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Abstract

We consider CP violating effects in decays of the type B → kiγ → Kπγ, K∗πγ
and Kργ, where ki represents a strange meson resonance. We include in our cal-
culations five of the low-lying resonances with quantum numbers (JP ) 1−, 1+ and
2+. At the quark level these decays are driven by the penguin graph as well as
tree graphs. CP violation arises in the Standard Model due to the difference in
the CKM phase between these graphs. We model the final state interaction of the
hadronic system using the low lying ki resonances. Bound state effects are incor-
porated by using ideas based on the model of Grinstein et al and also in another
bound state model (somewhat similar to the model of Wirbel et al) which we con-
struct designed to take into account relativistic effects better. In these models we
find that radiative decays of B mesons give rise to four of the five kaonic resonances
at about 1 to 7% of the inclusive b→ sγ rate. Furthermore, in both bound state
models we find that the probability of formation of the other three higher reso-
nances is roughly the same as that of K∗(892), which was recently seen at CLEO.
In addition to the partial rate asymmetry which arises due to interference between
resonances of the same quantum numbers, we show how interference between res-
onances of the same parity, and also between resonances of the opposite parity,
result in two different types of energy asymmetries. CP differential asymmetries at
the level of a few percent seem possible. We thus obtain CP violating distributions
which may be observed in a sample of about 109B± mesons. For concreteness in
this paper we deal with only charged B’s, neutral B’s will be dealt with separately.
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1 Introduction

The recent observation [1] of the long awaited process B → K∗γ gave another
reminder of the possible richness of the physics which could be observed at
B factories.

In this paper we will consider the generalizations of the above decay, i.e.
we consider the decays B → kiγ where the ki denote excited K meson states
or resonances. In particular, we wish to investigate if widths of resonances
can be used to enhance CP violation effects in B-decays; their importance in
the context of the top quark has been emphasized in the past few years[2, 3].
The key difference is that in the case of B-decays the resonances are strongly
interacting so that width to mass ratio is much larger than was the case for
the top decays wherein the resonances are electroweak in character.

In the case at hand, namelyB → kiγ, ki must have J ≥ 1; so, in particular
we will focus on the five lowest lying such states. We will denote these states
k0, k1, k2, k3 and k4. The first such state which we write k0 is K∗(892);
it has quantum numbers 1−. In a constituent quark model it is a ūs (or
d̄s) quarkonium state 3S1. The next two states that we are interested in we
will denote as k1 and k2. They both have quantum numbers 1+ and in the
notation of [4] are written as K1(1270) and K1(1400). In the quark model
they should correspond to mixtures of the states 1P1 and 3P1. For these pure
quark model states we will use the notation k̂1 = 1P1 and k̂2 = 3P1 and so,
following [5] the physical states are related to these by a mixing angle θ12:

k1 = cos θ12 k̂1 − sin θ12 k̂2

k2 = sin θ12 k̂1 + cos θ12 k̂2. (1)

Though strictly speaking the states k̂1 and k̂2 are not eigenstates of charge
conjugation, in the literature they are sometimes referred to as 1+− and 1++

states since they are related by SU(3) to the b1(1235) and a1(1260) mesons
with those quantum numbers. In fact the mixing here has been observed to
be close to maximal; in [5] θ12 is experimentally determined to be 56± 3◦.

The 23S1 state K∗(1410) will be denoted as k3. In principle k3, which is a
radially excited 23S1 state, could also mix with k0 however since the masses
are so far apart it is unlikely that this mixing is large. We will therefore
ignore this mixing in our calculation. We also consider the K2(1430) state
with quantum numbers 2+ which will be designated k4. D wave states have

2



also been observed around 1700 MeV but we will not include these in our
analysis. We have summarized some of the known properties [4] of these
states in Table 1.

Consider the two decays B → kiγ; kjγ followed by decays of ki and kj de-
cay to a common hadronic final state XY . If the two channels have different
CP phases then CP violation could manifest in the momentum distribution
of the mesons making up XY . Thus, for example, the energy distribution of
one of the particles in XY may be different for B decay compared to that in
B̄ decay. If the quantum numbers of the two states are the same, as is the
case for k1 versus k2 and k0 versus k3 then there also exists the possibility of
a partial rate asymmetry (PRA) between B decay and B̄ decay. Of course
in the case of neutral B decay one must also consider these phenomena in
the context of B − B̄ oscillations [6].

We find that the largest effect occurs in the case of the final state K∗π.
In this case we estimate that a difference between the distribution of the K∗

in the decays of B− versus B+ may well be observable with about 5 × 108

B± decays. The final state Kπ seems to require about 5×109 B± decays. In
passing, we mention that, whereas we are focussing on influence of resonances
to CP violation in radiative decays of B mesons to exclusive channels, CP
violation in inclusive, radiative decays of the b quark has been examined by
Soares [7]. The two approaches are therefore somewhat complementary.

The rest of the paper will proceed as follows: In section 2 we will explain
how it could happen that the different ki decays could acquire different CP
phases, in particular in the Standard Model (SM); we will also estimate the
magnitude these phases could have. In making these estimates, for incorpo-
rating bound states effects, we will use ideas based on references [8, 9]. In
section 3 we will explain how these CP phases will give rise to CP violating
kinematic distributions as well as partial rate asymmetries. In that section
we also estimate the magnitude of various asymmetries to be expected.
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2 Basic Processes

Any CP violating phase which enters into the process B → kiγ must have its
origin either in the electroweak physics which drives the process or in physics
beyond the standard model. In the standard model, three classes of quark
graphs may contribute as shown in Figure 1. Figure 1a shows the penguin
graph for the quark level process b→ sγ which has been studied extensively
[10, 11]. Figure 1(b) shows an annihilation process which is operative only
in the case of B±. This process will give a γki state if the two quarks
coalesce into the appropriate ki state. Figure 1(c) shows a spectator process
which could give rise to γki if the four quarks shown should coalesce into two
mesonic states and thence to a ki state.

Of course to have observable CP violating effects one need not only have
a CP violating phase but there must be the interference of processes with
different CP phases. In the standard model such a phase is given by the CKM
matrix (V ). Introducing the standard Wolfenstein [15] parameterization of
the CKM matrix [16]:

V =

 1− λ2

2
λ Aλ3σe−iδ

−λ 1− λ2

2
Aλ2

Aλ3(1− σeiδ) −Aλ2 1

 (2)

where λ = sinθcabibbo = 0.22. The amplitude for the penguin graphs [10, 11]
will be proportional to the quantity:∑

i=u,c,t

V ∗isVibF (mi) (3)

where the form of F for the graph in Figure 1a is given in [10] and the QCD
corrected form is given in [11]. Note that the above sum will be dominated by
the i = c and i = t terms, hence from (2) we see that in this parameterization
there is little phase in the penguin amplitude. Both the spectator and the
annihilation graphs will, on the other hand, be proportional to the product

V ∗usVub = Aλ4σe−iδ (4)

which has a phase of precisely −δ in this notation. Thus interference be-
tween the penguin graph and either the spectator or the annihilation graphs
potentially can produce observable CP violating effects.
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To see how this comes about consider, for instance, the two decay chan-
nels B → k2γ → πK∗γ and B → k4γ → πK∗γ. The final states are the
same, hence there could be interference effects between them. If there is a
difference in CP phase as well as a difference in the strong interaction phase
(i.e. CP conserving phase) , there could be a difference in the energy or
other distributions between B and B̄ decay which would clearly violate CP.
We will assume that near these resonances the strong interaction phase is
dominated by Breit-Wigner forms for the ki propagators.

In order to calculate the CP phase for the decay B → kiγ we will thus
need to estimate the relative contribution of each of the three classes of
graphs to the five ki resonances that we are considering.

