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ABSTRACT

We have studied the measurement of �s using exact second order QCD matrix element

calculations of jet rates in e+e�! hadrons. We explain the dependence of �s(M
2
Z),

measured by experiments at the Z0 resonance, on the choice of renormalisation scale

in terms of the functional form of the three-jet matrix elements. We �nd that only

a restricted domain of yc, �MS
, and scale gives a perturbation series which is well

convergent, and that this domain is di�erent for the various jet algorithms in current

use. Small scales yield pathological perturbation series for any reasonable value

of �
MS

.
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1. Introduction

Quantum chromodynamics (QCD) is the accepted theory of strong interactions.

Since it was �rst developed more than 20 years ago [1], QCD has been tested

widely against data from many hard processes, and has been generally successful

in explaining the features of the data [2], both qualitatively and quantitatively, up

to the level of about 5{10% in accuracy. In many processes this accuracy is limited

presently by the complexity of calculating observables to high order in perturbation

theory, and in the non-perturbative regime.

In the case of e+e� annihilation, perturbative QCD calculations have been

performed exactly up to third order in the strong coupling �s for the hadronic

cross-section ratio R [3] and the � hadronic decay ratio R� [4]. However, observables

related to the structure of hadronic events, such as jet rates [5] or thrust [6],

have been calculated exactly only up to second order in perturbation theory [7,8].

These calculations have been used extensively by experiments at the PETRA,

PEP, TRISTAN, SLC, and LEP colliders for extracting measurements of the strong

coupling �s [2].

One important consequence of truncating the perturbation series at low order

is that there is a residual dependence on the QCD renormalisation scale �. This

parameter is formally unphysical and should not enter at all into an exact in�nite

order calculation. Within the context of a �nite order calculation for a particular

process the de�nition of � depends on the renormalisation scheme employed,
�
and its

value is in principle completely arbitrary. This renormalisation scale ambiguity has

been discussed extensively, and several methods have been proposed which resolve the

� Here we consider calculations performed in the modi�ed minimal subtraction scheme (MS

scheme) [9].
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ambiguity by choosing optimised scales according to di�erent prescriptions [10,11,12].

These methods have not been without controversy [13,14]. Experimental groups have

therefore adopted a pragmatic approach, usually avoiding the optimised scales, but

taking into account the change in the QCD predictions when � is varied across a

range of values.

In Section 2 we summarise the experimental approach to �s determination by

�tting O(�2s) QCD predictions for hadronic event shapes in e+e� annihilation to

data. We illustrate the complicated dependence of the �tted �s(M
2
Z) values on the

choice of renormalisation scale. In Section 3 we take jet rates as an example and

review the form of the QCD calculations. We show, by comparing with recent data

from the SLD collaboration, how this apparently complex �s(M
2
Z) behaviour can be

explained simply from the algebraic structure of the calculations. In Section 4 we

study the range of applicability of the perturbative calculations of jet rates. Finally,

in Section 5 we present a summary and concluding remarks.

2. The Experimental Approach

Consider the measurement of �s by comparing O(�
2
s) calculations of event shape

observables in e+e�! hadrons with data at the Z0 resonance from SLC and LEP [2].

The experimental procedure is as follows: 1) the measured event shape distributions

are corrected for detector bias e�ects such as acceptance, resolution, and ine�ciency;

2) the data are further corrected for the e�ects of hadronisation using various models

[15] to arrive at `parton-level' distributions; 3) the perturbative QCD calculations

are �tted to the data by varying the strong interaction scale �
MS

�
and minimising

� Unless stated otherwise, we always refer to �
MS

for �ve active quark avours.
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�
2, for �xed values of � chosen within some ad hoc range;

1
4) the resulting pairs of

�
MS

,� values are converted into �s(M
2
Z) using the solution [16] of the renormalisation

group equation; 5) for each observable a central value and theoretical uncertainty of

�s(M
2
Z) are quoted by taking the average and spread of the results in the chosen

range of �; 6) a grand average over the results from several observables is taken.

