# Influence of Kaonic Resonances on the CP Violation in $B \rightarrow K^{*} \gamma$ Like Processes* 

D. Atwood ${ }^{\text {a }}$ and A. Soni ${ }^{\text {b }}$

a) Department of Physics, SLAC, Stanford University, Stanford, CA 94309, USA b) Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, US

Submitted to Zeitschrift für Physik C

[^0]
#### Abstract

We consider CP violating effects in decays of the type $B \rightarrow k_{i} \gamma \rightarrow K \pi \gamma, K^{*} \pi \gamma$ and $K \rho \gamma$, where $k_{i}$ represents a strange meson resonance. We include in our calculations five of the low-lying resonances with quantum numbers $\left(J^{P}\right) 1^{-}, 1^{+}$and $2^{+}$. At the quark level these decays are driven by the penguin graph as well as tree graphs. CP violation arises in the Standard Model due to the difference in the CKM phase between these graphs. We model the final state interaction of the hadronic system using the low lying $k_{i}$ resonances. Bound state effects are incorporated by using ideas based on the model of Grinstein et al and also in another bound state model (somewhat similar to the model of Wirbel et al) which we construct designed to take into account relativistic effects better. In these models we find that radiative decays of B mesons give rise to four of the five kaonic resonances at about 1 to $7 \%$ of the inclusive $b \rightarrow s \gamma$ rate. Furthermore, in both bound state models we find that the probability of formation of the other three higher resonances is roughly the same as that of $K^{*}(892)$, which was recently seen at CLEO. In addition to the partial rate asymmetry which arises due to interference between resonances of the same quantum numbers, we show how interference between resonances of the same parity, and also between resonances of the opposite parity, result in two different types of energy asymmetries. CP differential asymmetries at the level of a few percent seem possible. We thus obtain CP violating distributions which may be observed in a sample of about $10^{9} B^{ \pm}$mesons. For concreteness in this paper we deal with only charged B's, neutral B's will be dealt with separately.


## 1 Introduction

The recent observation [i] [i] of the long awaited process $B \rightarrow K^{*} \gamma$ gave another reminder of the possible richness of the physics which could be observed at $B$ factories.

In this paper we will consider the generalizations of the above decay, i.e. we consider the decays $B \rightarrow k_{i} \gamma$ where the $k_{i}$ denote excited $K$ meson states or resonances. In particular, we wish to investigate if widths of resonances can be used to enhance CP violation effects in B-decays; their importance in the context of the top quark has been emphasized in the past few years $[\overline{2}, \underline{2}, \underline{3}$ The key difference is that in the case of B-decays the resonances are strongly interacting so that width to mass ratio is much larger than was the case for the top decays wherein the resonances are electroweak in character.

In the case at hand, namely $B \rightarrow k_{i} \gamma, k_{i}$ must have $J \geq 1$; so, in particular we will focus on the five lowest lying such states. We will denote these states $k_{0}, k_{1}, k_{2}, k_{3}$ and $k_{4}$. The first such state which we write $k_{0}$ is $K^{*}(892)$; it has quantum numbers $1^{-}$. In a constituent quark model it is a $\bar{u} s$ (or $\bar{d} s$ ) quarkonium state ${ }^{3} S_{1}$. The next two states that we are interested in we will denote as $k_{1}$ and $k_{2}$. They both have quantum numbers $1^{+}$and in the notation of [ 4 [ they should correspond to mixtures of the states ${ }^{1} P_{1}$ and ${ }^{3} P_{1}$. For these pure quark model states we will use the notation $\hat{k}_{1}={ }^{1} P_{1}$ and $\hat{k}_{2}={ }^{3} P_{1}$ and so, following [5]" the physical states are related to these by a mixing angle $\theta_{12}$ :

$$
\begin{align*}
& k_{1}=\cos \theta_{12} \hat{k}_{1}-\sin \theta_{12} \hat{k}_{2} \\
& k_{2}=\sin \theta_{12} \hat{k}_{1}+\cos \theta_{12} \hat{k}_{2} . \tag{1}
\end{align*}
$$

Though strictly speaking the states $\hat{k}_{1}$ and $\hat{k}_{2}$ are not eigenstates of charge conjugation, in the literature they are sometimes referred to as $1^{+-}$and $1^{++}$ states since they are related by $S U(3)$ to the $b_{1}(1235)$ and $a_{1}(1260)$ mesons with those quantum numbers. In fact the mixing here has been observed to be close to maximal; in [5] $\theta_{12}$ is experimentally determined to be $56 \pm 3^{\circ}$.

The $2^{3} S_{1}$ state $K^{*}(1410)$ will be denoted as $k_{3}$. In principle $k_{3}$, which is a radially excited $2^{3} S_{1}$ state, could also mix with $k_{0}$ however since the masses are so far apart it is unlikely that this mixing is large. We will therefore ignore this mixing in our calculation. We also consider the $K_{2}(1430)$ state with quantum numbers $2^{+}$which will be designated $k_{4}$. $D$ wave states have
also been observed around 1700 MeV but we will not include these in our analysis. We have summarized some of the known properties $[1$ of these states in Table 1.

Consider the two decays $B \rightarrow k_{i} \gamma ; k_{j} \gamma$ followed by decays of $k_{i}$ and $k_{j}$ decay to a common hadronic final state $X Y$. If the two channels have different CP phases then CP violation could manifest in the momentum distribution of the mesons making up $X Y$. Thus, for example, the energy distribution of one of the particles in $X Y$ may be different for $B$ decay compared to that in $\bar{B}$ decay. If the quantum numbers of the two states are the same, as is the case for $k_{1}$ versus $k_{2}$ and $k_{0}$ versus $k_{3}$ then there also exists the possibility of a partial rate asymmetry (PRA) between $B$ decay and $\bar{B}$ decay. Of course in the case of neutral $B$ decay one must also consider these phenomena in the context of $B-\bar{B}$ oscillations [ $[\overline{6}]$.

We find that the largest effect occurs in the case of the final state $K^{*} \pi$. In this case we estimate that a difference between the distribution of the $K^{*}$ in the decays of $B^{-}$versus $B^{+}$may well be observable with about $5 \times 10^{8}$ $B^{ \pm}$decays. The final state $K \pi$ seems to require about $5 \times 10^{9} B^{ \pm}$decays. In passing, we mention that, whereas we are focussing on influence of resonances to CP violation in radiative decays of B mesons to exclusive channels, CP violation in inclusive, radiative decays of the b quark has been examined by Soares [ind The two approaches are therefore somewhat complementary.

The rest of the paper will proceed as follows: In section 2 we will explain how it could happen that the different $k_{i}$ decays could acquire different CP phases, in particular in the Standard Model (SM); we will also estimate the magnitude these phases could have. In making these estimates, for incorporating bound states effects, we will use ideas based on references [ $[8]$ section 3 we will explain how these CP phases will give rise to CP violating kinematic distributions as well as partial rate asymmetries. In that section we also estimate the magnitude of various asymmetries to be expected.

## 2 Basic Processes

Any CP violating phase which enters into the process $B \rightarrow k_{i} \gamma$ must have its origin either in the electroweak physics which drives the process or in physics beyond the standard model. In the standard model, three classes of quark graphs may contribute as shown in Figure 1. Figure 1a shows the penguin graph for the quark level process $b \rightarrow s \gamma$ which has been studied extensively [ $[101,1$ in the case of $B^{ \pm}$. This process will give a $\gamma k_{i}$ state if the two quarks coalesce into the appropriate $k_{i}$ state. Figure 1(c) shows a spectator process which could give rise to $\gamma k_{i}$ if the four quarks shown should coalesce into two mesonic states and thence to a $k_{i}$ state.

Of course to have observable CP violating effects one need not only have a CP violating phase but there must be the interference of processes with different CP phases. In the standard model such a phase is given by the CKM matrix $(V)$. Introducing the standard Wolfenstein [īn parameterization of the CKM matrix [1]

$$
V=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3} \sigma e^{-i \delta}  \tag{2}\\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}\left(1-\sigma e^{i \delta}\right) & -A \lambda^{2} & 1
\end{array}\right)
$$

where $\lambda=\sin \theta_{\text {cabiboo }}=0.22$. The amplitude for the penguin graphs will be proportional to the quantity:

$$
\begin{equation*}
\sum_{i=u, c, t} V_{i s}^{*} V_{i b} F\left(m_{i}\right) \tag{3}
\end{equation*}
$$

where the form of $F$ for the graph in Figure 1a is given in [ $[\underline{1} 0]$ and the QCD corrected form is given in [i]1. Note that the above sum will be dominated by the $i=c$ and $i=t$ terms, hence from (2) we see that in this parameterization there is little phase in the penguin amplitude. Both the spectator and the annihilation graphs will, on the other hand, be proportional to the product

$$
\begin{equation*}
V_{u s}^{*} V_{u b}=A \lambda^{4} \sigma e^{-i \delta} \tag{4}
\end{equation*}
$$

which has a phase of precisely $-\delta$ in this notation. Thus interference between the penguin graph and either the spectator or the annihilation graphs potentially can produce observable CP violating effects.

To see how this comes about consider, for instance, the two decay channels $B \rightarrow k_{2} \gamma \rightarrow \pi K^{*} \gamma$ and $B \rightarrow k_{4} \gamma \rightarrow \pi K^{*} \gamma$. The final states are the same, hence there could be interference effects between them. If there is a difference in CP phase as well as a difference in the strong interaction phase (i.e. CP conserving phase), there could be a difference in the energy or other distributions between $B$ and $\bar{B}$ decay which would clearly violate CP. We will assume that near these resonances the strong interaction phase is dominated by Breit-Wigner forms for the $k_{i}$ propagators.

In order to calculate the CP phase for the decay $B \rightarrow k_{i} \gamma$ we will thus need to estimate the relative contribution of each of the three classes of graphs to the five $k_{i}$ resonances that we are considering.

In the case of the annihilation and spectator graphs it will be useful to compare these rates with $\Gamma_{b u s}^{0}$, the tree level inclusive process $b \rightarrow u \bar{u} s$ given by:

$$
\begin{equation*}
\Gamma_{b u s}^{0}=3 \frac{G_{F}^{2} m_{b}^{5}}{192 \pi^{3}}\left|V_{u b} V_{u s}^{*}\right|^{2}=3 f^{-1}\left(\frac{m_{c}^{2}}{m_{b}^{2}}\right)\left|\frac{V_{u b} V_{u s}^{*}}{V_{c b}}\right|^{2} \Gamma(b \rightarrow e \nu c) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
f(x)=1-8 x+8 x^{3}-x^{4}-12 x^{2} \log x \tag{6}
\end{equation*}
$$

is the phase space factor defined in $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ we are using $m_{c}=1.5 \mathrm{GeV}$ and $m_{b}=4.6 \mathrm{GeV}$.

For a given B decay, via the spectator graph, to the final state $X$ we define

$$
\begin{equation*}
r(X)=\frac{\Gamma(X)}{\Gamma_{b u s}^{0}} \tag{7}
\end{equation*}
$$

### 2.1 Penguin Graph

The dominant graph as we shall see is likely to be the penguin process depicted in Figure 1(a). In this case the $k_{i}$ system is formed by the merging of the spectator and the $s$ quark. In order to calculate the probability of the formation of each of the resonances, one needs a model for the bound state effects involved. For this purpose we will consider potential models


In general such a model will relate meson level amplitude $\mathcal{M}_{m}$ to the quark level amplitude $\mathcal{M}_{q}$ according to the formula:

$$
\begin{equation*}
\mathcal{M}_{m}=\int \mathcal{M}_{q} \Phi^{B}(P) \Phi_{i}^{k}(\hat{P}) d P \tag{8}
\end{equation*}
$$

where the meson wave functions $\Phi^{B}$ and $\Phi_{i}^{k}$ are functions of quark momenta and spins with the correct quantum numbers to form the indicated mesons. Here $P$ represents the momentum of the $b$ quark in the rest frame of the $B$ meson and $\hat{P}$ represents the momentum of the $s$ quark in the frame of the $k_{i}$. The exact details of how the integral is constructed will depend on the specific model. We will construct two such models which we will designate A and B in order to get a feel for the accuracy of the predictions.

Model A is similar to the one used in $[1 \overline{1} \bar{T}]$ and is based on the quark model of Grinstein et al. [ 8 ] which has been quite successful in semileptonic charm and bottom decays. Model B is constructed to take relativistic effects better and is based roughly on the ideas of Wirbel et al. For model A, non-relativistic kinematics is used for the quarks and $P$ is taken to be the 3 momentum of the $b$-quark in the $B$-meson rest frame and $\hat{P}$ is given by

$$
\begin{equation*}
\hat{P}=\vec{P}-x_{u} \vec{K} \tag{9}
\end{equation*}
$$

where $x_{u}=m_{u} /\left(m_{u}+m_{b}\right)$ and $\vec{K}$ is the momentum of the $k_{i}$ meson in the B rest frame.