In the case of the annihilation and spectator graphs it will be useful to
compare these rates with Γ0

bus, the tree level inclusive process b→ uūs given
by:

Γ0
bus = 3

G2
Fm

5
b

192π3
|VubV ∗us|2 = 3f−1(

m2
c

m2
b

)
∣∣∣∣VubV ∗usVcb

∣∣∣∣2 Γ(b→ eνc) (5)

where
f(x) = 1− 8x+ 8x3 − x4 − 12x2 log x (6)

is the phase space factor defined in [14]; in this case f(m2
c/m

2
b) = 0.46, where

we are using mc = 1.5GeV and mb = 4.6GeV .
For a given B decay, via the spectator graph, to the final state X we

define

r(X) =
Γ(X)

Γ0
bus

. (7)

2.1 Penguin Graph

The dominant graph as we shall see is likely to be the penguin process de-
picted in Figure 1(a). In this case the ki system is formed by the merging
of the spectator and the s quark. In order to calculate the probability of
the formation of each of the resonances, one needs a model for the bound
state effects involved. For this purpose we will consider potential models
[8, 9, 17, 18].

In general such a model will relate meson level amplitude Mm to the
quark level amplitude Mq according to the formula:

Mm =
∫
MqΦ

B(P )Φk
i (P̂ )dP (8)
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where the meson wave functions ΦB and Φk
i are functions of quark momenta

and spins with the correct quantum numbers to form the indicated mesons.
Here P represents the momentum of the b quark in the rest frame of the B
meson and P̂ represents the momentum of the s quark in the frame of the
ki. The exact details of how the integral is constructed will depend on the
specific model. We will construct two such models which we will designate
A and B in order to get a feel for the accuracy of the predictions.

Model A is similar to the one used in [17] and is based on the quark
model of Grinstein et al. [8] which has been quite successful in semileptonic
charm and bottom decays. Model B is constructed to take relativistic effects
better and is based roughly on the ideas of Wirbel et al. [9]. For model A,
non-relativistic kinematics is used for the quarks and P is taken to be the 3
momentum of the b-quark in the B-meson rest frame and P̂ is given by

P̂ = ~P − xu ~K (9)

where xu = mu/(mu + mb) and ~K is the momentum of the ki meson in the
B rest frame.

The wave functions for the various meson states are approximated by
harmonic oscillator functions. Thus the momentum dependent part of the
wave functions are:

ΦB = π−
3
4β
−3

2
B e

− P2

2β2
B

Φ1S = π−
3
4β
−3

2
S e

− P2

2β2
S

Φ1P (0) = π−
3
4β
−3

2
P

√
2Pz
βP

e
− P2

2β2
P

Φ1P (±1) = π−
3
4β
−3

2
P

(Px ∓ iPy)
βP

e
− P2

2β2
P

Φ2S =

√
3

2
π−

3
4β
−3

2
S (

2P 2

3β2
S

− 1)e
− P2

2β2
S (10)

Here ΦnS represents the nth excited S-wave state, ΦnP (m) represents the n th
excited P -wave state with angular momentum projection m and φB is the
wave function for the B meson. The constants βi are determined from the
potential model using a variational method. The values obtained in references
[17, 8] are
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βB = 0.41 GeV βS = 0.34 GeV βP = 0.30 GeV (11)

where they use the constituent masses

mu = md = 0.33 GeV ms = 0.55 GeV mb = 5.12 GeV. (12)

With the use of the above momentum distributions above we can specify
the spin-dependent part of the wave function for the B-meson and for the ki
with Jz = −1:

|B > =
1√
2

ΦB (b(↑)ū(↓) + b(↓)ū(↑))

|k0 > = Φ1S s(↓)ū(↓)

|k̂1 > =
1√
2

Φ1P (−1) (s(↑)ū(↓) + s(↓)ū(↑))

|k̂2 > =
1√
2

Φ1P (0) s(↓)ū(↓)− 1

2
Φ1P (−1) (s(↓)ū(↑)− s(↑)ū(↓))

|k3 > = Φ2S s(↓)ū(↓)

|k4 > =
1√
2

Φ1P (0) s(↓)ū(↓) +
1

2
Φ1P (−1) (s(↓)ū(↑)− s(↑)ū(↓)) (13)

Note that for the 1+ states we use the quark model basis {k̂1, k̂2}.
At the quark level the bsγ coupling is

a s̄ σµνqµ(PR +
ms

mb
PL) b (14)

where PR = 1
2
(1 + γ5) and PL = 1

2
(1 − γ5) and a is given in [11]. We will

concentrate on the proportional to PR which is dominant. Note that this
gives rise to left handed photons in the final state.

Let us take the z-axis in the direction of the hadronic momentum so the
4-momentum of the photon is

pγ =
m2
B −m2

i

2


+1
0
0
−1

 (15)

7



and we take the 3-momentum of the b-quark to be ~P . Expanding the ampli-
tude for small Px, Py we obtain:

M++ = −a
√

8(mb −ms)P−

M+− = 0

M−+ = −a
√

8(m2
b −m2

s)

M−− = +a
√

2m−1
b (m2

b −m2
s)P− (16)

whereMij is the amplitude for b quark with spin projection Sz = j/2 going
to s-quark with spin projection Sz = i/2. The quantity P± = Px ± iPy.

Using the above expansion we can obtain analytic expressions for the
meson amplitudes:

M(k0) = −2a

(
β̂2

βBβS

) 3
2

(m2
b −m2

s)e
−∆S

M(k̂1) = −
√

1

2
a
β̂2

mbβP

(
β̂2

βBβP

) 3
2

(mb −ms)
2e−∆P

M(k̂2) = −a

[ (
β̂2

βBβP

) 5
2

β−1
B xu

(
m2
B −m2

i

2mB

)
(m2

b −m2
s)

+
1

2

(
β̂2

βBβP

) 3
2 β̂2

βPmb
(mb −ms)(3mb +ms)

]
e−∆P

M(k3) = −a
(

2

3

)1
2

(
β̂2

βBβS

) 3
2 3(β4

B − β4
S) + 2β2

S(xuK)2

(β2
B + β2

S)2
(m2

b −m2
s)e
−∆S

M(k4) = −a

[ (
β̂2

βBβP

) 5
2

β−1
B xu

(
m2
B −m2

i

2mB

)
(m2

b −m2
s)

−1

2

(
β̂2

βBβP

) 3
2 β̂2

βPmb
(mb −ms)(3mb +ms)

]
e−∆P (17)

where

∆ =
x2
u(m2

B −m2
i )

2

2m2
B(β2

B + β2
i )

β̂i =

√√√√ 2β2
Bβ

2
i

β2
B + β2

i

(18)
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We can now calculate the ratio

Ri =
Γ(B → kiγ)

Γ(b→ sγ)
. (19)

The results are shown in Table 2. Note that our results are slightly different
than those obtained in [17] because here we expanded the matrix element

only to first order in ~P .
One thing which is worrisome about the model constructed in this way

is that the transformation from P to P̂ is not relativistic. The velocity of
the mesons however is, since v

c
ranges from .85 in the case of k2 to .95 in

the case of K∗. This motivates us to consider a modification which respects
relativity.

In model B, we consider wave functions Ψi which are functions of 4-
momentum and are related to Φi by

Ψi(P ) = NiΦi(~P )

√
E(mi − E)

mi

e
− (E−E0)2

2β2
i . (20)

In this equation P ≡ (E, ~P ) is the 4-momentum of the quark in the meson i
and

E0 =
m2
i +m2

q −m2
q̄

2mi
(21)

mq and mq̄ being the constituent masses. We define the wave function to be
0 if E is outside of the physical range 0 ≤ E ≤ mi and the normalization
constant Ni is determined by the condition∫

0≤E≤mi
||Ψ(P )||2d4P = 1. (22)

For the form of the E dependent part of the wave function we are motivated
by the similar form in [9].

