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We assume

particle” which

Abstract

that ‘fieldsn are to be measured by the acceleration of a ‘test

belongs to a class of particles whose ratios of charge to m=s and

gravitational to inertial mass are Lorentz invariant. We relate the mewurement -

accuracy in space, Al, and in time, At, by the scale invariant definition of two

constants c, and ~: ~ = 1; ~ - 2m. Taking the experimental velocity resolu-

tion AVZ = A1/TAt = NA4/NTAt we derive the bracket expression [z, VZ]m ~

where z = NAe. Then it is a deductive consequence that the only fields which

can act on such particles are structurally indistinguishable from electromagnetic

and gravitational fields in the sense that they satisfy the finite difference version

of the free space Maxwell equations and Einstein geodesic equations. Such a scale

invariant theory becomes the proper correspondence limit for any relativistic par-

‘title theory which breaks scale invariance by taking me~ = h. Here we use m.

Fecause it defines the threshold distance for position measurement, h/2m.c, be-

low which the non-classical process of electron-positron pair creation is observed,

and above which that phenomenon cannot be directly observed. The coherence

length L = NTAe specifies the maximum distance within which quantum me-

chanical interference effects can be observed. For non-overlapping “wave packets”

of this length, the deterministic classical equations with particulate sources and

sinks ~apply. But the characterization of a deterministic system as chaotic requires

a specification of boundary conditions to a precision which violates the constraint

due to memurement accuracy or electron-positron pair creation. Hence the num-

ber of degrees of freedom used in a model fixes whether the system is quantum

coherent or classically decoherent but (approximately) deterministic and limits the

applicability of chaos theory, removing certain paradoxes.

-..
-.
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1. INTRODUCTION

The Gordian knot that I tried to disentangle in this paper — rather than just

slashing at it with Occam’s &or in my usual cavalier f~hion — is the intricate

connection between cl~sical and quantum coherence, classical determinism, and

deterministic chaos. In the event, Clive Kilmister characterized my paper m rem-

iniscent of the South Sea Bubble. I respond to some of his remarks early on in

Chapter 3 (at the end of Section 3.2 and beginning of section 3.3).

In my opinion, the approach I present here h= broad implications with re-

spect to both the correspondence limit of relativistic quantum mechanics
[1]

and

“wave function collapse “ ’21.Here we will emphasize only the connections between

coherence, determinism and chws. I will pursue the impact of this analysis on the

foundations of quantum mechanics on another occasion.

“The phenomenon of “coherence” occurs in any wave theory. Experimentally

f~ shows up when two or more distinct beams combine to produce interference

fringes. “Decoherence” then corresponds to the disappearance of these interference

fringes when the experimental parameters are changed. In theoretical language the

difference between coherent and decoherent situations can often be accounted for

by assuming that the beams correspond to “wave packets” which can interfere only

when they overlap. In chapter 2 we present a specific geometrical paradigm which

makes this qualitative idea into a class of measurements that cover both classical

(electromagnetic) and quantum (deBroglie) wave interference.

The critical step in this analysis is the assumption that measurement accuracy

must be taken seriously as a logical (epistemological, ontological, metaphysical,.. .?)

constraint which can be fized in a quantitative sense by context. Starting from the

usual “meaning” of length and time measurement in the physics community, we

argue that this means that practice sets a fixed bound on the shortest length and

the shortest time that can be meaningfully specified experimentally by any current

technology. We call these intervals Al and At respectively. Then, any measured

apace or time interval can be specified by an integer (or a range of integers) times
--
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these dimensional (in the physicist’s sense) units. We also assume that the limiting

velocity for information transfer is a fixed rational fraction unique to any system

of space and time mexurements we invoke, which constrains our length-time units

by the scale-invariant equation Al= cAt.