The wave functions for the various meson states are approximated by harmonic oscillator functions. Thus the momentum dependent part of the wave functions are:

$$
\begin{align*}
\Phi_{B} & =\pi^{-\frac{3}{4}} \beta_{B}^{-\frac{3}{2}} e^{-\frac{P^{2}}{2 \beta_{B}^{2}}} \\
\Phi_{1 S} & =\pi^{-\frac{3}{4}} \beta_{S}^{-\frac{3}{2}} e^{-\frac{P^{2}}{2 \beta_{S}^{2}}} \\
\Phi_{1 P(0)} & =\pi^{-\frac{3}{4}} \beta_{P}^{-\frac{3}{2}} \frac{\sqrt{2} P_{z}}{\beta_{P}} e^{-\frac{P^{2}}{2 \beta_{P}^{2}}} \\
\Phi_{1 P( \pm 1)} & =\pi^{-\frac{3}{4}} \beta_{P}^{-\frac{3}{2}} \frac{\left(P_{x} \mp i P_{y}\right)}{\beta_{P}} e^{-\frac{P^{2}}{2 \beta_{P}^{2}}} \\
\Phi_{2 S} & =\sqrt{\frac{3}{2}} \pi^{-\frac{3}{4}} \beta_{S}^{-\frac{3}{2}}\left(\frac{2 P^{2}}{3 \beta_{S}^{2}}-1\right) e^{-\frac{P^{2}}{2 \beta_{S}^{2}}} \tag{10}
\end{align*}
$$

Here $\Phi_{n S}$ represents the $n$th excited $S$-wave state, $\Phi_{n P(m)}$ represents the $n$th excited $P$-wave state with angular momentum projection $m$ and $\phi_{B}$ is the wave function for the B meson. The constants $\beta_{i}$ are determined from the potential model using a variational method. The values obtained in references [17

$$
\begin{equation*}
\beta_{B}=0.41 \mathrm{GeV} \quad \beta_{S}=0.34 \mathrm{GeV} \quad \beta_{P}=0.30 \mathrm{GeV} \tag{11}
\end{equation*}
$$

where they use the constituent masses

$$
\begin{equation*}
m_{u}=m_{d}=0.33 \mathrm{GeV} \quad m_{s}=0.55 \mathrm{GeV} \quad m_{b}=5.12 \mathrm{GeV} \tag{12}
\end{equation*}
$$

With the use of the above momentum distributions above we can specify the spin-dependent part of the wave function for the B-meson and for the $k_{i}$ with $J_{z}=-1$ :

$$
\begin{align*}
\mid B> & =\frac{1}{\sqrt{2}} \Phi_{B}(b(\uparrow) \bar{u}(\downarrow)+b(\downarrow) \bar{u}(\uparrow)) \\
\mid k_{0}> & =\Phi_{1 S} s(\downarrow) \bar{u}(\downarrow) \\
\mid \hat{k}_{1}> & =\frac{1}{\sqrt{2}} \Phi_{1 P(-1)}(s(\uparrow) \bar{u}(\downarrow)+s(\downarrow) \bar{u}(\uparrow)) \\
\mid \hat{k}_{2}> & =\frac{1}{\sqrt{2}} \Phi_{1 P(0)} s(\downarrow) \bar{u}(\downarrow)-\frac{1}{2} \Phi_{1 P(-1)}(s(\downarrow) \bar{u}(\uparrow)-s(\uparrow) \bar{u}(\downarrow)) \\
\mid k_{3}> & =\Phi_{2 S} s(\downarrow) \bar{u}(\downarrow) \\
\mid k_{4}> & =\frac{1}{\sqrt{2}} \Phi_{1 P(0)} s(\downarrow) \bar{u}(\downarrow)+\frac{1}{2} \Phi_{1 P(-1)}(s(\downarrow) \bar{u}(\uparrow)-s(\uparrow) \bar{u}(\downarrow)) \tag{13}
\end{align*}
$$

Note that for the $1^{+}$states we use the quark model basis $\left\{\hat{k}_{1}, \hat{k}_{2}\right\}$.
At the quark level the $b s \gamma$ coupling is

$$
\begin{equation*}
\mathrm{a} \bar{s} \sigma^{\mu \nu} q_{\mu}\left(P_{R}+\frac{m_{s}}{m_{b}} P_{L}\right) b \tag{14}
\end{equation*}
$$

where $P_{R}=\frac{1}{2}\left(1+\gamma_{5}\right)$ and $P_{L}=\frac{1}{2}\left(1-\gamma_{5}\right)$ and $a$ is given in . We will concentrate on the proportional to $P_{R}$ which is dominant. Note that this gives rise to left handed photons in the final state.

Let us take the $z$-axis in the direction of the hadronic momentum so the 4 -momentum of the photon is

$$
p_{\gamma}=\frac{m_{B}^{2}-m_{i}^{2}}{2}\left[\begin{array}{c}
+1  \tag{15}\\
0 \\
0 \\
-1
\end{array}\right]
$$

and we take the 3 -momentum of the $b$-quark to be $\vec{P}$. Expanding the amplitude for small $P_{x}, P_{y}$ we obtain:

$$
\begin{align*}
& \mathcal{M}_{++}=-\mathrm{a} \sqrt{8}\left(m_{b}-m_{s}\right) P_{-} \\
& \mathcal{M}_{+-}=0 \\
& \mathcal{M}_{-+}=-\mathrm{a} \sqrt{8}\left(m_{b}^{2}-m_{s}^{2}\right) \\
& \mathcal{M}_{--}=+\mathrm{a} \sqrt{2} m_{b}^{-1}\left(m_{b}^{2}-m_{s}^{2}\right) P_{-} \tag{16}
\end{align*}
$$

where $\mathcal{M}_{i j}$ is the amplitude for $b$ quark with spin projection $S_{z}=j / 2$ going to $s$-quark with spin projection $S_{z}=i / 2$. The quantity $P_{ \pm}=P_{x} \pm i P_{y}$.

Using the above expansion we can obtain analytic expressions for the meson amplitudes:

$$
\begin{align*}
\mathcal{M}\left(k_{0}\right)= & -2 \mathrm{a}\left(\frac{\hat{\beta}^{2}}{\beta_{B} \beta_{S}}\right)^{\frac{3}{2}}\left(m_{b}^{2}-m_{s}^{2}\right) e^{-\Delta_{S}} \\
\mathcal{M}\left(\hat{k}_{1}\right)= & -\sqrt{\frac{1}{2}} \mathrm{a} \frac{\hat{\beta}^{2}}{m_{b} \beta_{P}}\left(\frac{\hat{\beta}^{2}}{\beta_{B} \beta_{P}}\right)^{\frac{3}{2}}\left(m_{b}-m_{s}\right)^{2} e^{-\Delta_{P}} \\
\mathcal{M}\left(\hat{k}_{2}\right)= & -\mathrm{a}\left[\left(\frac{\hat{\beta}^{2}}{\beta_{B} \beta_{P}}\right)^{\frac{5}{2}} \beta_{B}^{-1} x_{u}\left(\frac{m_{B}^{2}-m_{i}^{2}}{2 m_{B}}\right)\left(m_{b}^{2}-m_{s}^{2}\right)\right. \\
& \left.+\frac{1}{2}\left(\frac{\hat{\beta}^{2}}{\beta_{B} \beta_{P}}\right)^{\frac{3}{2}} \frac{\hat{\beta}^{2}}{\beta_{P} m_{b}}\left(m_{b}-m_{s}\right)\left(3 m_{b}+m_{s}\right)\right] e^{-\Delta_{P}} \\
\mathcal{M}\left(k_{3}\right)= & -\mathrm{a}\left(\frac{2}{3}\right)^{\frac{1}{2}}\left(\frac{\hat{\beta}^{2}}{\beta_{B} \beta_{S}}\right)^{\frac{3}{2}} \frac{3\left(\beta_{B}^{4}-\beta_{S}^{4}\right)+2 \beta_{S}^{2}\left(x_{u} K\right)^{2}}{\left(\beta_{B}^{2}+\beta_{S}^{2}\right)^{2}}\left(m_{b}^{2}-m_{s}^{2}\right) e^{-\Delta_{S}} \\
\mathcal{M}\left(k_{4}\right)= & -\mathrm{a}\left[\left(\frac{\hat{\beta}^{2}}{\beta_{B} \beta_{P}}\right)^{\frac{5}{2}} \beta_{B}^{-1} x_{u}\left(\frac{m_{B}^{2}-m_{i}^{2}}{2 m_{B}}\right)\left(m_{b}^{2}-m_{s}^{2}\right)\right. \\
& \left.-\frac{1}{2}\left(\frac{\hat{\beta}^{2}}{\beta_{B} \beta_{P}}\right)^{\frac{3}{2}} \frac{\hat{\beta}^{2}}{\beta_{P} m_{b}}\left(m_{b}-m_{s}\right)\left(3 m_{b}+m_{s}\right)\right] e^{-\Delta_{P}} \tag{17}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta=\frac{x_{u}^{2}\left(m_{B}^{2}-m_{i}^{2}\right)^{2}}{2 m_{B}^{2}\left(\beta_{B}^{2}+\beta_{i}^{2}\right)} \quad \hat{\beta}_{i}=\sqrt{\frac{2 \beta_{B}^{2} \beta_{i}^{2}}{\beta_{B}^{2}+\beta_{i}^{2}}} \tag{18}
\end{equation*}
$$

We can now calculate the ratio

$$
\begin{equation*}
R_{i}=\frac{\Gamma\left(B \rightarrow k_{i} \gamma\right)}{\Gamma(b \rightarrow s \gamma)} \tag{19}
\end{equation*}
$$

The results are shown in Table 2. Note that our results are slightly different than those obtained in [i]i] because here we expanded the matrix element only to first order in $\vec{P}$.

One thing which is worrisome about the model constructed in this way is that the transformation from $P$ to $\hat{P}$ is not relativistic. The velocity of the mesons however is, since $\frac{v}{c}$ ranges from .85 in the case of $k_{2}$ to .95 in the case of $K^{*}$. This motivates us to consider a modification which respects relativity.

In model B, we consider wave functions $\Psi_{i}$ which are functions of 4momentum and are related to $\Phi_{i}$ by

$$
\begin{equation*}
\Psi_{i}(P)=N_{i} \Phi_{i}(\vec{P}) \sqrt{\frac{E\left(m_{i}-E\right)}{m_{i}}} e^{-\frac{\left(E-E_{0}\right)^{2}}{2 \beta_{i}^{2}}} \tag{20}
\end{equation*}
$$

In this equation $P \equiv(E, \vec{P})$ is the 4 -momentum of the quark in the meson $i$ and

$$
\begin{equation*}
E_{0}=\frac{m_{i}^{2}+m_{q}^{2}-m_{\bar{q}}^{2}}{2 m_{i}} \tag{21}
\end{equation*}
$$

$m_{q}$ and $m_{\bar{q}}$ being the constituent masses. We define the wave function to be 0 if $E$ is outside of the physical range $0 \leq E \leq m_{i}$ and the normalization constant $N_{i}$ is determined by the condition

$$
\begin{equation*}
\int_{0 \leq E \leq m_{i}}\|\Psi(P)\|^{2} d^{4} P=1 \tag{22}
\end{equation*}
$$

For the form of the $E$ dependent part of the wave function we are motivated by the similar form in

Thus, in the reaction $B \rightarrow k_{i} \gamma$ the relation between $\hat{P}$ and $P$ becomes, $\hat{P}=L\left(P-P_{\gamma}\right)$ where

$$
L=\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\beta \gamma  \tag{23}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\beta \gamma & 0 & 0 & \gamma
\end{array}\right]
$$

is the Lorentz boost into the rest frame of $k_{i}$. We still use the quark level amplitudes expanded in $P_{x}$ and $P_{y}$ in equation ( $\left(\overline{1} \overline{1} \bar{W}_{1}\right)$ and substitute them into equation (' that these results are somewhat smaller, compared to those from model A, particularly in the case of $k_{2}, k_{3}$ and $k_{4}$.

### 2.2 Four Quark Hamiltonian for B Decays

The four quark couplings involved in $\Delta S=1$ charmless $B^{ \pm}$decay is given at tree level by $W^{ \pm}$exchange. There are however potentially large QCD corrections which have been calculated using the renormalization group approach [ $[\overline{1} 9$ that may mix together:

$$
\begin{align*}
O_{1}^{i j} & =\left(\bar{s}_{\alpha} \gamma_{\mu} P_{L} b_{\alpha}\right)\left(\bar{q}_{\beta}^{j} \gamma_{\mu} P_{L} q_{\beta}^{i}\right) \\
O_{2}^{i j} & =\left(\bar{s}_{\alpha} \gamma_{\mu} P_{L} b_{\beta}\right)\left(\bar{q}_{\beta}^{j} \gamma_{\mu} P_{L} q_{\alpha}^{i}\right) \\
O_{3} & =\left(\bar{s}_{\alpha} \gamma_{\mu} P_{L} b_{\alpha}\right) \sum_{k}\left(\bar{q}_{\beta}^{k} \gamma_{\mu} P_{L} q_{\beta}^{k}\right) \\
O_{4} & =\left(\bar{s}_{\alpha} \gamma_{\mu} P_{L} b_{\beta}\right) \sum_{k}\left(\bar{q}_{\beta}^{k} \gamma_{\mu} P_{L} q_{\alpha}^{k}\right) \\
O_{5} & =\left(\bar{s}_{\alpha} \gamma_{\mu} P_{L} b_{\alpha}\right) \sum_{k}\left(\bar{q}_{\beta}^{k} \gamma_{\mu} P_{R} q_{\beta}^{k}\right) \\
O_{6} & =\left(\bar{s}_{\alpha} \gamma_{\mu} P_{L} b_{\beta}\right) \sum_{k}\left(\bar{q}_{\beta}^{k} \gamma_{\mu} P_{R} q_{\alpha}^{k}\right) \tag{24}
\end{align*}
$$

where $i, j \in\{u, c\}$ and $k \in\{u, d, c, s, b\} . \alpha$ and $\beta$ are color indices.
The effective Hamiltonian may be expanded in terms of these operators in the following way:

$$
\begin{align*}
H_{e f f}= & 2^{\frac{3}{2}} G_{F}\left[V_{c s}^{*} V_{c b}\left(\sum_{i=1,2} c_{i}^{c}(\mu) O_{i}^{c c}+\sum_{i=3, \ldots, 6} c_{i}^{c}(\mu) O_{i}\right)\right. \\
& +V_{u s}^{*} V_{u b}\left(\sum_{i=1,2} c_{i}^{u}(\mu) O_{i}^{u u}+\sum_{i=3, \ldots, 6} c_{i}^{u}(\mu) O_{i}\right) \\
& \left.+V_{u s}^{*} V_{c b}\left(\sum_{i=1,2} c_{i}^{u c}(\mu) O_{i}^{u c}\right)+V_{c s}^{*} V_{u b}\left(\sum_{i=1,2} c_{i}^{c u}(\mu) O_{i}^{c u}\right)\right] \tag{25}
\end{align*}
$$