As a concrete example we show in Fig. 1 results from the SLD collaboration,

taken from [17]. Values of �s(M
2
Z) (Figs. 1(a) and (c)) and �2 per degree of freedom,

�
2
dof , (Figs. 1(b) and (d)) are shown from �ts of O(�2s) QCD to SLD data in terms of

jet rates (Section 3). The curves join values of �s(M
2
Z) or �

2
dof from �ts to determine

�
MS

at discrete values of the renormalisation scale �, plotted on the horizontal

axis as f = �
2
=s, where s is the centre-of-mass energy. The curve for each jet

algorithm (Section 3) has the following qualitative characteristics:
2

1) the �tted

�s(M
2
Z) depends strongly on the choice of f ; 2) at high f , �s increases monotonically

and, for some algorithms, the �t quality worsens slightly as f is increased; 3) across

a broad range of medium f the �t quality is reasonable and �s(M
2
Z) changes slowly

with f ; 4) at lower f the �ts are poor, �2dof changes rapidly, and there is a pronounced

maximum in �s; 5) below this maximum small values of �s are preferred, although the

�t quality is very bad. Whilst the behaviour is qualitatively similar for each algorithm,

numerically there are large di�erences between algorithms, with a tendency for the

�s values to diverge for f � 0.1. For example, at f = 1, �s(M
2
Z) ranges from 0.109

(G algorithm) to 0.137 (E algorithm), a di�erence which is far larger than the (highly

correlated) statistical errors on the measurements.

1 Some experiments have also performed two-parameter �ts by varying �
MS

and �

simultaneously; these will be discussed in Section 4.
2 As Figs. 1(c) and (d) are rather complicated, it may be instructive to look �rst at Figs. 1(a)

and (b).
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Such complicated behaviour is not restricted to �s determined from jet rates.

Similar �gures for other event shapes, in addition to jet rates, may be found in

Refs. [18] and [19]. This situation represents a serious problem for making accurate

determinations of �s by these techniques; not only is the �tted �s highly correlated

with the choice of renormalisation scale, but even at some arbitrarily chosen scale

di�erent observables yield values of �s di�erent from one another by more than

the experimental errors. Here the experimentalists' pragmatic approach involves

assigning to each observable an average �s(M
2
Z), usually taken at the midpoint of

the extrema of �s(M
2
Z) in some chosen range of � (see e.g. Figs. 1(a) and (c)),

and a scale uncertainty representing the di�erence between the average value and the

extrema. Only if the scale uncertainties are taken into account do the �s(M
2
Z) values

extracted from di�erent observables agree within errors [19].

This procedure has been criticised [20], and it is certainly not unique. Each

experiment has performed a similar analysis to extract �s from event shapes, and

each has adopted similar, but di�erent, choices for the observables used, the range

of �, and the averaging method. This has naturally led to a variety of estimates of

the theoretical uncertainty, which is larger than the experimental errors, and hence

to apparent di�erences in overall precision on �s(M
2
Z) measurements (Table 1). It is

apparent that although some experiments may quote theoretical uncertainties as low

as 6%, a sceptical observer [26] could be justi�ed in concluding from the ensemble

of results that the precision of these �s determinations is realistically no better than

about 10%.

In summary, results similar to Fig. 1 have been presented for a spectrum of event

shapes used to determine �s in e
+e� annihilation. The behaviour of �s(M

2
Z) and �

2
dof

as the renormalisation scale � is varied is non-trivial and leads to large theoretical
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Table 1. �s(M
2
Z) and errors from O(�2s) QCD �ts to jet rates.

Errors

Experiment Algorithms �s(M
2
Z) Exp. Theor.

�
Reference

SLD D,E,E0,P,P0,G 0.118 �0.004 �0.010 [17]

ALEPH E0 0.121 �0.004 +0:010
�0:014 [21]

DELPHI E,E0,P 0.114 �0.005 �0.012 [22]

E0 0.118 �0.001 �0.009 [18]

L3 E0 0.115 �0.005 +0:012
�0:010 [23]

OPAL E,E0,P,P0 0.118 �0.003 �0:007 [24]

D,E,E0,P 0.124 �0.003 +0:010
�0:008 [19]

D 0.119 �0.004 �0:009 [25]

�The theoretical uncertainty includes a contribution from the modelling of

hadronisation corrections; this is typically small compared with the scale

uncertainty.

uncertainties which dominate the error on the measurement of �s(M
2
Z). However, we

are not aware of any detailed investigation of the form of the dependence of �s(M
2
Z) on

scale extracted from the data. In the next section we present such a study for the

case of jet rates.

