the measurements is simply to take many data sets, analyze each
one separately, and see how much variation there is between fitted parameters
for the different data sets. We measured the response matrix ten times, and
fitted a model to each response matrix. Then for each of the parameters we
took the average over the ten data sets and calculated the rms difference from
this average. For example, table 1 shows the average quadruple gradient over
the ten data sets for the 16 quadruples in the QA family of the X-Ray ring:
The rms deviations are about .05%; the differences between the parameter sets
for the ten models were small. This means that the solution is unique (to within
.0570). There is only one model that fits the data. As far w random errors are
concerned, we can be confident that the model we have calculated gives the
true quadruple gradients of the ring. The rms deviations over the ten models
for the calibrations of the BPMs and correctors were .1770, so random errors
give a contribution of .17% to the error bars on our model BPM and corrector
calibrations.
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TABLE 1: Calculated quadruple gradients
averaged over ten data sets.

QUADRUPLE <K>(l/m**2) ms deviation

QAI
QA2
QA3
QA4
QA5
QA6
QA7
QA8
QA9
QAIO
QAII
QA12

QA13
QA14
QAi5
QA16

-1.5074
-1.5099

-1.5073

-1.5098
-1.5091

-1.5068

-1.5052

-1.5118

-1.5076

-1.5109

-1.5082

-1.5086

-1.5047

-1.5111
-1.5088

-1.5087

.0009

.0009

.0006

.0008

.0007

.0009

.0005

.0008

.0008

.0010

.0011

.0009

.0005

.0007

.0005

.0008

There is another way to show that the modelis uniquely determined by
the r~ponse matrix data. If the matrix - in equation 3 were degenerate,

then it would not have a unique inverse. In’such a case there would notbe a
uniqye solution to.equation 3. In the method section we pointed out that we
had avoided one potential degeneracy related to the relative scaling of the BPM

--and corrector calibrations. This degeneracy was recognized and removed from
the problem, but we need to ascertain if there are less obvious degeneracies that

could lead to singularities in w.

When we solved equation 3, ~e used singular value decomposition (SVD) [5]

to invert ~. As part of inverting a matrix, SVD calculates the eigenvalues

and eigenvec;ors associated with the matrix. The eigenvalues give a good diag-
nostic for finding degeneracies in the matrix: a degeneracy shows up m a zero
eigenvalues. If we hadn’t removed the BPM-corrector scaling degeneracy and
had varied all corrector and BPM calibrations, then SVD would have given two
zero (to within roundoff error) eigenvalues, one for each plane. A zero eigen-
valuesmeans that there is an unbounded region of parameter space in which all
the parameter sets fit the data equally well. An eigenvaluesclose to zero means
that there is a large area in parameter space in which X2 does not change much
from its minimum value. Within measurement accuracy we cannot distinguish
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between the parameter sets in this area.

Ultimately we can find out if there are problems with degeneracies in solving
for the model by fitting multiple data sets w we described above. There are no

degeneracies if the parameter sets for different data sets come out nearly the

same. Keeping track of the size of the eigenvalues, however, is a good guide
while setting up the program to help avoid the pitfall of including too many

parameters in the fit. As new parameters are added to the fit to improve the
agreement bet ween the model and the measured matrices, one should make sure

no very small eigenvalues appear. If they do appear, this implies that the new
parameters cannot be uniquely determined by the data.

3.2 systematic errors

In order to get the model to fit the measurements to close to the noise level of
the BPMs, we had to work hard to reduce systematic errors. The following is a
list of the more important systematic errors we considered:

1. Sextupola

(a) gradients from orbit offset

(b) nonlinearities

2. Coupling

3. Longitudinal position of BPMs, correctors, and quadruples

The sextupol~ produce two types of systematic errors. A sextupole has a
field gradient when the orbit does not go through the center of the sextupole.
In principle, these gradients could be fit as seperate parameters, but this does
not work in practice with the X-Ray ring. In the X-Ray ring we have two
focusing sextupoles per superperiod, one on each side of the quadruple in the

--dispersive straight sections. The sextupolm are too close to the quadruple
to independently fit the gradient in all three magnets. Sextupoles also add
nonlinearity. This nonlinearity could be accounted for in the model, but the
prment fitting program uses only the linear response matrix.

To avoid the systematic errors from the sextupoles, we simply turned them
off. We can store 50 mA in the X-Ray ring without any sextupoles.