Unfortunately our derivation of bracket expressions from these assumptions

has so far failed to pass muster with Clive Kilmister. So Chapter 3 indicates

what needs to be done rather than what has been actually demonstrated to his

satisfaction. Rather than go into that controversy here, we simply note that if

our contention is correct these finite and discrete bracket expressions derived from

measurement accuracy allow us to take over, practically unaltered, Feynman’s proof

of the Maxwell equations
[3]

as reconstructed by Dyson ‘4]and the generalization of

the proof to the Einstein gravitational geodesic equations given by Tanimura~] 1

Since we have discussed in more detail elsewhere my attempt to take over the

-Tan”imura proof [6’71, details are omitted.
-z—

Chapter 4 reminds us that if the usual local deterministic conclusions are drawn

from the field equations and the Lorentz force law, the predictions of the theory

become ambiguous. We interpret this fact as due to the naive assumption that

difference equations imply a unique continuum limit. We conclude that local de-

terminism is meaningful only when we can accept incoherence between radiation

sources, ra-diation field, and radiation sinks as a valid approximation.

Chapter 5 makes use of the fact that practically all solutions of classical, “de-

terministic” equations are chaotic in the sense that one must supply as much infor-

mation in the boundary conditions as the “prediction” is supposed to yield. This

clearly vitiates the concept of “determinism” as usually employed when physics

is invoked to support the philosophical concept that goes by that name. If our

analysis is correct, boundary conditions which violate the restriction to finite mea-

surement accuracy because of their precision are inconsistent with the operationally

meaningless or pseudo precision required to obtain chaotic predictions. This dis-

solves the paradox of “chaotic determinism”.
-..

-.
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2. COHERENCE

2.1 THE GEOMETRICAL PARADIGM

To give form to our discussion of coherence md decoherence, we use the devices -

schematically illustrated in figure 1. We assume, initially, that the ‘sourcen labeled

by a question mark emits charged particles with a unique charge-to-mass ratio and a

unique velocity v. Devices which we will use to insure that, to some finite accuracy,

these assumptions are true are included in the figure, and will be discussed in more

detail subsequently. For the moment we omit the ‘path extender”. We start from

the case when the detection screen beyond the double slit ‘8] exhibits a double slit

interference pattern whose envelope is the single slit diffraction pattern for a slit. .

of width Aw and a distance D from the detector array. We set the parameters

such that the spacing from the center of the pattern to the first interference fringe

is s. Then the “wavelength” ~ exhibited by this coherent interference between the

~~ams from the two slits is measured and can

A=:

be calculated from the equation

(2.1)

We note that w,s and D are length intervals that can be measured by conventional

macroscopic methods such as rods calibrated against international standards. We

take this as the paradigmatic case for specifying what we mean by “coherence”.

We emphasize that, so far, only length measurements are implied and hence that

our diagram is scale invariant.

In order to measure the “coherence length” we insert into the hypothetical

“path” of the particle coming from one of the slits a “path extender”, schematically

represented by a wedge whose sides are mirrors. One face of the wedge reflects the

beam to a second mirror which returns it to the second face of the wedge, which in

turn returns it to the direction it followed in the paradigmatic case. The distance

C from the wedge to

double slit paradigm.

the mirror is adjustable. C = O corresponds to the simplest

We find experimentally that for a source of a particular type
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the fringe system disappears when we reach a value Cm.= or larger. We can then

define the coherence length Ccoh by

Ccoh ~ 2C~~Z (2.2)

Note that so far the definition still depends directly on geometrical measurements.

Indirectly the specification depends on the sensitivity of the detector array, since

the intensity of the pattern along the detector array and (if the array records

individual particulate events) the probability of a particular region of the array

being activated decre~es w C increases. The disappearance of the interference

pattern is our paradigm for decoherence.
. .

Togo further in our analysis, we must measure the velocity v, or if this velocity

is close to the limiting velocity for information transfer — for which we use the

conventional symbol c — the momentum. Then we can define a second critical

~~rameter called the coherence time and symbolized by TCOhby the relationship

Ccoh = vTcoh

Use a detector array which measures the time of arrival

by means of a clock synchronized to the firing of the first

telesc~pe using the Einstein convention. In the situation

(2.3)

of individual particles

counter in the counter

where the interference

fringes have disappeared, we can distinguish two paths emerging from the double

slit by noting that all particles which follow the longer path arrive at the detector

with a time delay greater by at least TCOh= CCOh/v compared to the particles

which traverse the shorter path. Various checks on this statement can depend on

the me~urement accuracy to which we can establish all the relevant parameters.