3. Study of the Measured �s(M
2
Z) Dependence on Renormalisation Scale

3.1 O(�2s) Calculations of Jet Rates

Jet structure in hadronic events may be de�ned using iterative clustering

algorithms in which a measure yij , such as invariant mass-squared/s, is calculated

for all pairs of particles i and j, and the pair with the smallest yij is combined into a

single `particle'. This process is repeated until all pairs have yij exceeding a value yc,

and the jet multiplicity of the event is de�ned as the number of `particles' remaining.

Various recombination schemes and de�nitions of yij have been suggested [27]. We
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have applied the `E', `E0', `P' and `P0' variations of the JADE algorithm [28] as well

as the more recently proposed `Durham' (`D') [29] and `Geneva' (`G') [27] algorithms,

all of which are collinear and infra-red safe. These jet algorithms may be applied

to both experimental measurements of hadronic events and QCD calculations at the

parton level. The n-jet rate Rn(yc) is then de�ned as the fraction of the total event

sample classi�ed as n-jet.

For the three- and four-jet rates, calculated up to O(�2s) in QCD, we have [8]

R
i
3(yc;�MS

; f) ' �s(�MS
; f)Ai(yc) + �s

2(�
MS

; f)(Ai(yc)2�b0lnf + B
i(yc)) (1)

R
i
4(yc;�MS

; f) ' C
i(yc)�s

2(�
MS

; f); (2)

where �s � �s=2�; b0 = 23/12� for �ve active quark avours; f � �
2
=s; i = D, E,

E0, P, P0, G, and A
i(yc) and B

i(yc) are parametrised in Ref. [27].
�
Throughout this

paper we use s = MZ . To the same order in perturbation theory the two-jet rate

may be derived from the unitarity constraint

R2 = 1�R3 �R4: (3)

In practice �s is determined experimentally by �tting to the distribution of the

quantity [30]:

D2(yc) � fR2(yc)�R2(yc ��yc)g=�yc (4)

thereby avoiding point-to-point correlations between jet rates at di�erent yc values.

D2 is then calculated to O(�
2
s) in QCD via Eq. (3). This is only a good approximation

� The expressions on the right hand sides of Eqs. 1 and 2 are actually normalised to �0, the
lowest order cross-section for e+e�! q�q . Before comparing with experimental data the right
hand side should be divided by the factor (1+�s). In order to simplify the algebra and clarify
the following discussion we have neglected this factor. It amounts to a correction of about 4%
[2] to the calculation of R3 and R4 and is properly considered by the experimentalists when
they perform their �ts.
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in the region of phase space where the R�5 are small, i.e. away from small values

of yc. Fits to the data are usually restricted to the range of yc [17] for which the

measured R4 < 1%. The upper yc �t boundary can be chosen to be the kinematic

limit for (massless) 3-jet production, yc = 0.33. From now on we call this range �i
yc;

it is in general di�erent for di�erent jet algorithms i.

We now investigate the position of the stationary points of D2(yc 2 �yc) with

respect to variation of f . Given that R4 is required to be smaller than 1%, it is clear

from Eqs. (3) and (4) that we may do this by considering the stationary points of

R3. The values of f at these points, f is, are the solutions of
1

@R
i
3

@L
(yc;�MS

; f) = A
i(yc)

@�s

@L
+2�s

@�s

@L
fB

i(yc)+2�b0A
i(yc)Lg+�s

22�b0A
i(yc) = 0;

(5)

where L � lnf , and [16]

@�s

@L
= �

2@�s

@�2
= �2�(b0�s

2 + 2�b1�s
3 + : : :); (6)

Equation (5) can be solved numerically for f is(�MS
; yc). We consider �rst the Durham

algorithm and show in Fig. 2(a) the value of fDs (yc) at �MS
= 200 MeV. It can be

seen that for yc 2 �D
yc, f

D
s depends only weakly on yc: 10�2 < f

D
s < 3 � 10�2.