Following the treatment in
operators satisfy the following evolution equations:

$$
\begin{align*}
\mu \frac{d}{d \mu} c_{i}^{q}(\mu) & =\frac{\alpha_{s}(\mu)}{2 \pi} \sum_{j=1, \ldots, 6} c_{j}^{q} A_{j, i} \\
\mu \frac{d}{d \mu} c_{i}^{r}(\mu) & =\frac{\alpha_{s}(\mu)}{2 \pi} \sum_{j=1,2} c_{j}^{r} B_{j, i} \tag{26}
\end{align*}
$$

where $q \in\{u, c\}$ and $r \in\{u c, c u\}$ and the one loop $\alpha_{s}$ is given by

$$
\begin{equation*}
\alpha_{s}(\mu)=\frac{12 \pi}{(33-3 f) \log \frac{\mu}{\Lambda_{5}}} \tag{27}
\end{equation*}
$$

where $\Lambda_{5}$ is the QCD scale for 5 flavors. The matrix $A$, to the lowest nontrivial loop order is [20

$$
A=\left(\begin{array}{cccccc}
-\frac{3}{N} & 3 & 0 & 0 & 0 & 0  \tag{28}\\
3 & -\frac{3}{N} & -\frac{1}{3 N} & \frac{1}{3} & -\frac{1}{3 N} & \frac{1}{3} \\
0 & 0 & -\frac{11}{3 N} & \frac{11}{3} & -\frac{2}{3 N} & \frac{2}{3} \\
0 & 0 & 3-\frac{f}{3 N} & \frac{f}{3}-\frac{3}{N} & -\frac{f}{3 N} & \frac{f}{3} \\
0 & 0 & 0 & 0 & \frac{3}{N} & -3 \\
0 & 0 & -\frac{f}{3 N} & \frac{f}{3} & -\frac{f}{3 N} & -6 c_{F}+\frac{f}{3}
\end{array}\right)
$$

and the matrix $B$ is:

$$
A=\left(\begin{array}{cc}
-\frac{3}{N} & 3  \tag{29}\\
3 & -\frac{3}{N}
\end{array}\right) .
$$

Here the QCD color factors $N=3$ and $c_{F}=\frac{4}{3}$. The number of flavors $f=5$ since we are interested in the evolution above $m_{b}$.

Let us define the coefficients of these operators at $\mu=m_{W}$ to be the tree level values, thus

$$
\begin{equation*}
c_{2}^{u}\left(m_{W}\right)=c_{2}^{c}\left(m_{W}\right)=c_{2}^{u c}\left(m_{W}\right)=c_{2}^{c u}\left(m_{W}\right)=1 \tag{30}
\end{equation*}
$$

and all the other coeficients are 0 . This implies that $c_{i}^{u}(\mu)=c_{i}^{c}(\mu)=c_{i}^{u c}(\mu)=$ $c_{i}^{c u}(\mu)=c_{i}(\mu)$. In particular $c_{1}$ and $c_{2}$ may be solved in a simple form. If we write

$$
\begin{equation*}
c_{1}=\frac{1}{2}\left(c_{+}-c_{-}\right) \quad c_{2}=\frac{1}{2}\left(c_{-}+c_{+}\right) \tag{31}
\end{equation*}
$$

then the solutions for $c_{+}$and $c_{-}$are:

$$
\begin{equation*}
c_{+}(\mu)=\left[\frac{\alpha_{s}\left(m_{W}^{2}\right)}{\alpha_{s}\left(\mu^{2}\right)}\right]^{\frac{6}{23}} \quad c_{-}(\mu)=\left[\frac{\alpha_{s}\left(m_{W}^{2}\right)}{\alpha_{s}\left(\mu^{2}\right)}\right]^{-\frac{12}{23}} \tag{32}
\end{equation*}
$$

The evolution equation ( $\overline{2} \overline{6} \overline{6})$ is readily integrated numerically. If we take $\Lambda_{5}=0.2 G e V$ and $m_{b}=4.7 G e V$ then

$$
\begin{array}{ll}
c_{+}=.846 & c_{-}=1.397 \\
c_{4}+c_{3}=-0.016 & c_{4}-c_{3}=-0.041  \tag{33}\\
c_{6}+c_{5}=-0.027 & c_{6}-c_{5}=-0.043
\end{array}
$$

### 2.3 Annihilation Diagram

In the case of $B^{ \pm}$decay it is possible to produce a $\gamma k_{i}$ state through the annihilation graphs such as the one depicted in Figure 1(b).

In general such annihilation graphs can be calculated by relating them to the weak decay constant $f_{B}$ which we take to be 180 MeV [ $\left.\overline{2} \overline{2}\right]$, defined so that $f_{\pi}=130 \mathrm{MeV}$. Following the calculation in [ $[\overline{2} \overline{3}]$ we assume that the annihilation takes place at 0 relative momentum. Thus if $\mathcal{U}$ is the amplitude for $b \bar{u}$ annihilation at 0 relative momentum where we take

$$
\begin{equation*}
p_{b}=x_{b} P_{B} \quad p_{u}=x_{u} P_{B} \tag{34}
\end{equation*}
$$

then the meson level amplitude can be written as

$$
\begin{equation*}
\mathcal{M}=\frac{1}{4} f_{B} \operatorname{Tr}\left(\left(P_{B}+m_{B}\right) \gamma_{5} \mathcal{U}\right) \frac{1}{3} \delta_{a b} \tag{35}
\end{equation*}
$$

where $a$ and $b$ are color indices.
Since our goal is to find contributions which interfere with the penguin graph we must take the photon from the annihilation graph also to be left handed. This photon polarization leads to the graph where the photon is radiated from the $b$-quark vanishing. In addition graphs where the photon is radiated from the final state vanish in the limit that the light quark mass goes to zero. In contrast the graph where the photon is radiated from the initial $\bar{u}$ quark is proportional to $x_{u}^{-1} f_{B}$ and so dominates. In fact in the case of 0 relative momentum this graph by itself is gauge invariant so it makes sense to consider it alone.

The four quark operator which we need to extract from the effective Hamiltonian is $\left(\bar{u}_{\alpha} \gamma_{\mu} P_{L} b_{\alpha}\right)\left(\bar{s}_{\beta} \gamma_{\mu} P_{L} u_{\beta}\right)$. Note that the color structure is fixed by the constraint that the initial $\bar{u} b$ system is a color singlet. Furthermore the CP phase is only present in the CKM product $V_{u b} V_{u s}^{*}$. Since we obtain CP violating observables by interference of this process with the penguin graph, henceforth we will extract only the portion of the amplitude proportional to $V_{u b} V_{u s}^{*}$. The total coeficient for the above operator after suitable Fierz transformation is $\mathcal{D}=2^{\frac{3}{2}} G_{F} D V_{u b} V_{u s}^{*}$ where

$$
\begin{equation*}
D=-\left(\frac{1}{3} c_{1}+c_{2}+\frac{1}{3} c_{3}+c_{4}\right) \tag{36}
\end{equation*}
$$

Using the numerical results in $(\bar{B} \overline{3} \overline{1})$ we calculate $D=-1.029$. Operators with the current structure of $O_{5}$ and $O_{6}$ do not contribute to the photon emission from the initial $\bar{u}$ quark as may readily be verified by substitution into ( ( Emission from the final legs is also suppressed as it does not go like $1 / m_{u}$ or $1 / m_{s}$.

Using equation ( specific spin states which we will denote $\mathcal{N}_{\mathcal{S}, m}$ where $\mid \mathcal{S}, m>$ is the angular momentum of the $\bar{u} s$ system quantized in the $z$-direction:

$$
\begin{align*}
\mathcal{N}_{1+1} & =\mathcal{Z} P_{-}^{2} \\
\mathcal{N}_{10} & =-\frac{\mathcal{Z}}{\sqrt{2}}\left(\sqrt{s}+m_{s}+m_{u}+2 P_{z}\right) P_{-} \\
\mathcal{N}_{1-1} & =+\mathcal{Z}\left(E_{u}+m_{u}+P_{z}\right)\left(E_{s}+m_{s}+P_{z}\right) \\
\mathcal{N}_{00} & =-\mathcal{Z} \frac{\left(m_{s}-m_{u}\right)\left(m_{s}+m_{u}+\sqrt{s}\right)}{\sqrt{2 s}} P_{-} \tag{37}
\end{align*}
$$

where $s=\left(p_{u}+p_{s}\right)^{2}$; in the $\bar{u} s$ rest frame the 4 -momentum of the s quark is

$$
p_{s}=\left(\begin{array}{c}
E_{s}  \tag{38}\\
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right)
$$

The energy of the $\bar{u}$ is $E_{u}=\sqrt{s}-E_{s}$ and $P_{ \pm}=P_{x} \pm i P_{y}$. The factor $\mathcal{Z}$ is:

$$
\begin{equation*}
\mathcal{Z}=\frac{G_{F} m_{B} f_{B} e_{u} e V_{u b} V_{u s}^{*}}{m_{u} \sqrt{\left(E_{u}+m_{u}\right)\left(E_{s}+m_{s}\right)}} D \tag{39}
\end{equation*}
$$

where $e_{u} e$ is the charge of the u quark and $D$ is the coeficient defined in equation 'B̄6]: We now consider two different methods for estimating the amplitude for $B \rightarrow \gamma k_{i}$ from this annihilation process. First of all we use the nonrelativistic quark model A above and then we will try to estimate the amplitude in a model independent way.

In terms of a nonrelativistic wave function, the meson level amplitude $\mathbf{N}_{i}$ is given by:

$$
\begin{equation*}
\left.\mathbf{N}_{i}=\frac{1}{2} \pi^{-\frac{3}{2}} m_{i}^{-\frac{1}{2}} \int \mathcal{N} \right\rvert\, k_{i}>d^{3} \vec{P} \tag{40}
\end{equation*}
$$

where the wave functions $\mid k_{i}>$ are those given in equation ( $\left(1 \bar{I}_{-1}\right)$ and $\vec{P}$ is the 3 -momentum of the s quark in the $k_{i}$ frame.

We may evaluate this integral analytically if we use the non-relativistic approximation $E_{u} \approx m_{u}$ and $E_{s} \approx m_{s}$.

Performing this integral the meson amplitudes thus obtained are:

$$
\begin{align*}
& \mathbf{N}_{0}=+\mathcal{Z} \sqrt{2} \pi^{-\frac{3}{4}} m_{i}^{-\frac{1}{2}} \beta_{S}^{\frac{3}{2}}\left(4 m_{u} m_{s}+\beta_{s}^{2}\right) \\
& \hat{\mathbf{N}}_{1}=-4 \mathcal{Z} \pi^{-\frac{3}{4}} m_{i}^{-\frac{1}{2}} \beta_{P}^{\frac{5}{2}}\left(m_{s}-m_{u}\right) \\
& \hat{\mathbf{N}}_{2}=-2 \sqrt{2} \mathcal{Z} \pi^{-\frac{3}{4}} m_{i}^{-\frac{1}{2}} \beta_{P}^{\frac{5}{2}}\left(m_{s}+m_{u}\right) \\
& \mathbf{N}_{3}=+\mathcal{Z} \sqrt{3} \pi^{-\frac{3}{4}} m_{i}^{-\frac{1}{2}} \beta_{S}^{\frac{3}{2}}\left(4 m_{u} m_{s}+\frac{7}{3} \beta_{s}^{2}\right) \\
& \hat{\mathbf{N}}_{4}=0 \tag{41}
\end{align*}
$$

Using these equations and the values of parameters mentioned above we obtain the following values of $r$ (defined in eqn (iiiv)) for the contribution of the annihilation graphs to various channels:

$$
\begin{array}{rlrl}
r\left(\gamma k_{0}\right) & =5.3 \times 10^{-5} & r\left(\gamma \hat{k}_{1}\right)=1.1 \times 10^{-6} \\
r\left(\gamma \hat{k}_{2}\right) & =3.3 \times 10^{-5} & r\left(\gamma k_{3}\right)=6.6 \times 10^{-5}  \tag{42}\\
r\left(\gamma k_{4}\right) & =0 & &
\end{array}
$$

Our model independent attempt to estimate the value of $r$ is based on projecting the component of the quark amplitude with the same quantum numbers as $k_{i}$ and then converting these components to a decay rate as we shall discuss below.