Several such checks will occur to any experimental particle physicist. Since these

checks are irrelevant to our main theme, we stop our articulation of the b~ic

paradigm at this point, and focus on

mr momentum. The main point we
--

the accuracy to which we can measure velocity

wish to establish is simply that in a carefully
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specified context, outside of some coherence length or coherence time, particles can

be said to follow two (or more) distinct trajectories for at least part of their history

between production and detection. Inside that length, two coherent beams of the

same type of particle can be made to interfere with a characteristic wavelength

that” can be measured geometriully.

2.2 SPACE-TIME VELOCITY MEASUREMENT

The ‘counter telescope we have included in figure 1 consists of two devices

which record the time of firing or of not fim.ng during some time interval. The

distance between the two counters is L and the time delay between the two record-

ings is T. These two recordings are NO-YES events in that whether the individual

counters do not fire (“NO”) or do fire (“YES”) is recorded by two distinguish-

-able symbols in two correlated records. These records can be repeatedly examined

~ithout destroying this distinction or the sequential ordering. In this context the

velocity of a particle v is measured by a YES1, YES2 pair of events and is calcu-

lated by the ratio

L
~=—

T

The aqcuracy to which this constitutes — or

of this velocity cannot be adequately discussed

simply note that what are called “particles” in

physics have never been demonstrated to have

(2.4)

can constitute — a measurement

in an article of this length. We

high energy elementary particle

velocities greater than the scale

parameter

c = 299 792 458 m see–l

Further, there is no accepted situation in which information in

computer science sense has been transferred at a velocity greater

(2.5)

the physical or

than this value.

Demonstrable exceptions to these statements would be of extreme interest to the

physics and computer science communities.
- .-

--
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2.3. ENERGY-M• MENTUM VELOCITY MEASUREMENT

The ‘magnetic selector” we have included in figure 1 can also be considered to

be a device capable of measuring velocity when it is properly calibrated. However

the calibration procedures are more complicated than the direct calibration of rods -

and clocks which suffice for space-time velocity me=urement. It is here that our

restriction to a particular type of particle begins to become important.

If the particle is electromagnetiully neutral, or if the space-time velocity is not

distinguishable from c (up to the maximum value of H available to us), no deflection

is observed and the inverse radius of curvature p– 1 is indistinguishable from zero.

We exclude these cases for the moment because the measuring device invoked gives

no information not already provided by the counter telescope. However, when a

deflection (finite p) is observed, we find that for fixed H the radius of curvature

p changes with velocity. To cut a long story short, we find that if we measure

~~locity in units of c by defining

v = p(v)c

and keep the magnetic field fixed,

p2 l–@2
p2(v) a —.

l–p2’ ‘-2(V) m 02

(2.6)

(2.7)

This clearly allows us to calibrate our magnetic field to space-time measurements

and, for a particular class of particles, to specify higher and lower magnetic fields

over some range by the velocity-independent (over t hat range) definit ion

P(v) ~.H=—
PO(W)

(2.8)

-leaving open the units in which we ultimately decide to measure magnetic fields.

8
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If, as is often the cue in high energy physics, it is more convenient to me=ure

radius of curvature rather than space-time velocity, we can relate this approach to

the space-component of the “four velocity” (uo, Z) = (T! ~~) with 72@2 =72 – 1

and

U2
p2(u) = ~; 72(U) = 1 + U2; u = ●[al (2.9) -

For a particular type of particle, this tells us that U2 is proportional to p2, and in

a more articulated theory allows us to me=ure momentum by radius of curvature

in a calibrated magnetic field. In this context we can ignore the (fixed) rest-m~s

of our “test particles” and keep our “momentum” measurements restricted to the

“space-component of four velocity” or “moment urn per unit mass”.

Similarly, if we measure energy by the temperature rise in a calorimeter cali-

brated to the ideal gas law for particles of the same mass, i.e. measure pressure

per ‘unit mass rather than pressure, we can verify that this is consistent with the

fi~ual relativistic single particle kinematics

and so on.