From Eqs. (3) and (4) we therefore expect DD
2 to have stationary points at similar

values of f . By taking the second derivative of RD
3 with respect to L one can show

that the stationary point is a maximum.

1 f is coincides with the `optimised' scale resulting from the `PMS' prescription [12].
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3.2 Comparison with Data

We show in Fig. 3 the calculations of DD
2 (�MS

; f) for yc = (a) 0.03, (b) 0.10,

and (c) 0.28, which span the range �D
yc [17]. In each case the curves show D

D
2 (f)

for six values of �
MS

in the range 10 � �
MS

� 800 MeV. Maxima in D
D
2 are

apparent at f close to the f
D
s shown in Fig. 2(a). Also shown as bands are the

values of DD
2 measured by the SLD Collaboration [17]. The qualitative features are

the same at each yc. The calculations pass through the experimentally allowed region

for �
MS

� 200� 150 MeV. Within this region, at f values just above or below f
D
s

larger values of �
MS

are needed to �t the data. This gives rise to a minimum point

in �s(M
2
Z) at f � f

D
s (Fig. 1(a)).

As f increases above fDs , successively larger �
MS

values are needed to �t the

data (Fig. 3). This translates into the monotonic rise in �s(M
2
Z) for f > 10�2 seen

in Fig. 1(a). As f decreases below f
D
s the behaviour in Fig. 3 is rather complicated.

For 10�3 < f < f
D
s larger �

MS
values are needed to �t the data, but for f < 10�3

the situation reverses; successively smaller �
MS

values are required to make the

calculation approach the data from below, but it always falls well short, even for

�
MS

� 10 MeV. This explains the rise of �s(M
2
Z) for 10

�2
> f > 10�3 and the

subsequent rapid fallo� of �s(M
2
Z) below f � 10�3 (Fig. 1(a)), and the rapidly

deteriorating �t quality for f < 10�3 (Fig. 1(b)). The inability of the calculation to

describe the data in this region is due to the fact that the next-to-leading term in

R
D
3 (Eq. (1)) is large and negative for f < 10�3, and monotonically decreases as f

decreases. The only way to compensate for this is to make �
MS

very small. For a

given �
MS

, RD
3 (and hence DD

2 ) will ultimately become negative at su�ciently small

scales (Fig. 3), which is an unphysical result.
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We have repeated this study for the E, E0, P, P0 and G jet algorithms. For each

case i, f is, the calculated value of f at the stationary point of Ri
3, is shown in Fig. 2(b).

The dependence of f is on yc is weak, except near the boundaries of phase space. For

yc 2 �i
yc, comparison of f is with f at the minimum of �s(M

2
Z) versus f (Fig. 1(c))

shows good agreement. We have veri�ed that, for each algorithm, the behaviour of

�s(M
2
Z) in Fig. 1(c) and �

2
dof in Fig. 1(d) is explained in qualitatively the same

fashion as for the D algorithm (Figs. 1(a) and (b)). The large �2dof values at small

scales (Figs. 1(b) and (d)) indicate that, in these domains, the O(�2s) calculations

cannot be compared meaningfully with the data; this is due to the breakdown of the

perturbative calculation of R3. It is interesting to note that the upper f bound on

these domains is algorithm-dependent.

4. Reliability of the Perturbative Approach

We now investigate more generally the reliability of the perturbative approach

to the jet rates calculations. One expects a �nite order perturbative calculation to

provide a good approximation to the `exact' answer if successive terms in the series

decrease in magnitude as the order increases, viz if the perturbation series appears

to be converging. In the present case only the �rst two terms of the series for R3 are

known. We de�ne r as the ratio of the next-to-leading (NLO) to leading order (LO)

contributions to R3. In general r depends on yc, �MS
and f . For given (yc, �MS

, f)

the size of r gives an indication of the reliability of the calculation. If jrj >� 1, the

perturbation series shows no sign of converging, so one has no reason to hope that the

uncalculated higher order terms are small. Furthermore, if r < �1, R3 < 0, which is

unphysical. Equivalently, a given range of r de�nes a domain in (yc, �MS
, f) within

which the calculation is convergent to the stated level.
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In Fig. 4(a) we show r(f) for the E, E0 and P algorithms and �
MS