Thus, in the reaction B → kiγ the relation between P̂ and P becomes,
P̂ = L(P − Pγ) where

L =


γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ

 (23)
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is the Lorentz boost into the rest frame of ki. We still use the quark level
amplitudes expanded in Px and Py in equation (16) and substitute them into
equation (8). Thereby we obtain the results in Table 2 labeled model B. Note
that these results are somewhat smaller, compared to those from model A,
particularly in the case of k2, k3 and k4.

2.2 Four Quark Hamiltonian for B Decays

The four quark couplings involved in ∆S = 1 charmless B± decay is given at
tree level by W± exchange. There are however potentially large QCD correc-
tions which have been calculated using the renormalization group approach
[19, 20]. Following these papers, let us establish a basis of ∆S = 1 operators
that may mix together:

Oij
1 = (s̄αγµPLbα)(q̄jβγµPLq

i
β)

Oij
2 = (s̄αγµPLbβ)(q̄jβγµPLq

i
α)

O3 = (s̄αγµPLbα)
∑
k

(q̄kβγµPLq
k
β)

O4 = (s̄αγµPLbβ)
∑
k

(q̄kβγµPLq
k
α)

O5 = (s̄αγµPLbα)
∑
k

(q̄kβγµPRq
k
β)

O6 = (s̄αγµPLbβ)
∑
k

(q̄kβγµPRq
k
α) (24)

where i, j ∈ {u, c} and k ∈ {u, d, c, s, b}. α and β are color indices.
The effective Hamiltonian may be expanded in terms of these operators

in the following way:

Heff = 2
3
2GF

[
V ∗csVcb(

∑
i=1,2

cci (µ)Occ
i +

∑
i=3,...,6

cci (µ)Oi)

+V ∗usVub(
∑
i=1,2

cui (µ)Ouu
i +

∑
i=3,...,6

cui (µ)Oi)

+V ∗usVcb(
∑
i=1,2

cuci (µ)Ouc
i ) + V ∗csVub(

∑
i=1,2

ccui (µ)Ocu
i )

]
(25)

Following the treatment in [20] to next to leading order in QCD the
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operators satisfy the following evolution equations:

µ
d

dµ
cqi (µ) =

αs(µ)

2π

∑
j=1,...,6

cqjAj,i

µ
d

dµ
cri (µ) =

αs(µ)

2π

∑
j=1,2

crjBj,i (26)

where q ∈ {u, c} and r ∈ {uc, cu} and the one loop αs is given by

αs(µ) =
12π

(33− 3f) log µ
Λ5

(27)

where Λ5 is the QCD scale for 5 flavors. The matrix A, to the lowest non-
trivial loop order is [20]:

A =



− 3
N

3 0 0 0 0
3 − 3

N
− 1

3N
1
3

− 1
3N

1
3

0 0 − 11
3N

11
3

− 2
3N

2
3

0 0 3− f
3N

f
3
− 3

N
− f

3N
f
3

0 0 0 0 3
N

−3

0 0 − f
3N

f
3

− f
3N
−6cF + f

3


(28)

and the matrix B is:

A =

(
− 3
N

3
3 − 3

N

)
. (29)

Here the QCD color factors N = 3 and cF = 4
3
. The number of flavors f = 5

since we are interested in the evolution above mb.
Let us define the coefficients of these operators at µ = mW to be the tree

level values, thus

cu2(mW ) = cc2(mW ) = cuc2 (mW ) = ccu2 (mW) = 1 (30)

and all the other coeficients are 0. This implies that cui (µ) = cci(µ) = cuci (µ) =
ccui (µ) = ci(µ). In particular c1 and c2 may be solved in a simple form. If we
write

c1 =
1

2
(c+ − c−) c2 =

1

2
(c− + c+) (31)
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then the solutions for c+ and c− are:

c+(µ) =

[
αs(m2

W)

αs(µ2)

] 6
23

c−(µ) =

[
αs(m2

W )

αs(µ2)

]−12
23

(32)

The evolution equation (26) is readily integrated numerically. If we take
Λ5 = 0.2GeV and mb = 4.7GeV then

c+ = .846 c− = 1.397
c4 + c3 = −0.016 c4 − c3 = −0.041
c6 + c5 = −0.027 c6 − c5 = −0.043

(33)

2.3 Annihilation Diagram

In the case of B± decay it is possible to produce a γki state through the
annihilation graphs such as the one depicted in Figure 1(b).

In general such annihilation graphs can be calculated by relating them
to the weak decay constant fB which we take to be 180 MeV [22], defined
so that fπ = 130MeV . Following the calculation in [23] we assume that the
annihilation takes place at 0 relative momentum. Thus if U is the amplitude
for bū annihilation at 0 relative momentum where we take

pb = xbPB pu = xuPB (34)

then the meson level amplitude can be written as

M =
1

4
fBTr((P/B +mB)γ5U)

1

3
δab (35)

where a and b are color indices.
Since our goal is to find contributions which interfere with the penguin

graph we must take the photon from the annihilation graph also to be left
handed. This photon polarization leads to the graph where the photon is
radiated from the b-quark vanishing. In addition graphs where the photon
is radiated from the final state vanish in the limit that the light quark mass
goes to zero. In contrast the graph where the photon is radiated from the
initial ū quark is proportional to x−1

u fB and so dominates. In fact in the case
of 0 relative momentum this graph by itself is gauge invariant so it makes
sense to consider it alone.
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The four quark operator which we need to extract from the effective
Hamiltonian is (ūαγµPLbα)(s̄βγµPLuβ). Note that the color structure is fixed
by the constraint that the initial ūb system is a color singlet. Furthermore the
CP phase is only present in the CKM product VubV ∗us. Since we obtain CP
violating observables by interference of this process with the penguin graph,
henceforth we will extract only the portion of the amplitude proportional
to VubV ∗us. The total coeficient for the above operator after suitable Fierz

transformation is D = 2
3
2GFDVubV ∗us where

D = −(
1

3
c1 + c2 +

1

3
c3 + c4) (36)

Using the numerical results in (33) we calculate D = −1.029. Operators with
the current structure of O5 and O6 do not contribute to the photon emission
from the initial ū quark as may readily be verified by substitution into (35).
Emission from the final legs is also suppressed as it does not go like 1/mu or
1/ms.

Using equation (35) it is straightforward to calculate the amplitude to
specific spin states which we will denote NS,m where |S,m > is the angular
momentum of the ūs system quantized in the z-direction:

N1 +1 = ZP 2
−

N1 0 = − Z√
2

(
√
s+ms +mu + 2Pz)P−

N1 −1 = +Z(Eu +mu + Pz)(Es +ms + Pz)

N0 0 = −Z (ms −mu)(ms +mu +
√
s)√

2s
P− (37)

where s = (pu + ps)2; in the ūs rest frame the 4-momentum of the s quark is

ps =


Es
Px
Py
Pz

 (38)

The energy of the ū is Eu =
√
s− Es and P± = Px ± iPy. The factor Z is:

Z =
GFmBfBeueVubV

∗
us

mu

√
(Eu +mu)(Es +ms)

D (39)
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where eue is the charge of the u quark and D is the coeficient defined in
equation 36. We now consider two different methods for estimating the am-
plitude for B → γki from this annihilation process. First of all we use the
nonrelativistic quark model A above and then we will try to estimate the
amplitude in a model independent way.

In terms of a nonrelativistic wave function, the meson level amplitude Ni

is given by:

Ni =
1

2
π−

3
2m
−1

2
i

∫
N|ki > d3 ~P (40)

where the wave functions |ki > are those given in equation (13) and ~P is the
3-momentum of the s quark in the ki frame.