E2 E2 2
—=1+U2; ~–—
~2 :2=1

(2.10)

2.4 SCALE INVARIANCE

We have been at some pains to remove the mass scale from our basic paradigm

for “coherence” and

the fact that we can

quantum mechanics,

“decoherence” because our basic argument below rests on

derive “bracket expressions” similar to the commutators of

using only measurement of space and time with accuracy

bounded from below. Then it takes a physical phenomenon involving Planck’s

constant to recover quant urn mechanics. This can be done in a number of ways,

eg historically by the analysis of black body radiation, photo-effect, line spectra

of atoms, finite size and stability of atoms me~ured using deviations from the

4&al gas law, and so on. The cleanest breakpoint for the relativistic quantum
--
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mahanics which concerns us is the creation of electron-positron pairs or the less

direct but predicted and confirmed effects (eg Lamb shift, vacuum polarization

in p-p scattering,... ) of these degrees of freedom. This is possible because the

whole idea of a ‘test-particlem is basic to the classical definition of ‘fields~. Once

the degrees of freedom due to the possibility of particle-antiparticle pair creation -

have to be included in the theory, even the concept of a ‘test particle” generates

nonsense.

3. CLASSICAL FIELDS from

MEASUREMENT ACCURACY

3.1 THE FEYNMAN-DYSON-TANIMURA PROOF

Tanimura (Ref.5) makes the following remarkable claims in his abstract:

--- uR.P.Feynman showed F. J.Dyson a proof of the Lorentz force law and the ho-

mogeneous Maxwell equations, which he obtained starting from Newton’s law of

motion and the commutation relations between position and velocity for a single

nonrelativistic particle. We formulate both a special relativistic and a general rela-

tivistic versions [sic] of Feynman’s derivation. Especially in the general relativistic

version we prove that the only possible fields that can consistently act on a quan-.

turn mechanical particle are scalar, gauge and gravitational fields. We also extend

Feynman’s scheme to the case of non-Abelian gauge theory in the special relativistic

context. ”

The formulation of the Feynman theorem as reconstructed by Dyson is simple.

In Tanimura’s notation:

Given

A single particle trajectory z(t) in terms of three mutually perpendicular co-

ordinates ~a(t),i,j,k c 1,2,3 subject to the constraints

10
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then

the force components Fk(z, i; t ) can be expressed in terms of two functions

E(z, t), B(z, t) which depend only the coordinate components x; andthe timet

and not on the

the component

velocity components ij; these functions are related to the force by -

equations

~a(x,~;t) = ~i(x,t) + ~:j~ < ~j~k(~,~) > (3.2)

and E, ~ satisfy the equations

div B = O; ~B/~t + rot E = O
. .

(3.3)

Here the Weyl ordering <> is defined by

1
‘-< ab >= ~[ab+ ha]; < abc >- ~[abc+ bca +

3.2 SCALE INVARIANT POSTULATES

The postulates can be made even simpler

The Feynman postulates are independent of or

cab + ach + cba + he], etc. (3.4)

~nce one invokes scale invariance.

linear in m. Therefore they can be

replaced by the scale invariant postulates

fk(x,~;t) = Xki [Xi, xj] = O; [xi)~j] = ~6ij (3.5)

where ~ is any fixed constant with dimensions of area over time [L2/T] and j~ has

the dimensions of acceleration [L/T2]. Keeping these postulates consistent with

the scale parameter c as the limiting velocity for information transfer can clearly

be done without breaking scale invariance. This removes the apparent paradox

noted by Dyson (Ref.