The program COMFORT assumes that the horizontal and vertical planes
were completely decoupled for the model response mat rix calculation. The
decoupling in the X-Ray ring is very good [6], so this should put little error in
our fitting. It would be interesting in the future, however, to include coupling
in the fitting. We could try to derive the skew gradient distribution around the
ring, as well as the normal gradient.

The model response matrix changes as the longitudinal positions of the ele-
ments are changed. For example, if a BPM has a longitudinal position error of
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As and the orbit shift for some corrector at the BPM has an angle x’, then the
model reponse matrix elementwill have an error of x’As. For the orbit shifts
such w the one shown in figure 1, the angle at the BPMs is as large as 0.8mrad.
A one centimeter As would give an 8pm error in the model matrix. We found
that many of the BPMs and correctors were off by a centimeter or more in our
model. To correct this we measured each of the positions with a ruler, and put
the new positions in our model. The accuracy of our position measurements
w- probably a millimeter or two, so there remains some systematic error due
to BPM and corrector alignment in our model.

Once we had done all we could to reduce systematic errors, we needed a way
to determine if the remaining systematic errors were large enough to require
including them when determining the error bars on the model parameters. To
do so we needed to look at X;in which is the value of X2 for the best fit model. If
the only errors in the fitting are normally distributed random errors, then x~in
should be about equal to the number of degrees of freedom, N – M, where N is
the number of data points (4320), and M is the number of fit parameters (292).
More precisely, if there were Oniynormally distributed random errors, and we

took many data sets, solving for x~in for each data set, then the distribution of

Xhin ‘S WOUldbe centered at N – M = 4028 and WOUld have a standard deviation
of d~ = 90 [5].

For the ten data sets we fit, we found x~in averaged about 7500, which
is many standard deviations above 4028. A value of x~in one or two standard
deviations above 4028 could be explained by the fact that our orbit me~urement
errors were not normally distributed, but a x~in of 7500 can only mean that
the systematic errors, though small, are not small enough to be neglected in
determining the error bars on our fit parameters.

One way we can gain confidence that our fit parameters are correct despite
systematic errors is to look at other measured data from the storage ring that
was not used in the model fitting and see if it agrees with the model. We found

.- that the me~ured tunes agreed with the model tunes to within measurement
accuracy. The measured dispersion also agreed with the model dispersion. (The
measured and model dispersions did not agree perfectly, because the model does
not include dipole terms in quadruples and orbit corrector magnets.)

Another way we can gain confidence in the model is look at the variation
in calibrations of the quadruples that were supposed to have identical calibra-
tions. For example, all the quadruples in the QA family shown in table 1 were
designed to have identical gradients. However, nothing in the fitting program
constrained them to be the same; each gradient was varied independently. The
QA family gradients came out very close to the same, but there is more vari-
ation in the gradients than can be accounted for with the noise in the orbit
measurements. The additional variation is either real or caused by systematic
errors in the model. Averaging the gradient over the 16 QA quadruples and
computing the rms deviation from this average gives an upper bound on the
QA gradient error bars due to systematic errors. Similar calculations for the
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other three quadruple families yields the following table for the upper bounds
on the error bars from systematic errors for quadruples in each family:

TABLE 2:

averaged
over all

Calculated quadruple gradients
over ten data sets, then averaged
the quadruples in a family.

QUADRUPLE <<K>>(l/m**2) rms deviation

FAMILY

QA -1.5085 .0019

QB 1.3585 .0018

QC -1.4236 .0047

QD 1.3376 .0016

The same analysis of variation in the calibration of identical correctors gives
an upper bound on the systematic error bars for correctors of 1.570. Much of
this variation may be real variation in the corrector calibration due to construc-
tion tolerances, so the actual error contribution from systematic errors maybe
smaller than 1.570.

Each BPM has different electronics with varying gain, so there are no groups
of identical BPMs from which error bars could be determined for the BPMs.
The BPM and corrector strengths, however, come into the response matrix in
thesameway, so the 1.5% error bar of the correctors isvalid for the BPMs as
well.

4 - Conclusion

We have shown that it is possible to accurately determine the individual quadruple
gradients, the corrector calibrations, and the BPM calibrations of a circular stor-

age ring using the measured response matrix. In the future we hope to extend
this algorithm to find the orbit offsets in sextupoles = well as skew quadruple
gradient distribution in the X-Ray ring.
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