We may evaluate this integral analytically if we use the non-relativistic
approximation Eu ≈ mu and Es ≈ ms.

Performing this integral the meson amplitudes thus obtained are:

N0 = +Z
√

2π−
3
4m
−1

2
i β

3
2
S (4mums + β2

s)

N̂1 = −4Zπ−3
4m
−1

2
i β

5
2
P (ms −mu)

N̂2 = −2
√

2Zπ−3
4m
−1

2
i β

5
2
P (ms +mu)

N3 = +Z
√

3π−
3
4m
−1

2
i β

3
2
S (4mums +

7

3
β2
s)

N̂4 = 0 (41)

Using these equations and the values of parameters mentioned above we
obtain the following values of r (defined in eqn (7)) for the contribution of
the annihilation graphs to various channels:

r(γk0) = 5.3× 10−5 r(γk̂1) = 1.1× 10−6

r(γk̂2) = 3.3× 10−5 r(γk3) = 6.6× 10−5

r(γk4) = 0

(42)

Our model independent attempt to estimate the value of r is based on
projecting the component of the quark amplitude with the same quantum
numbers as ki and then converting these components to a decay rate as we
shall discuss below.

With respect to the spin and angular degrees of freedom in the meson
rest frame we can define the following eigenstates of angular momentum:

|1− > = Y 0
0 |1 − 1 >s
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|1+− > = Y −1
1 |0 0 >s

|1++ > =
1√
2

(Y −1
1 |1 0 >s −Y 0

1 |1 − 1 >s)

|2+ > =
1√
2

(Y −1
1 |1 0 >s +Y 0

1 |1 − 1 >s). (43)

where |sm >s represents the spin state of the ūs system.
For each of these states let N (|i >) be the corresponding amplitude. We

may then construct the quantity dr|i>/ds. We now estimate the value of
r(γki) using

r(γki) =
∫ smax

smin

dr|i>
ds

ds (44)

for suitably chosen values of smin and smax.
For the four states k1,...,4 we note that the next ki states above them is

at 1.950GeV with width .2GeV so it seems reasonable to chose
√
smax =

1.750GeV . Intuitively a ūs system with invariant mass below this threshold
is forced to form the ki state with the appropriate quantum numbers. The
results for these states do not depend strongly on the value of smin so we
take smin = 0. likewise for k0 we take the threshold smax = 1.2GeV since
the next similar state (k3) has mass about 1.4GeV and width about .2GeV .
Using these thresholds we obtain the following r values:

r(γk0) = 1.2× 10−6 r(γk̂1) = 3.9× 10−7

r(γk̂2) = 3.8× 10−5 r(γk3) = 6.5× 10−5

r(γk4) = 0

(45)

As is apparent, the values are similar to those above in (42) except for the
case of k0 which will not effect our results greatly as it is separated too far
from the other resonances to interfere to any large extent.

2.4 Spectator Diagram

Let us now consider the decay rate which is generated by the spectator graph.
For this purpose we first calculate the quark level process and then estimate
the resultant meson formation. The quark level reaction at tree level proceeds
through four diagrams similar to the one shown in figure 1c. For the purposes
of our calculation we approximate the final state quarks as being massless
and so it is convenient to calculate the helicity amplitudes for the processes.

15



Let us define a convention for spinors and photon polarizations similar to
those used in [21]. Our conventions will be based on three arbitrary light-
like reference vectors λ0, λ1 and λ2. Let u0 be a right handed spinor in the
direction λ0 so that

u0ū0 = PRλ/0. (46)

Likewise we define the left handed spinor u1 in direction λ1 as

u1 =
λ/1u0√
2λ1 · λ2

(47)

For a general light-like vector p let us define the left and right handed spinors
u− and u+ respectively:

u− =
p/u0√
2p · λ0

u+ =
p/u1√
2p · λ1

(48)

we will not include the color indices throughout.
For simplicity let us adopt the notation

[p1, . . . , pn]± = ū#(p1)p/2 . . . p/n−1u±(pn) (49)

where u#(p1) = u±(p1) if n is odd and u#(p1) = u∓(p1) if n is even. Here p1

and pn are assumed to be massless while p2 . . . pn−1 need not be. Using the
definitions of the spinors, we can expand this notation in terms of traces:

[p1, . . . , pn]+ =


Tr(p/

1
...p/

n
λ/

1
PR)√

4 λ1·p1 λ1·pn
if n is odd

Tr(λ/
0
p/

1
...p/

n
λ/

1
PR)√

4 λ0·p1 λ1·pn
if n is even

(50)

and the corresponding expression for [ ]− is obtained by changing PL ↔ PR
and λ0 ↔ λ1.

Circularly polarized photons may also be expressed in this notation. Thus
for a photon with momentum q we may write

Eµ
R =

ū+(λ2)γµu+(q)

2
√
λ2 · q

. (51)

Left handed polarized photons may be expressed as Eµ
L = Eµ∗

R .
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The spinor for a massive fermion with mass m momentum p and spin s
can be expanded in terms of massless spinors as follows:

u(p, s) = u−(p−) +
1

m
[p+, p−]−u+(p+)

v(p, s) = u−(p−)− 1

m
[p+, p−]−u+(p+) (52)

where p± = (p±ms)/2
Let us now define the function

L(p1, q, p2, p3, p4, p5, p6) =

[ū−(p2)γµq/γνu−(p1)] [ū+(p4)γνu+(p3)]

[ū−(p6)γµu−(p5)]

= −2
[p2p6p5]−[p6p5qp3]+[p4p1]−

p5 · p6
(53)

We may now write the expression for the b spectator process b(pb) →
u(p1)ū(p2)s(p3)γ(q) for a left polarized photon as:

M(γL) =
e.g2

WV
∗
usVub

24m2
W

√
q · λ2

[
2

q · p1

L∗(p1, q + p3, pb−, λ2, q, p3, p2)

− 1

q · p3
L∗(p3, q, p2, λ2, q, p1, pb−)− 2

q · p2
L(p2, q, p3, q, λ2, pb−, p1)

+
1

q · pb
L(pb−, pb− − q, p1, q, λ2, p2, p3)

+
1

q · pb
(p2 · p3 λ2 · q)−1[p1p3p2]−[λ2qpb+pb−]−[p3p2q]−

]
. (54)

where gW is the weak coupling constant given in terms of the fermi coupling
GF by:

GF =
g2
W√

32m2
W

(55)

The amplitude for right polarized photons is given by interchanging q ↔ λ2.

17



QCD corrections of course come into play, the value of r obtained from
(54) need only be multiplied by a factor of:

F =
1

3

(
2(c+ + c4 + c3)2 + (c+c4 − c3)2 + 2(c6 + c5)2 + (c6 − c5)2

)
(56)

from the results in equation (33) we see that F = 1.073 so in fact the tree
level description seems to be reasonable.

Given the amplitudes for the tree graphs discussed in the last sections, we
must now estimate the formation of various particular ki resonances. We will
do this using a “hand waving” argument along the lines of our cutoff method
above. Thus, we will use the following two simplifying assumptions: (1) if
a system of quarks has the correct quantum numbers to form a particular
resonance and the invariant mass of the system is within a reasonable range
of the resonance (which we shall define) then it will form the given resonance.
(2) A system of quarks will couple most strongly to the lowest orbital angular
momentum state possible.

Thus, in the case of the spectator graph we need to distinguish two sepa-
rate cases (a) the b quark has spin Sz(b) = −1

2
and (b) the b quark has spin

Sz(b) = +1
2
. Note that this discussion applies equally to B− or B̄0 decays.