-the Galilean invariant

4) of being able to derive Lorentz invariant equations from

non-relativistic commutation relations.
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Theremaining physical point that needs to bemadeclear is that the ‘fields”

referred to in classical relativistic field theory are defined in terms oft heir action on

a single test particle, as we did in relating H to 4-velocity and radius of curvature

in our geometrical paradigm. Thus, if we measure the acceleration of that particle

in a Lorentz invariant way (force per unit rest mass) and the force per unit charge

is also defined by acceleration and the charge per unit rest mass of the test particle

is also a Lorentz invariant then our electromagnetic field theory itself becomes an

LT scale invariant theory. That is, once we replace the Feynman postulates by

(3.5) and define E(z, t) = E/Q = FE/m and B(z, t) = ~/Q = FB/m, we need

only derive the scale invariant version of equations (3.2), (3.3) obtained by the

obvious not ational change FI + f;, El + &~,B; + Bi. Extension to gravitation

makes more use of the concept of path and requires that the ratio of gravitational

to inertial mass of the test particle is also a Lorentz invariant.

“As noted in the introduction, Clive Kilmister objected strongly at ANPA 15

~~ the thesis presented in this paper. I hope to renew the discussion at ANPA

16. But first I will need him to separate his criticism of Tanimura’s proof from

his criticism of my generalization. So far as I know, no one hu faulted the formal

steps in Tanimura’s proof. It follows that my scale-invariant proof is just as valid as

Tanimura’s in a formal sense. I =sume that the acceptance of Tanimura’s paper by

Annals of-Physics requires Clive to take up other issues about that proof with the

author or the journal rather than with me. Otherwise, it appears that Clive must

either object to postulating the commutation relations of non-relativistic quantum

mechanics or the simple algebraic steps I have taken above to make them scale

invariant and consistent with the limiting velocity of special relativity or to my

standard use of the classical definition of field as the acceleration of a test particle

caused by that field.

- .-
-.
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3.3 MEASUREMENT ACCURACY AND SCALE INVARIANT

BRACKET EXPRESSIONS

Where Clive has valid objections is with regard to my various attempts to

establish scale invariant bracket expressions direct ly from operational arguments.

If he is willing to accept McGoveran’s ordering operator calculus, — which I

ww under the impression w= the case after sitting in on two day-long sessions

between Clive and David McGoveran in two separate years — a rigorous derivation

of scale invariant commutation relations from finiteness and discreteness already

exists. The proof starts by deriving the transport operator and establishes the

Lorentz transformations before going on to the bracket expressions!] Quantum

mechanics often is claimed to view measurement accuracy restrictions as the cause

or consequence of the commut at ion relations. This was extensively discussed by

-Heisenberg, Bohr and Einstein, so I thought I ww just spelling out something that

&usually taken for granted. I review briefly here what is needed for the Tanimura

proof and try to give it heuristic support.

Replacing ~j by ~j, to remove the implication that we are talking about deriva-

tives rather than finite differences, the essential equation we need to establish is

-. [Z;,Vj]= K6:j (3.6) -

where ~ is some constant proportional to Af2 /At. Here our finite measurement

accuracy ~sumpt ion takes the form that any dist ante measurement L can always

be represented by a finite integer (which is less in magnitude than some maximum

integer N picked in advance) times the shortest distance Al which can be me=ured,

directly or indirectly, using currently available technology. Since we impose the

scale invariant restriction Al = cAt, all times are also integers in units of At.

We take as our paradigm for a quasi-local measurement of position z and

velocity v= a counter telescope whose entrance counter is a dist ante z 1 = ct 1 =

-ml At from a reference clock and mirror and whose exit counter is a dist ante
--
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X2 = ct2 = cn2At from the same referents. Let the time interval between the two

sequential firings of the counter be ~ = (nl + n2 )At. Clearly, the length of the

telescope is L = X2 – xl = (n2 — nl )A4. Hence the velocity of the particle causing

the two firings is

L n2–nl
v==—=

T n1+n2c
(3.7)

Note that the two clocks have been synchronized by the Einstein convention so that

a light signal sent toward the mirror when the entrance counter fires and reflected

back will arrive at the second counter in coincidence with the second firing.

Our paradigm gives our velocity measurement a Lorentz invariant significance.

But this still does not allow us to asign an absolute meaning to both x and VZ. How

ever we use additional memurements to further localize x within the interval X2—xl,

.w.ecannot know its value to better than Al. The best we can do is to assign it to

s-me position which is ambiguous between x– c [xl, xl + Al, xl + 2A1, ...x2 – Al]

and z+ = x_+ Al. Between these two locations the velocity is, as measured locally,

+c. Thus, using only qumi-local information, the product “xvZ” is ambiguous

depending on whether we use x_ or x+. Defining the difference as the bracket

expression, and using c for VZ,we have that, for local memurements, the minimum

uncertainty is given by-.