With respect to the spin and angular degrees of freedom in the meson rest frame we can define the following eigenstates of angular momentum:

$$
\left|1^{-}>=Y_{0}^{0}\right| 1-1>_{s}
$$

$$
\begin{align*}
\mid 1^{+-}> & =Y_{1}^{-1} \mid 00>_{s} \\
\mid 1^{++}> & =\frac{1}{\sqrt{2}}\left(Y_{1}^{-1}\left|10>_{s}-Y_{1}^{0}\right| 1-1>_{s}\right) \\
\mid 2^{+}> & =\frac{1}{\sqrt{2}}\left(Y_{1}^{-1}\left|10>_{s}+Y_{1}^{0}\right| 1-1>_{s}\right) . \tag{43}
\end{align*}
$$

where $\mid s m>_{s}$ represents the spin state of the $\bar{u} s$ system.
For each of these states let $\mathcal{N}(\mid i>)$ be the corresponding amplitude. We may then construct the quantity $d r_{\mid i>} / d s$. We now estimate the value of $r\left(\gamma k_{i}\right)$ using

$$
\begin{equation*}
r\left(\gamma k_{i}\right)=\int_{s_{\min }}^{s_{\max }} \frac{d r_{|i\rangle}}{d s} d s \tag{44}
\end{equation*}
$$

for suitably chosen values of $s_{\min }$ and $s_{\max }$.
For the four states $k_{1, \ldots, 4}$ we note that the next $k_{i}$ states above them is at 1.950 GeV with width .2 GeV so it seems reasonable to chose $\sqrt{s_{\max }}=$ 1.750 GeV . Intuitively a $\bar{u} s$ system with invariant mass below this threshold is forced to form the $k_{i}$ state with the appropriate quantum numbers. The results for these states do not depend strongly on the value of $s_{\min }$ so we take $s_{\min }=0$. likewise for $k_{0}$ we take the threshold $s_{\max }=1.2 \mathrm{GeV}$ since the next similar state $\left(k_{3}\right)$ has mass about 1.4 GeV and width about .2 GeV . Using these thresholds we obtain the following $r$ values:

$$
\begin{array}{rlrl}
r\left(\gamma k_{0}\right) & =1.2 \times 10^{-6} & r\left(\gamma \hat{k}_{1}\right)=3.9 \times 10^{-7} \\
r\left(\gamma \hat{k}_{2}\right) & =3.8 \times 10^{-5} & r\left(\gamma k_{3}\right)=6.5 \times 10^{-5}  \tag{45}\\
r\left(\gamma k_{4}\right) & =0 & &
\end{array}
$$

As is apparent, the values are similar to those above in (4, $\mathbf{4}_{2}^{2}$ ) except for the case of $k_{0}$ which will not effect our results greatly as it is separated too far from the other resonances to interfere to any large extent.

### 2.4 Spectator Diagram

Let us now consider the decay rate which is generated by the spectator graph. For this purpose we first calculate the quark level process and then estimate the resultant meson formation. The quark level reaction at tree level proceeds through four diagrams similar to the one shown in figure 1c. For the purposes of our calculation we approximate the final state quarks as being massless and so it is convenient to calculate the helicity amplitudes for the processes.

Let us define a convention for spinors and photon polarizations similar to those used in [ $[\overline{2} \overline{1} \overline{1}]$. Our conventions will be based on three arbitrary lightlike reference vectors $\lambda_{0}, \lambda_{1}$ and $\lambda_{2}$. Let $u_{0}$ be a right handed spinor in the direction $\lambda_{0}$ so that

$$
\begin{equation*}
u_{0} \bar{u}_{0}=P_{R} X_{0} \tag{46}
\end{equation*}
$$

Likewise we define the left handed spinor $u_{1}$ in direction $\lambda_{1}$ as

$$
\begin{equation*}
u_{1}=\frac{X_{1} u_{0}}{\sqrt{2 \lambda_{1} \cdot \lambda_{2}}} \tag{47}
\end{equation*}
$$

For a general light-like vector $p$ let us define the left and right handed spinors $u_{-}$and $u_{+}$respectively:

$$
\begin{equation*}
u_{-}=\frac{p u_{0}}{\sqrt{2 p \cdot \lambda_{0}}} \quad u_{+}=\frac{p u_{1}}{\sqrt{2 p \cdot \lambda_{1}}} \tag{48}
\end{equation*}
$$

we will not include the color indices throughout.
For simplicity let us adopt the notation

$$
\begin{equation*}
\left[p_{1}, \ldots, p_{n}\right]_{ \pm}=\bar{u}_{\#}\left(p_{1}\right) \not p_{2} \ldots \not p_{n-1} u_{ \pm}\left(p_{n}\right) \tag{49}
\end{equation*}
$$

where $u_{\#}\left(p_{1}\right)=u_{ \pm}\left(p_{1}\right)$ if $n$ is odd and $u_{\#}\left(p_{1}\right)=u_{\mp}\left(p_{1}\right)$ if $n$ is even. Here $p_{1}$ and $p_{n}$ are assumed to be massless while $p_{2} \ldots p_{n-1}$ need not be. Using the definitions of the spinors, we can expand this notation in terms of traces:

$$
\left[p_{1}, \ldots, p_{n}\right]_{+}=\left\{\begin{array}{cl}
\frac{\operatorname{Tr}\left(\not p_{1} \ldots \not p_{n} X_{1} P_{R}\right)}{\sqrt{4 \lambda_{1} \cdot p_{1} \lambda_{1} \cdot p_{n}}} & \text { if } n \text { is odd }  \tag{50}\\
\frac{\operatorname{Tr}\left(X_{0} p_{1} \ldots p_{n} X_{1} P_{R}\right)}{\sqrt{4 \lambda_{0} \cdot p_{1} \lambda_{1} \cdot p_{n}}} & \text { if } n \text { is even }
\end{array}\right.
$$

and the corresponding expression for [ ]_ is obtained by changing $P_{L} \leftrightarrow P_{R}$ and $\lambda_{0} \leftrightarrow \lambda_{1}$.

Circularly polarized photons may also be expressed in this notation. Thus for a photon with momentum $q$ we may write

$$
\begin{equation*}
E_{R}^{\mu}=\frac{\bar{u}_{+}\left(\lambda_{2}\right) \gamma^{\mu} u_{+}(q)}{2 \sqrt{\lambda_{2} \cdot q}} \tag{51}
\end{equation*}
$$

Left handed polarized photons may be expressed as $E_{L}^{\mu}=E_{R}^{\mu *}$.

The spinor for a massive fermion with mass $m$ momentum $p$ and $\operatorname{spin} s$ can be expanded in terms of massless spinors as follows:

$$
\begin{align*}
u(p, s) & =u_{-}\left(p_{-}\right)+\frac{1}{m}\left[p_{+}, p_{-}\right]_{-} u_{+}\left(p_{+}\right) \\
v(p, s) & =u_{-}\left(p_{-}\right)-\frac{1}{m}\left[p_{+}, p_{-}\right]_{-} u_{+}\left(p_{+}\right) \tag{52}
\end{align*}
$$

where $p_{ \pm}=(p \pm m s) / 2$
Let us now define the function

$$
\begin{align*}
\mathcal{L}\left(p_{1}, q, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)= & \\
& {\left[\bar{u}_{-}\left(p_{2}\right) \gamma^{\mu} \phi \gamma^{\nu} u_{-}\left(p_{1}\right)\right]\left[\bar{u}_{+}\left(p_{4}\right) \gamma_{\nu} u_{+}\left(p_{3}\right)\right] } \\
& {\left[\bar{u}_{-}\left(p_{6}\right) \gamma_{\mu} u_{-}\left(p_{5}\right)\right] } \\
= & -2 \frac{\left[p_{2} p_{6} p_{5}\right]_{-}\left[p_{6} p_{5} q p_{3}\right]_{+}\left[p_{4} p_{1}\right]_{-}}{p_{5} \cdot p_{6}} \tag{53}
\end{align*}
$$

We may now write the expression for the $b$ spectator process $b\left(p_{b}\right) \rightarrow$ $u\left(p_{1}\right) \bar{u}\left(p_{2}\right) s\left(p_{3}\right) \gamma(q)$ for a left polarized photon as:

$$
\begin{align*}
\mathcal{M}\left(\gamma_{L}\right)= & \frac{e . g_{W}^{2} V_{u s}^{*} V_{u b}}{24 m_{W}^{2} \sqrt{q \cdot \lambda_{2}}}\left[\frac{2}{q \cdot p_{1}} \mathcal{L}^{*}\left(p_{1}, q+p_{3}, p_{b-}, \lambda_{2}, q, p_{3}, p_{2}\right)\right. \\
& -\frac{1}{q \cdot p_{3}} \mathcal{L}^{*}\left(p_{3}, q, p_{2}, \lambda_{2}, q, p_{1}, p_{b-}\right)-\frac{2}{q \cdot p_{2}} \mathcal{L}\left(p_{2}, q, p_{3}, q, \lambda_{2}, p_{b-}, p_{1}\right) \\
& +\frac{1}{q \cdot p_{b}} \mathcal{L}\left(p_{b-}, p_{b-}-q, p_{1}, q, \lambda_{2}, p_{2}, p_{3}\right) \\
& \left.+\frac{1}{q \cdot p_{b}}\left(p_{2} \cdot p_{3} \quad \lambda_{2} \cdot q\right)^{-1}\left[p_{1} p_{3} p_{2}\right]_{-}\left[\lambda_{2} q p_{b+} p_{b-}\right]_{-}\left[p_{3} p_{2} q\right]_{-}\right] \tag{54}
\end{align*}
$$

where $g_{W}$ is the weak coupling constant given in terms of the fermi coupling $G_{F}$ by:

$$
\begin{equation*}
G_{F}=\frac{g_{W}^{2}}{\sqrt{32} m_{W}^{2}} \tag{55}
\end{equation*}
$$

The amplitude for right polarized photons is given by interchanging $q \leftrightarrow \lambda_{2}$.

QCD corrections of course come into play, the value of $r$ obtained from


$$
\begin{equation*}
F=\frac{1}{3}\left(2\left(c_{+}+c_{4}+c_{3}\right)^{2}+\left(c_{+} c_{4}-c_{3}\right)^{2}+2\left(c_{6}+c_{5}\right)^{2}+\left(c_{6}-c_{5}\right)^{2}\right) \tag{56}
\end{equation*}
$$

from the results in equation ( $(\bar{B} \overline{3})$ we see that $F=1.073$ so in fact the tree level description seems to be reasonable.

Given the amplitudes for the tree graphs discussed in the last sections, we must now estimate the formation of various particular $k_{i}$ resonances. We will do this using a "hand waving" argument along the lines of our cutoff method above. Thus, we will use the following two simplifying assumptions: (1) if a system of quarks has the correct quantum numbers to form a particular resonance and the invariant mass of the system is within a reasonable range of the resonance (which we shall define) then it will form the given resonance. (2) A system of quarks will couple most strongly to the lowest orbital angular momentum state possible.

Thus, in the case of the spectator graph we need to distinguish two separate cases (a) the $b$ quark has spin $S_{z}(b)=-\frac{1}{2}$ and (b) the $b$ quark has spin $S_{z}(b)=+\frac{1}{2}$. Note that this discussion applies equally to $B^{-}$or $\bar{B}^{0}$ decays.

In case (a) the spectator $\bar{u}$ quark must be polarized $S_{z}\left(\bar{u}_{\text {spec }}\right)=+\frac{1}{2}$. Since we are considering only the left handed photon, the spin projection of the hadronic system $J_{z}(h)=-1$. The left handed nature of the coupling implies that the spins of the quarks from the decay of the $b$ quark are $S_{z}(s)=-\frac{1}{2}$, $S_{z}(u)=-\frac{1}{2}$ and $S_{z}\left(\bar{u}_{\text {part }}\right)=+\frac{1}{2}$. In total the spin of the quarks forming the hadron is $S_{z}(h)=0$ hence $L_{z}(h)=-1$. From our assumption (2) it follows that $L(h)=1$ and therefore the $J^{P}=1^{-}$. Thus in this case the preferred final states are $k_{0}$ or $k_{3}$.

In case (b) the spectator $\bar{u}$ must be polarized $S_{z}\left(\bar{u}_{\text {spec }}\right)=-\frac{1}{2}$ while all the participant quarks have the same $S_{z}$ as before. Thus for a left handed photon, we have $L_{z}(h)=0$. and from assumption (2) therefore $L(h)=0$ so that the total $J^{P}=1^{+}$and $\hat{k}_{1}$ and $\hat{k}_{2}$ should be the favored states.

We can be somewhat more specific by noticing that for example if the decay occurs through $O_{2}$ the spectator $\bar{u}$ quark and the $u$ quark have the same color. If it should further happen that the remaining pair of quarks have a different color, then the $u \bar{u}$ pair have the quantum numbers of a $\rho$ while the remaining pair have the quantum numbers of $K$. On the other hand, only in the situation where the two $\bar{u}$ 's (the spectator and the one
derived from the virtual $W$ ) which have opposite spins happened to have the same color could they form a system which had the quantum numbers as a $K^{*} \pi$. In fact the color part of the amplitude for the other pairing in the $\pi K^{*}$ configuration is 3 times smaller than that of the $K \rho$. We assume that the production of the final state $\hat{k}_{1}$ and $\hat{k}_{2}$ are in proportion to the coupling to the $K^{*} \pi$ or $K \rho$ like configuration of the quarks times the coupling of these $1^{+}$states to the $K^{*} \pi$ or $K \rho$. The situation for $O_{1}$ is the same except the $u$ and $s$ quark are interchanged as are the $K^{*} \pi$ and $K \rho$ final states and so a fermionic - sign must also be inserted.