In case (a) the spectator ū quark must be polarized Sz(ūspec) = +1
2
. Since

we are considering only the left handed photon, the spin projection of the
hadronic system Jz(h) = −1. The left handed nature of the coupling implies
that the spins of the quarks from the decay of the b quark are Sz(s) = −1

2
,

Sz(u) = −1
2

and Sz(ūpart) = +1
2
. In total the spin of the quarks forming the

hadron is Sz(h) = 0 hence Lz(h) = −1. From our assumption (2) it follows
that L(h) = 1 and therefore the JP = 1−. Thus in this case the preferred
final states are k0 or k3.

In case (b) the spectator ū must be polarized Sz(ūspec) = −1
2

while all
the participant quarks have the same Sz as before. Thus for a left handed
photon, we have Lz(h) = 0. and from assumption (2) therefore L(h) = 0 so
that the total JP = 1+ and k̂1 and k̂2 should be the favored states.

We can be somewhat more specific by noticing that for example if the
decay occurs through O2 the spectator ū quark and the u quark have the
same color. If it should further happen that the remaining pair of quarks
have a different color, then the uū pair have the quantum numbers of a ρ
while the remaining pair have the quantum numbers of K. On the other
hand, only in the situation where the two ū’s (the spectator and the one
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derived from the virtual W ) which have opposite spins happened to have the
same color could they form a system which had the quantum numbers as a
K∗π. In fact the color part of the amplitude for the other pairing in the πK∗

configuration is 3 times smaller than that of the Kρ. We assume that the
production of the final state k̂1 and k̂2 are in proportion to the coupling to
the K∗π or Kρ like configuration of the quarks times the coupling of these
1+ states to the K∗π or Kρ. The situation for O1 is the same except the u
and s quark are interchanged as are the K∗π and Kρ final states and so a
fermionic − sign must also be inserted.

Let us denote b̂ρK1 , b̂πK∗1 , b̂ρK2 and b̂πK∗2 to be respectively the coupling of
ρK and πK∗ to k̂1 and k̂2. From the above argument therefore the ratio
between the spectator amplitudes M̂spec

1 and M̂spec
2 is

M̂spec
1 : M̂spec

2 = c1b̂
πK∗
1 − c2b̂

ρK
1 : c1b̂

πK∗
2 − c2b̂

ρK
2 (57)

Using the values in equation (33) and the couplings derived from experi-
ment derived in reference [5] the above ratio is

M̂spec
1 : M̂spec

2 = 14 : −1 (58)

so most of the amplitude is in the k̂1 channel.
In order to use assumption (1) we need to decide what threshold to

use. Following our discussion above we again pick the threshold smax =
(1750 MeV)2. In the case of the annihilation graph, the threshold applies to
sh = (pu+ps)2 while in the case of the spectator graph sh = (p1+p2+p3+p4)2

where p4 refers to the momentum of the spectator ū. In our formulation of
the amplitude of the b-quark decay we can directly calculate the differential
cross section in terms of the variable s3 = (p1 + p2 + p3)2. If we assume that
the spectator quark is roughly stationary then p4 = xuPB and the relation
between the quantities is

sh = (mb +mu)(mbmu + s3)m
−1
b (59)

thus sh ≤ (1750 MeV)2 translates to s3 ≤ 1120 MeV.
Therefore the values of r for the spectator graph is 5× 10−7 for case (a)

where Sz(b) = −1
2

and 1.1× 10−5 for case (b) where Sz(b) = +1
2
. Thus, from

the spectator graph we obtain the following values:

r(γk0) = 5× 10−7 r(γk̂1) = 1.1× 10−5

r(γk̂2) = 5.6× 10−8 r(γk3) = 5× 10−7

r(γk4) = 0

(60)
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2.5 Meson Couplings

In order to guide our calculations let us now estimate the CP phase and
couplings for each of the five channels which we consider. Let us denote Bpen
to be the inclusive branching ratio of b→ sγ through the penguin graph and

Bbus to be
Γ0
bus

ΓB
. In our numerical calculations, for concreteness we will take,

Bpen = 2.5 × 10−4 roughly corresponding to mt = 150GeV [12]. If we take
|Vub
Vcb
| = .08 [13], Vus = .22 and the leptonic branching ratio to be 0.107 then

from equation (5) we obtain Bbus = 1 × 10−4. (Of course, the rate for the
process b→ us̄uγ will be significantly smaller than this)

For a given channel ki which decays to a final state XY we model the
contribution to the decay process

B → kiγ → XY γ (61)

in two stages. Thus we define a coupling Ai governing the decay B → kiγ
and the coupling bi governing ki → XY . The amplitude for the entire process
(61) is thus AiΠijbj where Πij is the propagator to be discussed later.

Our model for this process will be such that all the interaction phase is
in Πi while all the CP phase is in Ai. Thus Ai is a complex coupling which
we may express as:

Ai = aie
iφi (62)

where φi is the CP phase and therefore flips sign under charge conjugation.
Note that φi is related to the CKM phase parameter δ as explained below.

From the decay rates which we have estimated for the penguin and tree
processes separately, we may determine the total amplitude, Ai:

Ai = σip

√√√√16πm3
BBpenRiΓB

(m2
B −m2

i )
+ σiann

√√√√16πm3
BBbusranni ΓB

(m2
B −m2

i )
eiδ

+σispec

√√√√16πm3
BBbusr

spec
i ΓB

(m2
B −m2

i )
eiδ (63)

where R is defined in equations (19), δ is the CP phase defined in equation
(2) and ranni and rspeci are the values from the annihilation and spectator
graphs obtained above. σip, σ

i
ann and σispec are the relative signs between
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the three amplitudes and are thus either ±1. In the case of σip equation 17
gives σip = −1 for each of the states; model B gives similar results. Equation
41 gives σiann = −1 for i ∈ {1, 2} and +1 for i ∈ {0, 3}; the projection
method gives the same results. In our model σispec is undetermined though
it has very little effect on our final results as the spectator amplitude is
too small compared to the annihilation or the penguin amplitudes. In our
numerical calculations, we will assume in the first instance, that σispec = σiann.
Later, in section 3.4, we will try to determine these relative signs between the
amplitudes by using a simple model. Furthermore, we will also numerically
investigate the effect of switching the signs. Note that the penguin graph is
the dominant production mechanism for B → kiγ, hence the magnitude ai
is given to a good approximation by the first term in (63)

As we mentioned before the CP phase, which in our convention is δ, is
contained in the tree processes. We can therefore estimate the total phase
φi by: ∣∣∣∣∣sinφisin δ

∣∣∣∣∣ =

√
Bbusri
BpenRi

(64)

where ri is defined in equation (7). The numerical results for the cases which
we consider are compiled in Table 3.

Next we deal with the couplings of the strong decays of the resonances
leading to the final states. Their couplings bi for i = 0, 3 and 4 may be
obtained from the meson decay widths:

bi = σid

√√√√16πm3
iBr(ki → XY )Γi

λ
1
2 (m2

i ,m
2
X,m

2
Y )

(65)

Here Γi is the total width of ki and

λ(u, v, w) = u2 + v2 + w2 − 2uv − 2vw − 2wu. (66)

Again σid is ±1. In the next section we will discuss in more detail how this
sign may be determined.