If we wish to

[x, vz] E x+v=(t) – x-v.(t) = cAl - –[VZ, x] (3.8)

include finite rotations as well as finite velocity measurements,

it is convenient to define ~ as cAt/2m rather than cAl, but we will not discuss

this refinement here, as it is not needed directly in the Tanimura proof. What is

needed is the assumption that we can measure position coordinates independently

in three directions (within our integer restrictions), and hence that the ambiguity

between position and velocity measurements along

does not couple directly to these other directions.
--

any one of these directions

We can then claim that, at

14



least heuristically, our counter telescope paradigm

invariant significance to the two basic equations

[Zi,Xj] =0; [Zi,Vj] =

allows us to give relativistically

~bi,j (3.9)

3.4 ADDITIONAL ALGEBRAIC RELATIONS

Subject to our requirement of not going beyond the finite limits to which our

measurements can refer, the fact that the xl can be represented by integers, and the

~j by rational fractions, allows us to assume that, for ~, p constants subject to the

same restrictions and A, B, C G xl, ~j, where i, j c 1,2,3, the bracket expression

has the properties

[AA + p~, c] = ~[A, c] + p[~, c]---

[A, AB + PC] = ~[A, ~] + P[A, c] (3.10)

[A, p]= O

-.

The Tanimura proof refers to functions g(z, t) which are not functions of ~j and

accelerations ak (x, v; t) which are functions of velocity as well as position, but of no

“higher derivatives”. Since these are also subject to our finite integer and rational

fraction restrictions, we can assume that they are polynomials whose powers have

context sensitive restrictions. If n is the highest power of x which is allowed to

occur, then for any component

-This allows us to specify the usual symbol ~g(x, t)/~xk for all such functions we
--
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consider by the equality

[v~,g(z, t)]= –Kag/az~ (3.12)

Note also that

[z;, g(z, t)]= O ~ g(z, t) independent of vi (3.13) ‘

It remains to define the symbols [vi, ~j] and ak(z, v;t) in our context. Since

(within the restriction to polynomi~s mentioned above) we are now talking about

functions of x, v, and f, we can introduce the concept of a path

z(t) = (z;(t),~j(t), ~k(t);t) (3.14)

for the single particle we are considering. Then the bracket expressionwe derived

-aboveis equivalent to the definitions

---
~i(t + At) ~ xi(t) + ~i(t)At

[xi,Vj] s [Xa(t+ At)~j(t) - w~(t+ A~)~j(t)] (3.15)

= [X:Vj(t) – ZjVi(t)]S Kd:j
-.

Taking the obvious step of saying that if time changes by At, then

~j(t + At) = ~j(t)+ ajAt (3.16)

and defining

[vi, ~j] ~ ~i(t + At)~j(t) - ~j(t + At)~i(t)

we have that

[vi, ‘j] + [~i, aj] = O (3.17)

-.. Now that we know what we mean by [v~,oj] it isstraightforward to establish
--
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the Jacobi identity

[A,[~,c]]+ [~,[c,A]]+ [c,[A, ~]]= o (3.18)

for the symbols A, B, C E x;, ~j. The same type of argument males it easy to

establish the fact that, in our context

g~(x,t) = K-16ij~[Vi,Vj] *

. .

It is then straightforward to follow through the steps of the Tanimura proof, and

-his generalizations, as formal algebraic derivations.