Let us denote $\hat{b}_{1}^{\rho K}, \hat{b}_{1}^{\pi K *}, \hat{b}_{2}^{\rho K}$ and $\hat{b}_{2}^{\pi K *}$ to be respectively the coupling of $\rho K$ and $\pi K^{*}$ to $\hat{k}_{1}$ and $\hat{k}_{2}$. From the above argument therefore the ratio between the spectator amplitudes $\hat{\mathcal{M}}_{1}^{\text {spec }}$ and $\hat{\mathcal{M}}_{2}^{\text {spec }}$ is

$$
\begin{equation*}
\hat{\mathcal{M}}_{1}^{\text {spec }}: \hat{\mathcal{M}}_{2}^{\text {spec }}=c_{1} \hat{b}_{1}^{\pi K *}-c_{2} \hat{b}_{1}^{\rho K}: c_{1} \hat{b}_{2}^{\pi K *}-c_{2} \hat{b}_{2}^{\rho K} \tag{57}
\end{equation*}
$$

Using the values in equation ( ment derived in reference

$$
\begin{equation*}
\hat{\mathcal{M}}_{1}^{\text {spec }}: \hat{\mathcal{M}}_{2}^{\text {spec }}=14:-1 \tag{58}
\end{equation*}
$$

so most of the amplitude is in the $\hat{k}_{1}$ channel.
In order to use assumption (1) we need to decide what threshold to use. Following our discussion above we again pick the threshold $s_{\max }=$ $(1750 \mathrm{MeV})^{2}$. In the case of the annihilation graph, the threshold applies to $s_{h}=\left(p_{u}+p_{s}\right)^{2}$ while in the case of the spectator graph $s_{h}=\left(p_{1}+p_{2}+p_{3}+p_{4}\right)^{2}$ where $p_{4}$ refers to the momentum of the spectator $\bar{u}$. In our formulation of the amplitude of the $b$-quark decay we can directly calculate the differential cross section in terms of the variable $s_{3}=\left(p_{1}+p_{2}+p_{3}\right)^{2}$. If we assume that the spectator quark is roughly stationary then $p_{4}=x_{u} P_{B}$ and the relation between the quantities is

$$
\begin{equation*}
s_{h}=\left(m_{b}+m_{u}\right)\left(m_{b} m_{u}+s_{3}\right) m_{b}^{-1} \tag{59}
\end{equation*}
$$

thus $s_{h} \leq(1750 \mathrm{MeV})^{2}$ translates to $s_{3} \leq 1120 \mathrm{MeV}$.
Therefore the values of $r$ for the spectator graph is $5 \times 10^{-7}$ for case (a) where $S_{z}(b)=-\frac{1}{2}$ and $1.1 \times 10^{-5}$ for case (b) where $S_{z}(b)=+\frac{1}{2}$. Thus, from the spectator graph we obtain the following values:

$$
\begin{array}{rlrl}
r\left(\gamma k_{0}\right) & =5 \times 10^{-7} & r\left(\gamma \hat{k}_{1}\right)=1.1 \times 10^{-5} \\
r\left(\gamma \hat{k}_{2}\right) & =5.6 \times 10^{-8} & r\left(\gamma k_{3}\right)=5 \times 10^{-7}  \tag{60}\\
r\left(\gamma k_{4}\right) & =0 & &
\end{array}
$$

### 2.5 Meson Couplings

In order to guide our calculations let us now estimate the CP phase and couplings for each of the five channels which we consider. Let us denote $\mathcal{B}_{\text {pen }}$ to be the inclusive branching ratio of $b \rightarrow s \gamma$ through the penguin graph and $\mathcal{B}_{\text {bus }}$ to be $\frac{\Gamma_{b u s}^{0}}{\Gamma_{B}}$. In our numerical calculations, for concreteness we will take, $\mathcal{B}_{\text {pen }}=2.5 \times 10^{-4}$ roughly corresponding to $m_{t}=150 \mathrm{GeV}$ [12 . If we take $\left|\frac{V_{u b}}{V_{c b}}\right|=.08\left[131, V_{u s}=.22\right.$ and the leptonic branching ratio to be 0.107 then
 process $b \rightarrow u \bar{s} u \gamma$ will be significantly smaller than this)

For a given channel $k_{i}$ which decays to a final state $X Y$ we model the contribution to the decay process

$$
\begin{equation*}
B \rightarrow k_{i} \gamma \rightarrow X Y \gamma \tag{61}
\end{equation*}
$$

in two stages. Thus we define a coupling $A_{i}$ governing the decay $B \rightarrow k_{i} \gamma$ and the coupling $b_{i}$ governing $k_{i} \rightarrow X Y$. The amplitude for the entire process ( $\left.6 \bar{I}_{1}^{1}\right)$ is thus $A_{i} \Pi_{i j} b_{j}$ where $\Pi_{i j}$ is the propagator to be discussed later.

Our model for this process will be such that all the interaction phase is in $\Pi_{i}$ while all the CP phase is in $A_{i}$. Thus $A_{i}$ is a complex coupling which we may express as:

$$
\begin{equation*}
A_{i}=a_{i} e^{i \phi_{i}} \tag{62}
\end{equation*}
$$

where $\phi_{i}$ is the CP phase and therefore flips sign under charge conjugation. Note that $\phi_{i}$ is related to the CKM phase parameter $\delta$ as explained below.

From the decay rates which we have estimated for the penguin and tree processes separately, we may determine the total amplitude, $A_{i}$ :

$$
\begin{align*}
A_{i}= & \sigma_{p}^{i} \sqrt{\frac{16 \pi m_{B}^{3} \mathcal{B}_{\text {pen }} R_{i} \Gamma_{B}}{\left(m_{B}^{2}-m_{i}^{2}\right)}}+\sigma_{\text {ann }}^{i} \sqrt{\frac{16 \pi m_{B}^{3} \mathcal{B}_{\text {bus }} r_{i}^{\text {ann }} \Gamma_{B}}{\left(m_{B}^{2}-m_{i}^{2}\right)}} e^{i \delta} \\
& +\sigma_{\text {spec }}^{i} \sqrt{\frac{16 \pi m_{B}^{3} \mathcal{B}_{\text {bus }} r_{i}^{\text {spec }} \Gamma_{B}}{\left(m_{B}^{2}-m_{i}^{2}\right)}} e^{i \delta} \tag{63}
\end{align*}
$$

where $R$ is defined in equations $(\overline{1} \overline{1})$, $\delta$ is the CP phase defined in equation (2i.) and $r_{i}^{a n n}$ and $r_{i}^{\text {spec }}$ are the values from the annihilation and spectator graphs obtained above. $\sigma_{p}^{i}, \sigma_{\text {ann }}^{i}$ and $\sigma_{\text {spec }}^{i}$ are the relative signs between
the three amplitudes and are thus either $\pm 1$. In the case of $\sigma_{p}^{i}$ equation ${ }^{1} \overline{1} \overline{1}$; gives $\sigma_{p}^{i}=-1$ for each of the states; model B gives similar results. Equation ${ }_{-1}{ }^{1} 1 \mathbf{1}$, gives $\sigma_{\text {ann }}^{i}=-1$ for $i \in\{1,2\}$ and +1 for $i \in\{0,3\}$; the projection method gives the same results. In our model $\sigma_{\text {spec }}^{i}$ is undetermined though it has very little effect on our final results as the spectator amplitude is too small compared to the annihilation or the penguin amplitudes. In our numerical calculations, we will assume in the first instance, that $\sigma_{\text {spec }}^{i}=\sigma_{a n n}^{i}$. Later, in section 3.4, we will try to determine these relative signs between the amplitudes by using a simple model. Furthermore, we will also numerically investigate the effect of switching the signs. Note that the penguin graph is the dominant production mechanism for $B \rightarrow k_{i} \gamma$, hence the magnitude $a_{i}$ is given to a good approximation by the first term in ( $\left(\overline{6} \overline{3} \overline{3}_{1}\right)$

As we mentioned before the CP phase, which in our convention is $\delta$, is contained in the tree processes. We can therefore estimate the total phase $\phi_{i}$ by:

$$
\begin{equation*}
\left|\frac{\sin \phi_{i}}{\sin \delta}\right|=\sqrt{\frac{\mathcal{B}_{\text {bus }} r_{i}}{\mathcal{B}_{\text {pen }} R_{i}}} \tag{64}
\end{equation*}
$$

where $r_{i}$ is defined in equation $(\overline{\bar{T}})$. we consider are compiled in Table 3.

Next we deal with the couplings of the strong decays of the resonances leading to the final states. Their couplings $b_{i}$ for $i=0,3$ and 4 may be obtained from the meson decay widths:

$$
\begin{equation*}
b_{i}=\sigma_{d}^{i} \sqrt{\frac{16 \pi m_{i}^{3} B r\left(k_{i} \rightarrow X Y\right) \Gamma_{i}}{\lambda^{\frac{1}{2}}\left(m_{i}^{2}, m_{X}^{2}, m_{Y}^{2}\right)}} \tag{65}
\end{equation*}
$$

Here $\Gamma_{i}$ is the total width of $k_{i}$ and

$$
\begin{equation*}
\lambda(u, v, w)=u^{2}+v^{2}+w^{2}-2 u v-2 v w-2 w u \tag{66}
\end{equation*}
$$

Again $\sigma_{d}^{i}$ is $\pm 1$. In the next section we will discuss in more detail how this sign may be determined.

In [5]" the couplings to the physical states $k_{1}$ and $k_{2}$ are parameterized in terms of $\theta_{12}, \gamma_{+}$and $\gamma_{-}$:

$$
b_{1}^{K * \pi}=-\frac{1}{2} \gamma_{+} \sin \theta_{12}+\sqrt{\frac{9}{20}} \gamma_{-} \cos \theta_{12}
$$

$$
\begin{align*}
b_{2}^{K * \pi} & =+\frac{1}{2} \gamma_{+} \cos \theta_{12}+\sqrt{\frac{9}{20}} \gamma_{-} \sin \theta_{12} \\
b_{1}^{K \rho} & =-\frac{1}{2} \gamma_{+} \sin \theta_{12}-\sqrt{\frac{9}{20}} \gamma_{-} \cos \theta_{12} \\
b_{2}^{K \rho} & =+\frac{1}{2} \gamma_{+} \cos \theta_{12}-\sqrt{\frac{9}{20}} \gamma_{-} \sin \theta_{12} \tag{67}
\end{align*}
$$

where the observed values of these $\gamma^{\prime} s$ are [0]":

$$
\begin{equation*}
\gamma_{+}=0.82 \quad \gamma_{-}=0.59 \quad \theta_{12}=56^{\circ} \tag{68}
\end{equation*}
$$

## 3 How CP Violation May be Detected

Let us consider the various two body decay modes of the $k_{i}$ states listed in Table 1. Our basic strategy will be to consider the process $B \rightarrow \gamma k_{i} \rightarrow \gamma X Y$ where more than one possible intermediate state $k_{i}$ may occur. If the different states have different quantum numbers although the final states are the same, the angular distributions will be different. In addition if there are different interaction phases and CP phases associated with each $k_{i}$ state there will be a difference in the angular distribution between the decay products of $B$ and $\bar{B}$ which therefore signal CP violation. Indeed if the quantum numbers are the same, as in the case of $k_{0}$ vs. $k_{3}$ and $k_{1}$ vs. $k_{2}$, the interference could lead to a partial rate asymmetry.

For such two body decays, let us define $s_{h}$ to be the invariant mass of the $k_{i}$ state, $s_{h}=\left(P_{X}+P_{Y}\right)^{2}$ and let $\theta$ be the angle between the boost axis and the momentum of the strange particle ( $K$ or $K^{*}$ ) in the $k_{i}$ rest frame and let $\phi$ be the azimuthal angle. Denoting

$$
\begin{equation*}
z=\cos \theta \tag{69}
\end{equation*}
$$

the energy of $X$ in the $B$ rest frame, is given b :

$$
\begin{equation*}
E_{X}=\frac{\left(m_{B}^{2}+s_{h}\right)\left(s_{h}+m_{X}^{2}-m_{Y}^{2}\right)-(-1)^{\mathbf{s}_{X}} z\left(m_{B}^{2}-s_{h}\right) \lambda^{\frac{1}{2}}\left(s_{h}, m_{X}^{2}, m_{Y}^{2}\right)}{4 m_{B} s_{h}} \tag{70}
\end{equation*}
$$

where $\mathbf{s}_{X}$ is the strangeness of $X$. Using these variables we denote the decay distributions

$$
\begin{equation*}
G\left(s_{h}, z\right)=\frac{d^{2}}{d s_{h} d z} \Gamma(B \rightarrow \gamma X Y) \quad \bar{G}\left(s_{h}, z\right)=\frac{d^{2}}{d s_{h} d z} \bar{\Gamma}(B \rightarrow \gamma X Y) \tag{71}
\end{equation*}
$$

Of interest to us are the sum and the difference of these quantities:

$$
\begin{equation*}
\Delta\left(s_{h}, z\right)=G\left(s_{h}, z\right)-\bar{G}\left(s_{h}, z\right) \quad \Sigma\left(s_{h}, z\right)=G\left(s_{h}, z\right)+\bar{G}\left(s_{h}, z\right) \tag{72}
\end{equation*}
$$

A non-zero value of $\Delta$ is clearly CP violating.
Examining Table 1 it is evident that there are many cases where different channels can lead to the same final state and therefore CP violating energy
distributions may be possible. In particular there are two classes of final states which we will consider; $k_{i} \rightarrow X Y$ where $X$ is a vector and $Y$ is a pseudoscalar (ie either $\rho K$ or $\pi K^{*}$ ) and the case $k_{i} \rightarrow U V$ where both $U$ and $V$ are pseudoscalars (ie. $K \pi$ ).