In [5] the couplings to the physical states k1 and k2 are parameterized in
terms of θ12, γ+ and γ−:

bK∗π1 = −1

2
γ+ sin θ12 +

√
9

20
γ− cos θ12
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bK∗π2 = +
1

2
γ+ cos θ12 +

√
9

20
γ− sin θ12

bKρ1 = −1

2
γ+ sin θ12 −

√
9

20
γ− cos θ12

bKρ2 = +
1

2
γ+ cos θ12 −

√
9

20
γ− sin θ12 (67)

where the observed values of these γ′s are[5]:

γ+ = 0.82 γ− = 0.59 θ12 = 56◦ (68)
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3 How CP Violation May be Detected

Let us consider the various two body decay modes of the ki states listed in
Table 1. Our basic strategy will be to consider the process B → γki → γXY
where more than one possible intermediate state ki may occur. If the different
states have different quantum numbers although the final states are the same,
the angular distributions will be different. In addition if there are different
interaction phases and CP phases associated with each ki state there will be
a difference in the angular distribution between the decay products of B and
B̄ which therefore signal CP violation. Indeed if the quantum numbers are
the same, as in the case of k0 vs. k3 and k1 vs. k2, the interference could lead
to a partial rate asymmetry.

For such two body decays, let us define sh to be the invariant mass of the
ki state, sh = (PX + PY )2 and let θ be the angle between the boost axis and
the momentum of the strange particle (K or K∗) in the ki rest frame and let
φ be the azimuthal angle. Denoting

z = cos θ (69)

the energy of X in the B rest frame, is given b:

EX =
(m2

B + sh)(sh +m2
X −m2

Y )− (−1)sX z(m2
B − sh)λ

1
2 (sh,m2

X,m
2
Y )

4mBsh
(70)

where sX is the strangeness of X. Using these variables we denote the decay
distributions

G(sh, z) =
d2

dshdz
Γ(B → γXY ) Ḡ(sh, z) =

d2

dshdz
Γ̄(B → γXY ) (71)

Of interest to us are the sum and the difference of these quantities:

∆(sh, z) = G(sh, z)− Ḡ(sh, z) Σ(sh, z) = G(sh, z) + Ḡ(sh, z) (72)

A non-zero value of ∆ is clearly CP violating.
Examining Table 1 it is evident that there are many cases where different

channels can lead to the same final state and therefore CP violating energy
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distributions may be possible. In particular there are two classes of final
states which we will consider; ki → XY where X is a vector and Y is a
pseudoscalar (ie either ρK or πK∗) and the case ki → UV where both U and
V are pseudoscalars (ie. Kπ).

3.1 Interference Between ki Resonances

All of the observables which we consider here are based on the distribution
∆ being non-zero. In the case of the interference between the two k states
with different quantum numbers, ∆ will arise due to the diagram in Figure
2a. The blobs in this diagram indicate the rescattering which produces an
imaginary part of the propagator.

In the case of the interference between ki and kj where these two states
have the same quantum numbers, there is the additional possible graph in
Figure 2b where one state rescatters to the other. Indeed these graphs are
very important since the CPT theorem implies that the total decay rate of B
and B̄ must be the same [24]. Hence for a particular final state f which has
a partial rate asymmetry (PRA) then there must be some other final state
g which has a compensating PRA. To see how this is implemented in the
two diagrams consider, for example, the final state being f in figure 2a. A
contribution to the PRA of f arises from the rescattering of state ki through
state g. This is related to the contribution of figure 2b to the PRA of g
where kj rescatters to ki through state f . In fact these two can be shown to
be opposite through the Cutkosky relations and thus will exactly cancel.

In order to understand this properly let us consider the instance of two
interfering states ki and kj giving rise to the PRA of state fl. We can break
down the amplitude in this instance into three parts. The decay B → γki,
the propagation of ki and the decay of ki → fl.

The decay B → γki, γkj may be described by the amplitudes

A =

(
Ai

Aj

)
. (73)

which may contain CP phases. We can write the propagator for the two k
states as a matrix

Π =

(
Πii Πij

Πji Πjj

)
(74)
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and we represent the strong interaction decay of the k states by the ampli-
tudes

bl =

(
bli
blj

)
. (75)

which are real since there is no CP phase in this instance and we assume
that the absorbtive phase is contained in Π.

The amplitudes for B and B̄ decays are thus:

Ml = ATΠbl; M̄l = A†Πbl (76)

∆ is thus related to

∆M2
l = |Ml|2 − |M̄l|2

= Tr
(
(A∗AT − AA†)ΠblbTl Π†

)
. (77)

Let us consider now what the structure of Π is. For the optical theorem
to be true for any possible initial state, Π must satisfy the Cutkosky relation:

− Im(Π) = ΠεΠ† (78)

where for the matrix Π, Im(Π) = 1
2i

(Π−Π†) and ε is the rescattering matrix
defined by:

εst =
∑
l

∫
blsb

l†
t dφl. (79)

Here the sum is over all possible final states and the integral is over the
appropriate phase space φl for the final state l.

We can thus rearrange equation (78) to

Im(Π−1) = ε (80)

Note that ε is real since b is real. Since ε is also hermitian, therefore it is
symmetric too, and so is Im(Π−1). Let us write

Re(Π−1) = sh −M (81)

where M is a mass matrix. We choose the basis of the k states so that M is
diagonal. Thus
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M =

(
m2
i 0

0 m2
j

)
(82)

and consequently Re(Π−1) is also symmetric. Since both Im(Π−1) and
Re(Π−1) are symmetric, so is Π.

Returning now to equation (77) we can verify the demand of CPT that
the sum of all PRA’s must vanish. To see this we note that if we sum over all
final states l and integrate over the phase space of the final state the second
factor becomes, after application of equation (78), Im(Π). Thus

∆M2
l = Tr

[(
(A∗AT )− (A∗AT )T

)
ImΠ

]
. (83)

which vanishes as ImΠ is symmetric whereas its coefficient is anti-symmetric.
The requirement of CPT is therefore confirmed.

If we apply this formalism to the more general case where the ki states of
distinct quantum numbers are present, then we may also include components
of the distribution ∆ which do not contribute to the PRA but nonetheless
are CP violating.

Furthermore, if a particular state is the only one with a given set of
quantum numbers contributing to the final state the above formalism gives
the standard Breit-Wigner form:

Πi =
1

s−m2
i + iΓimi

(84)

Note that with respect to the 1+ states in equation (77) we have worked
in the mass basis {k1, k2}. The calculation of the production is however most
naturally carried out in the quark model basis {k̂1, k̂2}. If we denote Â the
production amplitude in the quark model basis and F the suitable mixing
matrix then we can relate A to Â by A = FÂ in equation (77).

3.2 Vector Pseudoscalar Case

First let us consider the case where ki → XY ; X is a vector and Y is a
pseudoscalar. From Table 1 we see that this happens for the resonances
{k1, k2, k3, k4}. Consider first the case of 1+. The quantum numbers dictate
that the decay may proceed through L = 0 or L = 2. Recalling that the ki
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has Jz = −1 (as mentioned before the z axis is antiparallel to ~pγ), thus the
decay distribution is proportional to

Y 0
0 X−1 (85)

for the L = 0 channel where Xi means vector X with polarization i and
Y i
j (θ, φ) is the spherical harmonic. For the L = 2 channel the corresponding

amplitude is √
1

10
Y 0

2 X−1 −
√

3

10
Y −1

2 X0 +

√
3

5
Y −2

2 X+1 (86)

In the case of a 2+ channel, L = 2 and so the decay distribution is propor-
tional to √

1

2
Y 0

2 X−1 −
√

1

6
Y −1

2 X0 −
√

1

3
Y −2

2 X+1. (87)

Finally, in the case of a 1− channel, L = 1 and hence the decay distribution
is proportional to √

1

2

(
Y 0

1 X−1 − Y −1
1 X0

)
. (88)

Expanding these amplitudes in terms of z and φ we get

M1 = b1

√
1

4π
X−1

M2 = b2

√
1

4π
X−1

M3 = b3

√
3

8π

(
zX−1 −

√
1

2

√
1− z2e−iφX0

)