.-—

4. DETERMINISM FROM DECOHERENCE

We summarize the results of Chapter 3 by the conclusion that we can always

attribute the acceleration of a single test particle to the classical (electromagnetic

and gravitational) fields provided only that:

a) Newton’s second law holds in the sense that the acceleration of a single particle

is a function only of position, velocity and time.

b)

c)

c ~ 2gg 7g2 458 m see–l is the limiting velocity for

Kepler’s second law holds in the finite and discrete

information transfer.

sense that the line from a

center to a particle moving with constant velocity past that center sweeps out an

area per unit time which is an integer times some appropriate constant K. [This

point is discussed more fully in Ref. 6 and elsewhere[lo’ll] .]

d) The shortest length interval we can measure is Ae and the smallest time interval

‘W can measure is At.--
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e) Our length and time units are subject to the scale invariant constraints

Ae ~ Ae2
=; —=2T

cAt ~At

j) The charge per unit mass jor the test particle whose acceleration defines the -

electromagnetic field and the ratio oj gravitational to inertial mass jor the test

particle whose acceleration defines the gravitational field are both invariant under

the finite and discrete Lorentz boosts and rotations our finite measurement accuracy

allows us to specijy.

Although our derivation of the classical field equations and the Lorentz force

law uses finite differences, the temptation is almost irresistible to go to the con-

tinuum limit and interpret the result as a local, deterministic theory embedded in

the continuum space-time of special relativity, or for gravitation to go on to the

curved space interpret at ion. Even in nineteenth century physics this step has its

~~oblems. Given the field, the trajectory of the test-particle is determined, or given

the trajectory, the field emitted by the test particle is determined. And given a

free space field distribution, the propagation of this field forward in time can be

deterministically computed (if one accepts continuum mathematics as valid). But

this works only when (a) the stability of the test particle is assumed from outside

the classical theory; (b) the reaction of the field produced by the test particle back

on the particle is ignored (This “self-energy” is infinite and classically cannot be

renormalizes.); (c) for two or more particles the reaction of the field generated by

the second particle back on the first is ignored; ... and so on. In other words, the

theory is locally deterministic only if sources and sinks of the radiation are treated

as incoherent. In this sense, we argue that the classical determinism is, even in its

own terms, a decoherent approximation.

Wheeler and Feynman attempted to meet this problem back in the 1940’s

by making the sources and the sinks of all fields coherent and replacing the field

by relativistic action-at-a-distance. I intend, on another occasion, to see if their

~hory could be reconstructed from the finite and discrete starting point used in
--
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this paper. But even without this detailed development, I trust I have made it

clear that classical local determinism always implicitly assumes decoherence.

5. CHAOS FROM DETERMINISM

A great deal of attention is now being paid to the numerical solution of classi-

cal, determinist ic equations of various types. It turns out that the solutions of these

equations in almost all cases are chmtically unstable in the sense that even when

the trajectory in phwe space is bounded for a while, successive iterations of the

equations produce trajectories whose depart ure from the early motion grows expo-

nentially and can be characterized by a Liapunov exponent greater than unity. We

. . can take this behavior as one definition of what we mean by chaos. The equations

for classical fields we have derived from measurement accuracy are no exception to

-this generalization.

--- A mathematically well studied example is the restricted three body problem in

which the test (or “third” ) particle has negligible mass. We consider the case in

which the third particle is launched along the axis through the center of mass per-

pendicular to the plane containing two massive particles rotating under Newtonian

gravity about that center. The position on that axis and the velocity along that

axis which initiates the motion are specified as the initial “boundary condition.

Theg: (I quote[12])

“...In particular, the following remarkable theorem can be proved. Let tl, t2...be

the times at which the particle intersects the plane of motion of the other two

particles. Let Sk be the largest integer equal to or less than the difference between

tk+l and tk times a constant. [The constant is the reciprocal of the period of

the motion of the two particles in the plane.] Variation in the Sk’s obviously

me~ures the irregularity in the periodic motion. The theorem, due to the Russian
[13]

mathematicians Sitkinov
[14]

and Alekseev
[15] .

as formulated in Moser, 1s this.

THEOREM 5.

-too large, there

Given that the eccentricity of the elliptic orbits is positive but not

exists an integer. say a, such that any infinite sequence of terms
--
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Sk with Sk ~ Q, corresponds to a solution of the deterministic differential equation

governing the motion of the third particle.n

with the corrolary

“ CORROLARY. Any random sequence of heads and tails corresponds to a solution -

of the deterministic differential equation governing the motion of the third particle.”