### 3.1 Interference Between $k_{i}$ Resonances

All of the observables which we consider here are based on the distribution $\Delta$ being non-zero. In the case of the interference between the two $k$ states with different quantum numbers, $\Delta$ will arise due to the diagram in Figure 2a. The blobs in this diagram indicate the rescattering which produces an imaginary part of the propagator.

In the case of the interference between $k_{i}$ and $k_{j}$ where these two states have the same quantum numbers, there is the additional possible graph in Figure 2 b where one state rescatters to the other. Indeed these graphs are very important since the CPT theorem implies that the total decay rate of $B$ and $\bar{B}$ must be the same [ $[24]$. Hence for a particular final state $f$ which has a partial rate asymmetry (PRA) then there must be some other final state $g$ which has a compensating PRA. To see how this is implemented in the two diagrams consider, for example, the final state being $f$ in figure 2a. A contribution to the PRA of $f$ arises from the rescattering of state $k_{i}$ through state $g$. This is related to the contribution of figure 2 b to the PRA of $g$ where $k_{j}$ rescatters to $k_{i}$ through state $f$. In fact these two can be shown to be opposite through the Cutkosky relations and thus will exactly cancel.

In order to understand this properly let us consider the instance of two interfering states $k_{i}$ and $k_{j}$ giving rise to the PRA of state $f_{l}$. We can break down the amplitude in this instance into three parts. The decay $B \rightarrow \gamma k_{i}$, the propagation of $k_{i}$ and the decay of $k_{i} \rightarrow f_{l}$.

The decay $B \rightarrow \gamma k_{i}, \gamma k_{j}$ may be described by the amplitudes

$$
\begin{equation*}
A=\binom{A_{i}}{A_{j}} \tag{73}
\end{equation*}
$$

which may contain CP phases. We can write the propagator for the two $k$ states as a matrix

$$
\Pi=\left(\begin{array}{ll}
\Pi_{i i} & \Pi_{i j}  \tag{74}\\
\Pi_{j i} & \Pi_{j j}
\end{array}\right)
$$

and we represent the strong interaction decay of the $k$ states by the amplitudes

$$
\begin{equation*}
b^{l}=\binom{b_{i}^{l}}{b_{j}^{l}} . \tag{75}
\end{equation*}
$$

which are real since there is no CP phase in this instance and we assume that the absorbtive phase is contained in $\Pi$.

The amplitudes for $B$ and $\bar{B}$ decays are thus:

$$
\begin{equation*}
\mathcal{M}_{l}=A^{T} \Pi b^{l} ; \quad \overline{\mathcal{M}}_{l}=A^{\dagger} \Pi b^{l} \tag{76}
\end{equation*}
$$

$\Delta$ is thus related to

$$
\begin{align*}
\Delta \mathcal{M}_{l}^{2} & =\left|\mathcal{M}_{l}\right|^{2}-\left|\overline{\mathcal{M}}_{l}\right|^{2} \\
& =\operatorname{Tr}\left(\left(A^{*} A^{T}-A A^{\dagger}\right) \Pi b_{l} b_{l}^{T} \Pi^{\dagger}\right) \tag{77}
\end{align*}
$$

Let us consider now what the structure of $\Pi$ is. For the optical theorem to be true for any possible initial state, $\Pi$ must satisfy the Cutkosky relation:

$$
\begin{equation*}
-\operatorname{Im}(\Pi)=\Pi \epsilon \Pi^{\dagger} \tag{78}
\end{equation*}
$$

where for the matrix $\Pi, \operatorname{Im}(\Pi)=\frac{1}{2 i}\left(\Pi-\Pi^{\dagger}\right)$ and $\epsilon$ is the rescattering matrix defined by:

$$
\begin{equation*}
\epsilon_{s t}=\sum_{l} \int b_{s}^{l} b_{t}^{l \dagger} d \phi_{l} . \tag{79}
\end{equation*}
$$

Here the sum is over all possible final states and the integral is over the appropriate phase space $\phi_{l}$ for the final state $l$.

We can thus rearrange equation (

$$
\begin{equation*}
\operatorname{Im}\left(\Pi^{-1}\right)=\epsilon \tag{80}
\end{equation*}
$$

Note that $\epsilon$ is real since $b$ is real. Since $\epsilon$ is also hermitian, therefore it is symmetric too, and so is $\operatorname{Im}\left(\Pi^{-1}\right)$. Let us write

$$
\begin{equation*}
\operatorname{Re}\left(\Pi^{-1}\right)=s_{h}-M \tag{81}
\end{equation*}
$$

where $M$ is a mass matrix. We choose the basis of the $k$ states so that $M$ is diagonal. Thus

$$
M=\left(\begin{array}{cc}
m_{i}^{2} & 0  \tag{82}\\
0 & m_{j}^{2}
\end{array}\right)
$$

and consequently $\operatorname{Re}\left(\Pi^{-1}\right)$ is also symmetric. Since both $\operatorname{Im}\left(\Pi^{-1}\right)$ and $\operatorname{Re}\left(\Pi^{-1}\right)$ are symmetric, so is $\Pi$.

Returning now to equation (in in ) we can verify the demand of CPT that the sum of all PRA's must vanish. To see this we note that if we sum over all final states $l$ and integrate over the phase space of the final state the second factor becomes, after application of equation (ī̄í) , $\operatorname{Im}(\Pi)$. Thus

$$
\begin{equation*}
\Delta \mathcal{M}_{l}^{2}=\operatorname{Tr}\left[\left(\left(A^{*} A^{T}\right)-\left(A^{*} A^{T}\right)^{T}\right) \operatorname{Im} \Pi\right] . \tag{83}
\end{equation*}
$$

which vanishes as $I m \Pi$ is symmetric whereas its coefficient is anti-symmetric. The requirement of CPT is therefore confirmed.

If we apply this formalism to the more general case where the $k_{i}$ states of distinct quantum numbers are present, then we may also include components of the distribution $\Delta$ which do not contribute to the PRA but nonetheless are CP violating.

Furthermore, if a particular state is the only one with a given set of quantum numbers contributing to the final state the above formalism gives the standard Breit-Wigner form:

$$
\begin{equation*}
\Pi_{i}=\frac{1}{s-m_{i}^{2}+i \Gamma_{i} m_{i}} \tag{84}
\end{equation*}
$$

Note that with respect to the $1^{+}$states in equation ( $\left.\overline{1} \bar{T}_{1}\right)$ we have worked in the mass basis $\left\{k_{1}, k_{2}\right\}$. The calculation of the production is however most naturally carried out in the quark model basis $\left\{\hat{k}_{1}, \hat{k}_{2}\right\}$. If we denote $\hat{A}$ the production amplitude in the quark model basis and $\mathcal{F}$ the suitable mixing matrix then we can relate $A$ to $\hat{A}$ by $A=\mathcal{F} \hat{A}$ in equation (ī̄ī).

### 3.2 Vector Pseudoscalar Case

First let us consider the case where $k_{i} \rightarrow X Y ; X$ is a vector and $Y$ is a pseudoscalar. From Table 1 we see that this happens for the resonances $\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$. Consider first the case of $1^{+}$. The quantum numbers dictate that the decay may proceed through $L=0$ or $L=2$. Recalling that the $k_{i}$
has $J_{z}=-1$ (as mentioned before the $z$ axis is antiparallel to $\vec{p}_{\gamma}$ ), thus the decay distribution is proportional to

$$
\begin{equation*}
Y_{0}^{0} X_{-1} \tag{85}
\end{equation*}
$$

for the $L=0$ channel where $X_{i}$ means vector $X$ with polarization $i$ and $Y_{j}^{i}(\theta, \phi)$ is the spherical harmonic. For the $L=2$ channel the corresponding amplitude is

$$
\begin{equation*}
\sqrt{\frac{1}{10}} Y_{2}^{0} X_{-1}-\sqrt{\frac{3}{10}} Y_{2}^{-1} X_{0}+\sqrt{\frac{3}{5}} Y_{2}^{-2} X_{+1} \tag{86}
\end{equation*}
$$

In the case of a $2^{+}$channel, $L=2$ and so the decay distribution is proportional to

$$
\begin{equation*}
\sqrt{\frac{1}{2}} Y_{2}^{0} X_{-1}-\sqrt{\frac{1}{6}} Y_{2}^{-1} X_{0}-\sqrt{\frac{1}{3}} Y_{2}^{-2} X_{+1} \tag{87}
\end{equation*}
$$

Finally, in the case of a $1^{-}$channel, $L=1$ and hence the decay distribution is proportional to

$$
\begin{equation*}
\sqrt{\frac{1}{2}}\left(Y_{1}^{0} X_{-1}-Y_{1}^{-1} X_{0}\right) \tag{88}
\end{equation*}
$$

Expanding these amplitudes in terms of $z$ and $\phi$ we get

$$
\begin{align*}
\mathcal{M}_{1}= & b_{1} \sqrt{\frac{1}{4 \pi}} X_{-1} \\
\mathcal{M}_{2}= & b_{2} \sqrt{\frac{1}{4 \pi}} X_{-1} \\
\mathcal{M}_{3}= & b_{3} \sqrt{\frac{3}{8 \pi}}\left(z X_{-1}-\sqrt{\frac{1}{2}} \sqrt{1-z^{2}} e^{-i \phi} X_{0}\right) \\
\mathcal{M}_{4}= & b_{4} \sqrt{\frac{5}{32 \pi}}\left(\left(3 z^{2}-1\right) X_{-1}\right. \\
& \left.-\sqrt{2} z \sqrt{1-z^{2}} e^{-i \phi} X_{0}-\left(1-z^{2}\right) e^{-2 i \phi} X_{+1}\right) \tag{89}
\end{align*}
$$

where we define the couplings between $k_{i}$ and $X Y$ to be $b_{i}$. Thus the matrix $U$ defined above is given by $U_{i j}=b_{i} b_{j} \mathcal{R}_{i j}$ where

$$
\mathcal{R}_{(X Y)}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0  \tag{90}\\
0 & \frac{1}{2} & \frac{1}{2} & \sqrt{\frac{3}{8}} z & \sqrt{\frac{5}{32}}\left(3 z^{2}-1\right) \\
0 & \frac{1}{2} & \frac{1}{2} & \sqrt{\frac{3}{8}} z & \sqrt{\frac{5}{32}}\left(3 z^{2}-1\right) \\
0 & \sqrt{\frac{3}{8}} z & \sqrt{\frac{3}{8}} z & \frac{3}{8}\left(1+z^{2}\right) & \sqrt{\frac{15}{16}} z^{3} \\
0 & \sqrt{\frac{5}{32}}\left(3 z^{2}-1\right) & \sqrt{\frac{5}{32}}\left(3 z^{2}-1\right) & \sqrt{\frac{15}{16}} z^{3} & \frac{5}{8}\left(4 z^{4}-3 z^{2}+1\right)
\end{array}\right)
$$

### 3.3 Pseudoscalar-Pseudoscalar case

Now let us consider the case where $k_{i} \rightarrow U V$ and $U, V$ are pseudoscalars; in particular, $\pi, K$. In this instance the only states involved are $k_{0}, k_{3}$ and $k_{4}$. The relevant amplitudes are as follows:

$$
\begin{align*}
\mathcal{M}_{0} & =b_{0} \sqrt{\frac{3}{8 \pi}} \sqrt{1-z^{2}} e^{-i \phi} \\
\mathcal{M}_{3} & =b_{3} \sqrt{\frac{3}{8 \pi}} \sqrt{1-z^{2}} e^{-i \phi} \\
\mathcal{M}_{4} & =b_{4} \sqrt{\frac{15}{8 \pi}} z \sqrt{1-z^{2}} e^{-i \phi} \tag{91}
\end{align*}
$$

Hence the corresponding matrix $\mathcal{R}$ is given by:

$$
\mathcal{R}_{(U V)}=\left(\begin{array}{ccccc}
\frac{3}{4}\left(1-z^{2}\right) & 0 & 0 & \frac{3}{4}\left(1-z^{2}\right) & \sqrt{\frac{45}{16}} z\left(1-z^{2}\right)  \tag{92}\\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\frac{3}{4}\left(1-z^{2}\right) & 0 & 0 & \frac{3}{4}\left(1-z^{2}\right) & \sqrt{\frac{45}{16}} z\left(1-z^{2}\right) \\
\sqrt{\frac{45}{16}} z\left(1-z^{2}\right) & 0 & 0 & \sqrt{\frac{45}{16}} z\left(1-z^{2}\right) & \frac{15}{4} z^{2}\left(1-z^{2}\right)
\end{array}\right)
$$

### 3.4 Signs of Decay Amplitudes

The convention which we used for the angular variables $\theta$ is constructed such that if all the amplitudes are positive then constructive interference occurs if the final strange meson $\left(K\right.$ or $\left.K^{*}\right)$ is in the forward $(+z)$ direction. Bearing this convention in mind, let us consider a crude model, based loosely on the idea of "vacuum dominance", which we will use, for the sole purpose of suggesting the signs of the decay amplitudes. As an illustration, let us consider the $K^{*} \pi$ final state. The full reaction is thus:

$$
\begin{equation*}
B \rightarrow \gamma k_{i} \rightarrow \gamma \pi K^{*} \tag{93}
\end{equation*}
$$

The contributing $k_{i}$ are then $k_{0}, k_{3}$ and $k_{4}$ (see Table 1). Let us concentrate on the case when the $B \rightarrow \gamma k_{i}$ decay takes place via the penguin graph. Then the vacuum saturation representation is

$$
\begin{equation*}
\mathcal{A}=\operatorname{Tr}\left(\Pi_{b} \gamma_{5} \Pi_{u 1} \Gamma_{i} \Pi_{s 1} \sigma^{\mu \nu} P_{R}\right) \operatorname{Tr}\left(\Pi_{s 2} \Gamma_{i} \Pi_{u 2} \gamma_{5} \Pi_{d} \mathcal{F}\right) \tag{94}
\end{equation*}
$$

where $\Pi_{b}, \Pi_{u 1}$ and $\Pi_{s 1}$ are propagators of the $b, \bar{u}$ and $s$ quarks in the $B \rightarrow k_{i} \gamma$ decay; $\Pi_{d}, \Pi_{u 2}$ and $\Pi_{s 2}$ are propagators of the $d, \bar{u}$ and $s$ quarks in the $k_{i} \rightarrow K^{*} \pi$ decay and $\Gamma_{i}$ is the appropriate gamma matrix insertion for the state $k_{i}$ and $\mathcal{Q}$ is the polarization of the $K^{*}$.