M4 = b4

√
5

32π

(
(3z2 − 1)X−1

−
√

2z
√

1− z2e−iφX0 − (1− z2)e−2iφX+1

)
(89)
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where we define the couplings between ki and XY to be bi. Thus the matrix
U defined above is given by Uij = bibjRij where

R(XY ) =



0 0 0 0 0

0 1
2

1
2

√
3
8
z

√
5
32

(3z2 − 1)

0 1
2

1
2

√
3
8
z

√
5
32

(3z2 − 1)

0
√

3
8
z

√
3
8
z 3

8
(1 + z2)

√
15
16
z3

0
√

5
32

(3z2 − 1)
√

5
32

(3z2 − 1)
√

15
16
z3 5

8
(4z4 − 3z2 + 1)


(90)

3.3 Pseudoscalar-Pseudoscalar case

Now let us consider the case where ki → UV and U , V are pseudoscalars; in
particular, π, K. In this instance the only states involved are k0, k3 and k4.
The relevant amplitudes are as follows:

M0 = b0

√
3

8π

√
1− z2e−iφ

M3 = b3

√
3

8π

√
1− z2e−iφ

M4 = b4

√
15

8π
z
√

1− z2e−iφ (91)

Hence the corresponding matrix R is given by:

R(UV ) =



3
4
(1− z2) 0 0 3

4
(1− z2)

√
45
16
z(1− z2)

0 0 0 0 0
0 0 0 0 0

3
4
(1− z2) 0 0 3

4
(1− z2)

√
45
16
z(1− z2)√

45
16
z(1− z2) 0 0

√
45
16
z(1− z2) 15

4
z2(1− z2)


(92)
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3.4 Signs of Decay Amplitudes

The convention which we used for the angular variables θ is constructed such
that if all the amplitudes are positive then constructive interference occurs if
the final strange meson (K or K∗) is in the forward (+z) direction. Bearing
this convention in mind, let us consider a crude model, based loosely on
the idea of “vacuum dominance”, which we will use, for the sole purpose
of suggesting the signs of the decay amplitudes. As an illustration, let us
consider the K∗π final state. The full reaction is thus:

B → γki → γπK∗ (93)

The contributing ki are then k0, k3 and k4 (see Table 1). Let us concentrate
on the case when the B → γki decay takes place via the penguin graph.
Then the vacuum saturation representation is

A = Tr (Πbγ5Πu1ΓiΠs1σ
µνPR) Tr (Πs2ΓiΠu2γ5ΠdE/) (94)

where Πb, Πu1 and Πs1 are propagators of the b, ū and s quarks in the
B → kiγ decay; Πd, Πu2 and Πs2 are propagators of the d, ū and s quarks in
the ki → K∗π decay and Γi is the appropriate gamma matrix insertion for
the state ki and E/ is the polarization of the K∗.

For i = 0, 3 we take Γi = γµEµ while for i = 2̂ we take Γi = γµγ5Eµ.
In the case of i = 1̂ the relative sign with i = 2̂ is determined from [5] as

described in equation (67). For the spin 2+ case i = 4 we take Γi = γµEµν ~P ν

where Eµν is the spin 2 polarization tensor and ~P is the momentum of the
s-quark in the k4 frame.

Let us now consider the configuration where θ = 0 and E is left handed.
Further let us take pb = xbpB and ps2 = xspK∗ where xb = mb/(mb+mu) and
xs = ms/(ms +mu) so that all the other quark momenta are determined by
momentum conservation. We thus find that the signs in this model are given
by: σd0 = σ̂d2 = σd3 = σd4 = +1. Applying a similar analysis to the ρK final
state we find the same signs hold: σd0 = σ̂d2 = σd3 = σd4 = +1 as well as for
the Kπ final state σd0 = σd3 = σd4 = +1. Although, in our numerical work,
for definiteness we will use signs as given by this simple model, later we will
comment on possible effects due to the signs being different from those given
by this model.
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3.5 Observables

In order to observe a component of the asymmetry, it is useful to form an
observable with the same symmetry as the component we wish to observe.
Thus we can take any function wi(sh, z) and form the quantity

< wi >B − < wi >B̄ (95)

which is CP violating. The effectiveness of this observable to statistically
extract the signal from the background can be parameterized by the quantity:

Ei =

∫
wi(sh, z)∆dshdz√∫
w2
iΣdshdz

∫
Σdshdz

(96)

where Σ and ∆ are defined in equation (72) and z is defined in equation (69).
The meaning of this quantity is that given N events of the specified form

the effect may be distinguished with a significance of S = E
√
N . Thus the

total number NB of B mesons (including both B and B̄) needed to observe
the effect at 1− σ is

NB =
1

Br E2
(97)

where Br is the total branching ratio for (61). Clearly we would like E to be
as large as possible. In fact the function which maximizes E is [25]

wopt =
∆

Σ
(98)

Using this observable the expression for E simplifies to

Eopt =

∫ ∆2

Σ
dsh dz∫

Σ dsh dz

1
2

. (99)

Another form of observables that we consider are asymmetries where
w = ±1 at all points in phase space. In this case the definition of E simplifies
to:

E =

∫
w(sh, z)∆dshdz∫

Σdshdz
(100)
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corresponding to the usual definition of an asymmetry.
Let us now consider three specific asymmetries:

w0 = 1 w1 = sign(z) w2 = sign(|z| − 1

2
) (101)

In Figure 3 we plot the differential asymmetries dEi/d
√
sh together with

dΣ/d
√
sh. Note that i = 0 corresponds to PRA and arises when resonant

states with identical quantum contribute to the same final state; i = 1 and
i = 2 correspond to asymmetries in the energy distributions. These arise
when contributing resonance states have the opposite parity or have the
same parity, respectively.

Finally, we note that, in order to enhance the asymmetry observed it may
also be useful to modify the above as follows:

w′i = sign(dEi/dsh)wi(z) (102)

thus flipping the sign according to the expected sign changes as a function of
sh. However, in the specific cases that we consider asymmetries do not seem
to switch signs as sh changes so that this sort of multiplication by the sign
turns out not to be useful.

It is instructive at this point to consider how E and NB scale with Bpen.
Consider changing Bpen → λBpen. In the above formalism then Σ→ λΣ and

∆ → λ
1
2 ∆ thus E → λ−

1
2E but since Br → λBr NB → NB. Thus NB is

independent of the exact normalization of the penguin rates. Furthermore
this implies that NB is also relatively independent of the efficiency of forming
ki states from the penguin process.

3.6 Numerical Results

For the purposes of numerical results we take the CKM phase δ to be π
2

and
the signs of the amplitudes as described in section 2.5 and 3.4.

For resonance formation from the annihilation graph we use the potential
model results given in (42). Our key results are shown in Table 4 and Figure
3. In Table 4 we use this method to calculate Ei for the above observables
as well as the optimal observable give by equation (98) for each of the final
states. By using equation (97) and the corresponding branching ratios, we
also calculate the number of B’s necessary to observe a statistical effect at
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the 1 sigma level. The resulting numbers are also shown in Table 4; note
that these are given in units of 108.

Figure 3a shows 1
Σ

dΣ
d
√
sh

as a function of
√
sh. Here the solid line represents

the decay to the ρK final state, the dotted line to the K∗π final state and
the dashed line for the Kπ final state. Note that the peaks correspond to
the resonances in Table 1 which are indicated in the graph by the bars. In
Figure 3b 1

Σ
dE0
d
√
sh

is shown. In the ρK and K∗π modes the effects are due to

the interference of k1 and k2. The resultant values of E0 are also shown in
Table 4. Note that since the resonances k0 and k3 are so far apart the value
of E0 is negligibly small for the Kπ final state. Likewise Figure 3c shows
1
Σ

dE1
d
√
sh

for each of the final states. For the K∗π and Kρ final states, there is a

complex structure since contributions result from the interference of any pair
of resonances with opposite parity. This also accounts for the large values in
E1. Similar comments are valid for the Kπ state except the k1 and k2 states
are not involved while the k0 is. With the resonances that we consider the
Kπ final state does not contribute to E2. For the other final states, the curves
in Figure 3d are due to the interference of various positive parity states with
each other. The optimal Eopt and the corresponding values of Nopt given in
Table 4 show that these effects may be seen with about 109 B’s .