In other words, if such a system could be constructed, it would provide a perfect

random number generator!

The fact is that practically dl solutions of classical, ‘deterministic” equations

are chaotic in the sense that one must supply as much information in the boundary

conditions as the “prediction” is supposed to yield. This clearly vitiates the con-
. .

cept of “determinism” as usually employed when physics is invoked to support the

philosophical concept that goes by that name. The situation is sometimes summa-

-rize-d by the paradoxical phrase “chaotic determinism”. However, if our analysis

i; correct, the physical situation is somewhat subtler than this. The deterministic

equations for the motion of a test particle were derived initially by postulating a

finite measurement accuracy. Hence, boundary conditions which violate this as-

sumption because of their precision are inconsistent with the unrealizable precision

required to obtain chmtic predictions. This dissolves the phenomenon of “chaotic

determinism” into an artifact produced by assuming precise classical equations

and-precise boundary conditions which ignore the physical necessity of measuring

particle positions and velocities.

We emphasize that our argument up to this point invokes only “classical”

physics and measurement accuracy. Although we make use of a small number of

algebraic relations which would not have occurred to us had we not been guided by

experience with quantum mechanics [and bit-string physics!], no use is made of op-

erators, Hilbert space, Planck’s constant, or of any of the physical phenomena that

led to the development of quantum mechanics, or of any of the conceptual baggage

that the historical process which led to the construction of quantum mechanics

-bFought in its train. Fixed meuurement accuracy is enough to make “cl~sical
--
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physics” non-commutative — viz finite rotations of a rigid body — independent of

any quantum considerations.

We are not alone in seeing the relevance to the foundations of quantum mechan-

ics of recent developments in classical physics. For example Macauley ’16]remarks

that

‘...Born and Heisenberg argued strongly that physics should not be based upon

nonobservable concepts— because of this , Max Born argued for the elimination

of the continuum concept from physics. By restricting to computable numbers in

classical dynamics, we take a small step in that direction. It means that formal

Hilbert space theory cannot be the final foundation for quantum mechanics, be-

. . cause Hilbert space is built on the generalization to function space of the idea of

the continuum, the completeness of the real number system (a space is complete

whm all the limits of all the convergent sequences in the space also belong to the

~ace). But this introduces noncomputability into the foundations of quantum

mechanics, because almost all functions that can be defined are noncomputable

(see Turing, 1937).”

6. CONCLUSIONS

We claim by now to have made our case that modern work on fractals and

chaos theory has already removed the presumption that classical physics is “de-

terministic”. Further, we claim that in so far as classical relativistic field theory

(i.e. electromagnetism and gravitation) are scale invariant, they are self-consistent

only if the idea of “test-particle” is introduced from outside the theory. Einstein

spent the l~t years of his life trying to use singularities in the metric as “parti-

cles” or to get them out ofthe non-lineaqrities in a grand unified theory — in vain.

So classical physics in this sense cannot be the fundamental theory. However, we

claim to have shown that if we introduce a “scale invariance bounded from below”

%y measurement accuracy, then Tanimura’s generalization of the Feynman proof
--
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as reconstructed by Dyson allows us to make a consistent classical theory for de-

coherent sources and sinks. Restoring coherence to classical physics via relativistic

action-at-a distance is left as a task for the future.

&elativistic quantum mechanics, properly reconstructed from a finite and dis- -

crete basis, emerges in much better shape. The concept of ‘particles” has to

be replaced by NO-YES particulate events, and particle-antiparticle pair creation

and annihilation properly formulated. Much of the necessary work has, as I have

claimed for some time, already been accomplished by McGoveran and myself. The

breaking of scale invariance at hdf the electron Compton wavelength tells us where

classical coherence and decoherence have to give way to quantum coherence and

decoherence. The transition is smooth from the point of view of measurement

accuracy. Of course much still needs to be done, but that is what ANPA is all

about.
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FIGU~ CAPTIONS

4

1) Meuurement of wherenm and dmherenm of de Broglie waves using a
counter telescope, magnetic sel=tor, and a double sfit with a path exten-
der in one arm.
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