For $i=0,3$ we take $\Gamma_{i}=\gamma^{\mu} E_{\mu}$ while for $i=\hat{2}$ we take $\Gamma_{i}=\gamma^{\mu} \gamma_{5} E_{\mu}$. In the case of $i=\hat{1}$ the relative sign with $i=\hat{2}$ is determined from [ $\overline{\hat{N}}]$ as described in equation ( $\left(\overline{6} \overline{6} \bar{q}_{1}\right)$. For the spin $2^{+}$case $i=4$ we take $\Gamma_{i}=\gamma^{\mu} E_{\mu \nu} \vec{P}^{\nu}$ where $E_{\mu \nu}$ is the spin 2 polarization tensor and $\vec{P}$ is the momentum of the $s$-quark in the $k_{4}$ frame.

Let us now consider the configuration where $\theta=0$ and $\mathcal{E}$ is left handed. Further let us take $p_{b}=x_{b} p_{B}$ and $p_{s 2}=x_{s} p_{K *}$ where $x_{b}=m_{b} /\left(m_{b}+m_{u}\right)$ and $x_{s}=m_{s} /\left(m_{s}+m_{u}\right)$ so that all the other quark momenta are determined by momentum conservation. We thus find that the signs in this model are given by: $\sigma_{d 0}=\hat{\sigma}_{d 2}=\sigma_{d 3}=\sigma_{d 4}=+1$. Applying a similar analysis to the $\rho K$ final state we find the same signs hold: $\sigma_{d 0}=\hat{\sigma}_{d 2}=\sigma_{d 3}=\sigma_{d 4}=+1$ as well as for the $K \pi$ final state $\sigma_{d 0}=\sigma_{d 3}=\sigma_{d 4}=+1$. Although, in our numerical work, for definiteness we will use signs as given by this simple model, later we will comment on possible effects due to the signs being different from those given by this model.

### 3.5 Observables

In order to observe a component of the asymmetry, it is useful to form an observable with the same symmetry as the component we wish to observe. Thus we can take any function $w_{i}\left(s_{h}, z\right)$ and form the quantity

$$
\begin{equation*}
<w_{i}>_{B}-<w_{i}>_{\bar{B}} \tag{95}
\end{equation*}
$$

which is CP violating. The effectiveness of this observable to statistically extract the signal from the background can be parameterized by the quantity:

$$
\begin{equation*}
\mathcal{E}_{i}=\frac{\int w_{i}\left(s_{h}, z\right) \Delta d s_{h} d z}{\sqrt{\int w_{i}^{2} \Sigma d s_{h} d z \int \Sigma d s_{h} d z}} \tag{96}
\end{equation*}
$$

where $\Sigma$ and $\Delta$ are defined in equation $\left(1, \overline{2} \overline{2}_{2}\right)$ and $z$ is defined in equation $\left(\overline{6} \overline{\sigma_{1}}\right)$.
The meaning of this quantity is that given $N$ events of the specified form the effect may be distinguished with a significance of $\mathcal{S}=\mathcal{E} \sqrt{N}$. Thus the total number $N_{B}$ of $B$ mesons (including both $B$ and $\bar{B}$ ) needed to observe the effect at $1-\sigma$ is

$$
\begin{equation*}
N_{B}=\frac{1}{\operatorname{Br} \mathcal{E}^{2}} \tag{97}
\end{equation*}
$$

where Br is the total branching ratio for ( $\overline{6} \overline{1} 1 \mathbf{1})$. Clearly we would like $\mathcal{E}$ to be as large as possible. In fact the function which maximizes $\mathcal{E}$ is [25]

$$
\begin{equation*}
w_{o p t}=\frac{\Delta}{\Sigma} \tag{98}
\end{equation*}
$$

Using this observable the expression for $\mathcal{E}$ simplifies to

$$
\begin{equation*}
\mathcal{E}_{o p t}=\left(\frac{\int \frac{\Delta^{2}}{\Sigma} d s_{h} d z}{\int \Sigma d s_{h} d z}\right)^{\frac{1}{2}} \tag{99}
\end{equation*}
$$

Another form of observables that we consider are asymmetries where $w= \pm 1$ at all points in phase space. In this case the definition of $\mathcal{E}$ simplifies to:

$$
\begin{equation*}
\mathcal{E}=\frac{\int w\left(s_{h}, z\right) \Delta d s_{h} d z}{\int \Sigma d s_{h} d z} \tag{100}
\end{equation*}
$$

corresponding to the usual definition of an asymmetry.
Let us now consider three specific asymmetries:

$$
\begin{equation*}
w_{0}=1 \quad w_{1}=\operatorname{sign}(z) \quad w_{2}=\operatorname{sign}\left(|z|-\frac{1}{2}\right) \tag{101}
\end{equation*}
$$

In Figure 3 we plot the differential asymmetries $d \mathcal{E}_{i} / d \sqrt{s_{h}}$ together with $d \Sigma / d \sqrt{s_{h}}$. Note that $i=0$ corresponds to $P R A$ and arises when resonant states with identical quantum contribute to the same final state; $i=1$ and $i=2$ correspond to asymmetries in the energy distributions. These arise when contributing resonance states have the opposite parity or have the same parity, respectively.

Finally, we note that, in order to enhance the asymmetry observed it may also be useful to modify the above as follows:

$$
\begin{equation*}
w_{i}^{\prime}=\operatorname{sign}\left(d \mathcal{E}_{i} / d s_{h}\right) w_{i}(z) \tag{102}
\end{equation*}
$$

thus flipping the sign according to the expected sign changes as a function of $s_{h}$. However, in the specific cases that we consider asymmetries do not seem to switch signs as $s_{h}$ changes so that this sort of multiplication by the sign turns out not to be useful.

It is instructive at this point to consider how $\mathcal{E}$ and $N_{B}$ scale with $B_{\text {pen }}$. Consider changing $B_{p e n} \rightarrow \lambda B_{\text {pen }}$. In the above formalism then $\Sigma \rightarrow \lambda \Sigma$ and $\Delta \rightarrow \lambda^{\frac{1}{2}} \Delta$ thus $\mathcal{E} \rightarrow \lambda^{-\frac{1}{2}} \mathcal{E}$ but since $\mathrm{Br} \rightarrow \lambda \mathrm{Br} N_{B} \rightarrow N_{B}$. Thus $N_{B}$ is independent of the exact normalization of the penguin rates. Furthermore this implies that $N_{B}$ is also relatively independent of the efficiency of forming $k_{i}$ states from the penguin process.

### 3.6 Numerical Results

For the purposes of numerical results we take the CKM phase $\delta$ to be $\frac{\pi}{2}$ and the signs of the amplitudes as described in section 2.5 and 3.4.

For resonance formation from the annihilation graph we use the potential model results given in ( 3. In Table 4 we use this method to calculate $\mathcal{E}_{i}$ for the above observables as well as the optimal observable give by equation ( $(\overline{9} \overline{9}$ states. By using equation ( also calculate the number of $B$ 's necessary to observe a statistical effect at
the 1 sigma level. The resulting numbers are also shown in Table 4; note that these are given in units of $10^{8}$.

Figure 3a shows $\frac{1}{\Sigma} \frac{d \Sigma}{d \sqrt{s_{h}}}$ as a function of $\sqrt{s_{h}}$. Here the solid line represents the decay to the $\rho K$ final state, the dotted line to the $K^{*} \pi$ final state and the dashed line for the $K \pi$ final state. Note that the peaks correspond to the resonances in Table 1 which are indicated in the graph by the bars. In Figure $3 \mathrm{~b} \frac{1}{\Sigma} \frac{d \mathcal{E}_{0}}{d \sqrt{s_{h}}}$ is shown. In the $\rho K$ and $K^{*} \pi$ modes the effects are due to the interference of $k_{1}$ and $k_{2}$. The resultant values of $\mathcal{E}_{0}$ are also shown in Table 4. Note that since the resonances $k_{0}$ and $k_{3}$ are so far apart the value of $\mathcal{E}_{0}$ is negligibly small for the $K \pi$ final state. Likewise Figure 3c shows $\frac{1}{\Sigma} \frac{d \mathcal{E}_{1}}{d \sqrt{s_{h}}}$ for each of the final states. For the $K^{*} \pi$ and $K \rho$ final states, there is a complex structure since contributions result from the interference of any pair of resonances with opposite parity. This also accounts for the large values in $\mathcal{E}_{1}$. Similar comments are valid for the $K \pi$ state except the $k_{1}$ and $k_{2}$ states are not involved while the $k_{0}$ is. With the resonances that we consider the $K \pi$ final state does not contribute to $\mathcal{E}_{2}$. For the other final states, the curves in Figure 3d are due to the interference of various positive parity states with each other. The optimal $\mathcal{E}_{\text {opt }}$ and the corresponding values of $N_{\text {opt }}$ given in Table 4 show that these effects may be seen with about $10^{9} B$ 's .

It is apparent that there is considerable uncertainty in these results; some of which should be reduced in the future. First of all consider the ratio $R\left(k_{i} \gamma\right)$. The theoretical prediction based, at the moment, on potential models, are rather unreliable as our calculations show. However, this source of uncertainty will get substantially under control as experimentally samples of about $10^{7}$ B's (i.e. well before the $10^{8}$ or $10^{9}$ needed for CP studies ) become available, as then the rates for different resonant channels will be experimentally measured. So by the time $10^{8} \mathrm{~B}$ mesons have been accumulated one might anticipate that many of these ratios will be well determined. Furthermore, detail fits to the CP-conserving distributions, e.g. $\frac{1}{\Sigma} \frac{d \Sigma}{d s_{h}}$ as a function of $\sqrt{s_{h}}$ (see Fig. 3a), of the data that becomes available at that time should also allow the determination of the ambiguities in the signs of the amplitudes as well as a more careful determination of the strong phase than the approximations considered here.

It is important to note that if the penguin graphs are rescaled by a constant amount the resultant value of $N_{B}$, needed for the CP asymmetry to be observed, is unaffected. To see this suppose that the amplitude for the
penguin is multiplied by a factor of $\lambda$. Since the penguin dominates the production, the total branching ratio to a final state varies like $\lambda^{2}$. The asymmetry due to interference with the tree graphs will therefore vary like $\lambda^{-1}$; following equation ( 19

Although we have attempted to determine the signs of the decay amplitude, it is instructive to consider the uncertainty in $N_{B}$ introduced for other possible sign combinations. Consider $N_{\text {opt }}$ in model A for the $K^{*} \pi$ final state. The value with the sign choice indicated above is $2.2 \times 10^{8}$ as given in Table 4. If however one checks all the possible sign combinations one finds that this quantity varies between $1.5 \times 10^{8}$ and $4.0 \times 10^{8}$. So once again, our estimate for the required number of B's is not greatly effected from this source of uncertainty either.

## 4 Conclusions and Summary

Despite the fact that there are appreciable uncertainties in our estimates it seems likely that the asymmetries considered here may be observable in the case of $B^{ \pm}$at a $B$ factory capable of producing about $10^{9} B$ mesons. In our estimates we do not consider what happens for $s_{h}$ well above the $k_{i}$ states. Note especially that the tree graphs tend to increase rapidly with $s_{h}$ so that larger CP phases may be available, though the strong rescattering phases and the branching ratios are likely to become somewhat smaller. Thus our estimates may well be underestimates. Of course CP violation may also arise from physics beyond the standard model, and then too larger asymmetries are possible.

Another point we wish to emphasize briefly has to do with the formation of the higher resonances in radiative B transitions. In both bound state models that we studied, we found (as shown in Table 2) that, except for the $k_{1}$, the other three states are produced roughly with the same branching ratio as the $k_{0}$ (i.e. $K^{*}(892)$ ) which was recently seen experimentally Experimental searches of all of these states are vitally needed.

It should be clear that the essential idea proposed in this work is that resonances can have interesting and, perhaps, even a dramatic influence on the CP violating observables. In the case of neutral $B^{\prime} s$ leading to self-conjugate final states, effects arising from interference between the initial $B$ and $\bar{B}$ are well known [26]. What is being demonstrated here is that charged $B$ meson
decays leading to common final states via resonances can also lead to important interference effects. Indeed, since the underlying theory [27] involves quarks (not mesons) it is difficult to confine CP violation just to neutral or just to charged mesons; resonance enhancement through such considerations should be possible both for charged as well as neutral B's. For concreteness we have, in this paper, only addressed to the radiative decays of charged $B$ 's. Clearly similar effects on neutral $B$ 's need to be investigated. Furthermore effects of non-standard physics needs to be ascertained. We will return to some of these issues in subsequent publications [ $[\overline{6}$, , ' $2 \overline{2} \overline{8} \overline{-1}]$.