It is apparent that there is considerable uncertainty in these results; some
of which should be reduced in the future. First of all consider the ratio
R(kiγ). The theoretical prediction based, at the moment, on potential mod-
els, are rather unreliable as our calculations show. However, this source of
uncertainty will get substantially under control as experimentally samples of
about 107 B’s (i.e. well before the 108 or 109 needed for CP studies ) become
available, as then the rates for different resonant channels will be experimen-
tally measured. So by the time 108 B mesons have been accumulated one
might anticipate that many of these ratios will be well determined. Further-
more, detail fits to the CP-conserving distributions, e.g. 1

Σ
dΣ
dsh

as a function

of
√
sh (see Fig. 3a), of the data that becomes available at that time should

also allow the determination of the ambiguities in the signs of the ampli-
tudes as well as a more careful determination of the strong phase than the
approximations considered here.

It is important to note that if the penguin graphs are rescaled by a con-
stant amount the resultant value of NB , needed for the CP asymmetry to
be observed, is unaffected. To see this suppose that the amplitude for the
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penguin is multiplied by a factor of λ. Since the penguin dominates the
production, the total branching ratio to a final state varies like λ2. The
asymmetry due to interference with the tree graphs will therefore vary like
λ−1; following equation (97) NB will therefore be independent of λ.

Although we have attempted to determine the signs of the decay ampli-
tude, it is instructive to consider the uncertainty in NB introduced for other
possible sign combinations. Consider Nopt in model A for the K∗π final state.
The value with the sign choice indicated above is 2.2× 108 as given in Table
4. If however one checks all the possible sign combinations one finds that
this quantity varies between 1.5× 108 and 4.0× 108 . So once again, our esti-
mate for the required number of B’s is not greatly effected from this source
of uncertainty either.

4 Conclusions and Summary

Despite the fact that there are appreciable uncertainties in our estimates it
seems likely that the asymmetries considered here may be observable in the
case of B± at a B factory capable of producing about 109 B mesons. In our
estimates we do not consider what happens for sh well above the ki states.
Note especially that the tree graphs tend to increase rapidly with sh so that
larger CP phases may be available, though the strong rescattering phases
and the branching ratios are likely to become somewhat smaller. Thus our
estimates may well be underestimates. Of course CP violation may also arise
from physics beyond the standard model, and then too larger asymmetries
are possible.

Another point we wish to emphasize briefly has to do with the formation
of the higher resonances in radiative B transitions. In both bound state
models that we studied, we found (as shown in Table 2) that, except for
the k1, the other three states are produced roughly with the same branching
ratio as the k0 (i.e. K∗(892)) which was recently seen experimentally[1].
Experimental searches of all of these states are vitally needed.

It should be clear that the essential idea proposed in this work is that res-
onances can have interesting and, perhaps, even a dramatic influence on the
CP violating observables. In the case of neutral B′s leading to self-conjugate
final states, effects arising from interference between the initial B and B̄ are
well known[26]. What is being demonstrated here is that charged B meson
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decays leading to common final states via resonances can also lead to im-
portant interference effects. Indeed, since the underlying theory[27] involves
quarks (not mesons) it is difficult to confine CP violation just to neutral or
just to charged mesons; resonance enhancement through such considerations
should be possible both for charged as well as neutral B’s. For concreteness
we have, in this paper, only addressed to the radiative decays of charged B’s.
Clearly similar effects on neutral B’s need to be investigated. Furthermore
effects of non-standard physics needs to be ascertained. We will return to
some of these issues in subsequent publications [6, 28].
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Figure Captions

Figure 1

Figure 1a: Example of a penguin graph for the subprocess for b→ sγ.

Figure 1b: Example of the annihilation subprocess bū→ sγū.

Figure 1c: Example of the spectator subprocess b→ sγuū.

Figure 2

Figure 2a: A typical instance of two diagrams contributing to the partial rate
asymmetry of a state f . The intermediate state g is shown giving a
contribution to the imaginary part of the propagator.

Figure 2b: The two diagrams which give the compensating partial rate asymmetry
to the final state g so that CPT is preserved.

Figure 3

Figure 3a: A plot of 1
Σ

dΣ
d
√
sh

as a function of
√
sh for the ρK state (solid line); πK∗

state (dotted line) and πK state (dashed line). The bars indicate the
positions of the five resonances considered.

Figure 3b: A plot of 1
Σ

dE0
d
√
sh

as a function of
√
sh for the same three final states.

Figure 3c: A plot of 1
Σ

dE1
d
√
sh

as a function of
√
sh for the same three final states.

Figure 3d: A plot of 1
Σ

dE2
d
√
sh

as a function of
√
sh for the ρK and πK∗ final states.
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Table 1

State Mass (Mev) Width (Mev) 2S+1LJ Selected Decays
k0 K∗(890) [1−] 892 (±), 896(0) 50 3S1 Kπ 100%
k1 K1(1270) [1+] 1270 90 1P1 Kρ 42%

K∗π 16%
Kω 11%

k2 K1(1400) [1+] 1402 174 3P1 Kρ 3%
K∗π 94%
Kω 1%

k3 K∗(1410) [1−] 1412 227 3S1 Kρ < 7%
K∗π > 40%
Kπ 7%

k4 K2(1430) [2+] 1425(±), 1432(0) 98(±), 109(0) 3P2 Kρ 9%
K∗π 25%
Kω 3%
Kπ 50%

Table 1: Some of the properties of the ki states are shown [4]. Branching
fractions of the ki states to various final states are given in the last column.
In our computation, for definiteness, we used the branching ratios Br(k3 →
Kρ) = 7% and Br(k3 → K∗π) = 86%.
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Table 2

ki Model A Model B
k0 2.5% 1.6%

k̂1 2.2× 10−5 1.4× 10−5

k̂2 6.5% 1.3%
k3 3.2% 1.3%
k4 5.4% 0.9%

Table 2: The calculated branching fraction for B → kiγ in the two models
considered.

Table 3

ki Model A Model B
k0 2.5× 10−3 3.2× 10−3

k̂1 −.85 −.96

k̂2 22× 10−3 49× 10−3

k3 2.2× 10−3 3.5× 10−3

k4 32× 10−3 80× 10−3

Table 3: The resulting ratio of CP phases, sinφ
sin δ

, in the two models.
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Table 4

Model A

ρK K∗π Kπ
Eopt 1.0% 1.2% 0.7%
E ′0 0.3% 0.3% 1.7× 10−4

E ′1 0.7% 0.6% 0.4%
E ′2 0.4% 0.2 %
Nopt 33 2.2 12
N ′0 460 40 2× 104

N ′1 70 9 32
N ′2 280 60

Model B

ρK K∗π Kπ
Eopt 2.4% 2.0% 0.9%
E ′0 0.6% 0.5% 1× 10−4

E ′1 1.7% 1.1% 0.4%
E ′2 0.7% 0.3%
Nopt 27 3 20
N ′0 460 47 1× 105

N ′1 53 10 95
N ′2 310 110

Table 4: Using model A and B we calculate the asymmetries Eopt and E ′i as
well as the corresponding numbers of B± in units of 108. For the annihilation
graph we have used the ISGW model[8] to calculate resonance formation.
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