## Acknowledgements

We are very grateful to Gad Eilam for collaborating with us on the initial stages of this work. We also would like to acknowledge useful discussions with Michael Peskin and William Dunwoodie. The work of D. A. is supported by an SSC Fellowship and DOE contract DE-AC03-76SF00515 while the work of A. S. is supported by DOE contract DE-AC02-76CH0016.

## References

[1] R. Ammar et al., CLEO Collaboration, Phys. Rev. Lett. 71, 674 (1993).
[2] G. Eilam, J. Hewett and A. Soni, Phys. Rev. Lett. 67, 2103 (1992).
[3] See also: M. Nowakowski and A. Pilaftsis, Mod. Phys. Lett. A6, 1933 (1991); R. Cruz, B. Grzadkowski and J. F. Gunion, Phys. Lett. B289, 440(1992); D. Atwood et al., Phys. Rev. Lett. 70, 1364(1993); 71, 492(1993) and references therein.
[4] Particle Data Group, Review of Particle Properties, Phys. Rev. D45, (1992).
[5] C. Daum et al., Nuc. Phys. B187, 1 (1981). See also D. Leith, Techniques and Concepts of High-Energy Physics VI, T. Ferbel ed., Plenum Press New York (1990).
[6] D. Atwood and A. Soni, work in progress.
[7] J. Soares, Nucl. Phys. B367 575 (1991).
[8] N. Isgur, D. Scora, B. Grinstein, and M. Wise, Phys. Rev. D39, 799 (1989).
[9] M. Wirbel, B. Stech, and M. Bauer, Z. Phys. C29, 637 (1985).
[10] B. A. Campbell and P. J. O'Donnell, Phys. Rev. D25, 1989 (1982).
[11] B. Grinstein, R. Springer, and M. Wise, Nucl. Phys. B339, 269 (1990); R. Grigjanis, P. O'Donnell, M. Sutherland, and H. Navelet, Phys. Lett. B237, 252 (1990); M. Misiak, Phys. Lett. B269, 161(1991); Nucl. Phys. B393, 23 (1993); A.J. Buras, M. Misiak, M. Munz and S. Pokorski, preprint MPI-PH-93-77.
[12] See Ref. 11. Note also that CLEO has an upper bound (95\%C.L.) on $b \rightarrow s+\gamma$ of $5.4 \times 10^{-4}$. See, E. Thorndike, talk at the American Physical Society Meeting, Washington (D.C.), April (1993); Y. Rozen, Ph.D thesis, Syracuse University (1993).
[13] J. Bartelt et.al, Cornell preprint CLNS-93-1240; M. Artuso, Phys. Lett. B311, 307(1993).
[14] P. Ginsparg, S. Glashow and M. Wise, Phys. Rev. Lett., 50, 1415 (1983).
[15] See Particle Data Group, ibid, p.III.65-67; L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983); see also, L. L. Chau and W. Y. Keung, Phys. Rev. Lett 53, 1802 (1984).
[16] For reviews see, e.g. E. A. Paschos and U. Turke, Phys. Rep. 178, 147 (1989).; Y. Nir and H. Quinn Ann. Rev. Nucl. Part. Sci. 42, 211 (1992).
[17] N. Deshpande, P. Lo, and J. Trampetic, Z. Phys. C40, 369 (1988). See also N. Deshpande, P. Lo, and J. Trampetic, G. Eilam and P. Singer Phys. Rev. Lett. 59, 183 (1987).
[18] In passing we note that $B \rightarrow K^{*} \gamma$ has recently been treated on the lattice with results consistent with reference [i]n. See: C. Bernard, P. Hsieh and A. Soni preprint Wash. U. HEP/93-35, to appear in Phys. Rev. Lett.
[19] B. Grinstein, R. Springer and M. Wise, Nuc. Phys. B339, 269 (1990).
[20] See M. Misiak in Ref. 11.
[21] Z. Xu, D. Zhang, and L. Chang, Nuc. Phys. B291, 392 (1987)
[22] See, e.g., C. Bernard, J. Labrenz and A Soni, BNL Preprint \#49068 (to appear in Phy. Rev. D) and references therein.
[23] M Bander, D Silverman, and A Soni, Phys. Rev. Lett. 44, 7, (1980); (E) 44, 962 (1980).
[24] For discussions on the CPT restrictions on CP violating partial rate asymmetries see: J. M. Gerard and W. S. Hou, Phys. Rev. Lett. 62, 855 (1989); Phys. Rev. D43, 2909 (1991). See also: L. Wolfenstein Phys. Rev. D43, 151 (1991); H. Simma, G. Eilam and D. Wyler, Nucl. Phys B352, 367 (1991).
[25] D. Atwood and A. Soni, Phys. Rev. D45, 2405 (1992).
[26] See, e.g. A. Carter and A. Sanda, Phys. Rev. Lett. 45, 952(1980); I. Bigi and A. Sanda, Nucl. Phys. B193, 85(1981); I. Dunietz and J. Rosner, Phys. Rev. D34, 1404 (1986); P. Krawczyk, D. London, R. D. Peccei and H. Steger, Nucl. Phys. B307, 19 (1988); M. Gronau and D. London, Phys. Lett. B253, 483(1991); I. Bigi, V. Khoze, N. G. Uraltsev and A.I. Sanda in CP Violation, C. Jarlskog, Ed., World Scientific, Singapore (1987); B. Kayser, M. Kuroda, R.D. Peccei and A. Sanda, Phys. Lett. B237, 508 (1990) and Y. Nir and H. Quinn, ibid and references therein.
[27] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652(1973).
[28] Preliminary results based on this work were presented (by A. Soni) at the third international workshop on CP violation, KEK, Japan (November 1993).

## Figure Captions

## Figure 1

Figure 1a: Example of a penguin graph for the subprocess for $b \rightarrow s \gamma$.
Figure 1b: Example of the annihilation subprocess $b \bar{u} \rightarrow s \gamma \bar{u}$.
Figure 1c: Example of the spectator subprocess $b \rightarrow s \gamma u \bar{u}$.

## Figure 2

Figure 2a: A typical instance of two diagrams contributing to the partial rate asymmetry of a state $f$. The intermediate state $g$ is shown giving a contribution to the imaginary part of the propagator.

Figure 2b: The two diagrams which give the compensating partial rate asymmetry to the final state $g$ so that CPT is preserved.

## Figure 3

Figure 3a: A plot of $\frac{1}{\Sigma} \frac{d \Sigma}{d \sqrt{s_{h}}}$ as a function of $\sqrt{s_{h}}$ for the $\rho K$ state (solid line); $\pi K^{*}$ state (dotted line) and $\pi K$ state (dashed line). The bars indicate the positions of the five resonances considered.

Figure 3b: A plot of $\frac{1}{\Sigma} \frac{d \mathcal{E}_{0}}{d \sqrt{s_{h}}}$ as a function of $\sqrt{s_{h}}$ for the same three final states.
Figure 3c: A plot of $\frac{1}{\Sigma} \frac{d \mathcal{E}_{1}}{d \sqrt{s_{h}}}$ as a function of $\sqrt{s_{h}}$ for the same three final states.
Figure 3d: A plot of $\frac{1}{\Sigma} \frac{d \mathcal{E}_{2}}{d \sqrt{s_{h}}}$ as a function of $\sqrt{s_{h}}$ for the $\rho K$ and $\pi K^{*}$ final states.

Table 1

| State | Mass（Mev） | Width（Mev） | ${ }^{2 S+1} L_{J}$ | Selected Decays |
| :---: | :---: | :---: | :---: | :---: |
| $k_{0} \quad K^{*}(890) \quad\left[1^{-}\right]$ | 892 （土），896（0） | 50 | ${ }^{3} S_{1}$ | $K \pi \quad 100 \%$ |
| $\begin{array}{llll}k_{1} & K_{1}(1270) & {\left[1^{+}\right]}\end{array}$ | 1270 | 90 | ${ }^{1} P_{1}$ | $K \rho$ $42 \%$ <br> $K^{*} \pi$ $16 \%$ <br> $K \omega$ $11 \%$ |
| $\begin{array}{llll}k_{2} & K_{1}(1400) & {\left[1^{+}\right]}\end{array}$ | 1402 | 174 | ${ }^{3} P_{1}$ | $K \rho$ $3 \%$ <br> $K^{*} \pi$ $94 \%$ <br> $K \omega$ $1 \%$ <br> $K \rho$ $<7 \%$ |
| $k_{3} \quad K^{*}(1410) \quad\left[1^{-}\right]$ | 1412 | 227 | ${ }^{3} S_{1}$ | $\begin{aligned} & K \rho<7 \% \\ & K^{*} \pi>40 \% \\ & K \pi 7 \% \\ & \hline \end{aligned}$ |
| $k_{4} \quad K_{2}(1430) \quad\left[2^{+}\right]$ | 1425（土），1432（0） | 98（土），109（0） | ${ }^{3} P_{2}$ | $K \rho$ $9 \%$ <br> $K^{*} \pi$ $25 \%$ <br> $K \omega$ $3 \%$ <br> $K \pi$ $50 \%$ |

 fractions of the $k_{i}$ states to various final states are given in the last column． In our computation，for definiteness，we used the branching ratios $\operatorname{Br}\left(k_{3} \rightarrow\right.$ $K \rho)=7 \%$ and $\operatorname{Br}\left(k_{3} \rightarrow K^{*} \pi\right)=86 \%$ ．

Table 2

| $k_{i}$ | Model A | Model B |
| :---: | :---: | :---: |
| $k_{0}$ | $2.5 \%$ | $1.6 \%$ |
| $\hat{k}_{1}$ | $2.2 \times 10^{-5}$ | $1.4 \times 10^{-5}$ |
| $\hat{k}_{2}$ | $6.5 \%$ | $1.3 \%$ |
| $k_{3}$ | $3.2 \%$ | $1.3 \%$ |
| $k_{4}$ | $5.4 \%$ | $0.9 \%$ |

Table 2: The calculated branching fraction for $B \rightarrow k_{i} \gamma$ in the two models considered.

Table 3

| $k_{i}$ | Model A | Model B |
| :--- | :---: | :---: |
| $k_{0}$ | $2.5 \times 10^{-3}$ | $3.2 \times 10^{-3}$ |
| $\hat{k}_{1}$ | -.85 | -.96 |
| $\hat{k}_{2}$ | $22 \times 10^{-3}$ | $49 \times 10^{-3}$ |
| $k_{3}$ | $2.2 \times 10^{-3}$ | $3.5 \times 10^{-3}$ |
| $k_{4}$ | $32 \times 10^{-3}$ | $80 \times 10^{-3}$ |

Table 3: The resulting ratio of CP phases, $\frac{\sin \phi}{\sin \delta}$, in the two models.

Table 4

| Model A |  |  |  |
| :--- | :---: | :---: | :---: |
|  $\rho K$ $K^{*} \pi$ $K \pi$ <br> $\mathcal{E}_{\text {opt }}$ $1.0 \%$ $1.2 \%$ $0.7 \%$ <br> $\mathcal{E}_{0}^{\prime}$ $0.3 \%$ $0.3 \%$ $1.7 \times 10^{-4}$ <br> $\mathcal{E}_{1}^{\prime}$ $0.7 \%$ $0.6 \%$ $0.4 \%$ <br> $\mathcal{E}_{2}^{\prime}$ $0.4 \%$ $0.2 \%$  <br> $N_{\text {opt }}$ 33 2.2 12 <br> $N_{0}^{\prime}$ 460 40 $2 \times 10^{4}$ <br> $N_{1}^{\prime}$ 70 9 32 <br> $N_{2}^{\prime}$ 280 60  |  |  |  |


| Model B |  |  |  |
| :---: | :---: | :---: | :---: |
|  | $\rho K$ | $K^{*} \pi$ | $K \pi$ |
| $\mathcal{E}_{\text {opt }}$ | 2.4\% | 2.0\% | 0.9\% |
| $\mathcal{E}_{0}^{\prime}$ | 0.6\% | 0.5\% | $1 \times 10^{-4}$ |
| $\mathcal{E}_{1}^{\prime}$ | 1.7\% | 1.1\% | 0.4\% |
| $\mathcal{E}_{2}^{\prime}$ | 0.7\% | 0.3\% |  |
| $N_{\text {opt }}$ | 27 | 3 | 20 |
| $N_{0}^{\prime}$ | 460 | 47 | $1 \times 10^{5}$ |
| $N_{1}^{\prime}$ | 53 | 10 | 95 |
| $N_{2}^{\prime}$ | 310 | 110 |  |

Table 4: Using model A and B we calculate the asymmetries $\mathcal{E}_{\text {opt }}$ and $\mathcal{E}_{i}^{\prime}$ as well as the corresponding numbers of $B^{ \pm}$in units of $10^{8}$. For the annihilation graph we have used the ISGW model [ $[8]$


Figure 1a
Figure 1b


Figure 1c


Figure 2a


Figure 2b






[^0]:    * Work supported by the Department of Energy Contracts DE-AC03-76SF00515 (SLAC) and DE-AC02-76CH0016 (BNL) and an SSC Fellowship (for David Atwood).