= 200 MeV;

in each case the band indicates the spread of r(f) for yc 2 �yc. It can be seen that r

increases monotonically with f , and that at a �xed scale the value of r is di�erent for

each algorithm. Results for the D, P0 and G algorithms are similar but are not shown

for clarity. For either very large (f � 1) or very small (f � 1) scales the magnitude

of r may not be small compared with unity, implying that perturbation theory cannot

be reliably applied at such scales. In Fig. 4(b) we show the dependence [16] of �s on

f for the same value of �
MS

; for f < 3� 10�5 the coupling constant exceeds unity.

In an attempt to quantify this discussion we choose ranges of r such that jrj � �

and calculate the corresponding ranges of f(�
MS

) for which this condition is satis�ed

for all yc 2 �yc . These ranges are shown in Fig. 5 for � = (1) 0.0,
�
(2) 0.25, (3)

0.50 and (4) 1.0. A striking feature of Fig. 5 is that for a given condition, and at a

chosen �
MS

value, each algorithm has a di�erent allowed range of f . For example,

for � = 0:25 the allowed range for the E algorithm lies outside the allowed ranges for

the other algorithms. Note also that � < �1 for f <
� 10�5 with the E algorithm but

for f <
� 10�3 with the P algorithm. Great care must therefore be taken to use the

O(�2s) calculation for a particular jet algorithm only within a sensible (yc,�MS
,f)

domain. In particular, the E algorithm shows best convergence for small scales centred

around f � 10�4, but scales signi�cantly smaller than f � 10�3 yield pathological

perturbation series for the other algorithms for any reasonable value of �
MS

.

Finally, in light of these obervations it is interesting to examine recent

experimental determinations of �s(M
2
Z) from measurements of jet rates at the Z

0

(Table 1). The SLD Collaboration used all six jet algorithms discussed here and

� The scale de�ned by this criterion corresponds with that resulting from the `FAC' scale

optimisation prescription [11]
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found �
MS

= 230�130 MeV [17]. They quoted their results by considering measured

values of �s(M
2
Z) in the scale range m2

b=M
2
Z < f < 4 (see Fig. 1), where mb is the

b quark mass. This lower bound conveniently allows �
(5)

MS
for �ve quark avours to

be used consistently throughout the analysis. From Fig. 5, the condition jrj < 0.5

is satis�ed for the D, E0, P, P0 and G algorithms. For the E algorithm, however,

r > 0:5 for most of their range of f .

The OPAL Collaboration has studied the E, E0, P and P0 algorithms [24,19], in

addition to the D algorithm [19,25]. They estimated the scale uncertainty in their

�s(M
2
Z) measurement by considering f0 < f < 1, where f0 is the scale resulting from

a simultaneous �t of both �
(5)

MS
and f to their data, but in a range of yc extended

down to values such that the measured R5 � 1%. The upper limit on f is similar to

the SLD choice, but the lower limit is not always the same. Their �tted (�
(5)

MS
, f0)

values for the D, E0, P and P0 algorithms satisfy jrj < 0.25, but those for the E

algorithm (111 MeV, 4 � 10�5) [24] lie outside the r < �0:5 domain for yc below

0.04, which is just outside their �t region. For 0:015 < yc < 0:04, 0:54 > R
E
4 > 0:08,

i.e. RE
4 is sizeable relative to R

E
3 , and has only been calculated at leading order.

These large values of RE
4 explain the precipitous fall of the QCD calculation of DE

2

in the region yc < 0.03 shown in Fig. 3 of Ref. [24]. Furthermore, in considering

scales smaller than f = m
2
b=s (m

2
c=s) one should probably use �

(4)

MS
(�

(3)

MS
), the QCD

interaction scale for 4 (3) active quark avours, respectively, and then translate [16]

the �tted values to �
(5)

MS
.

The L3 and DELPHI Collaborations studied the E0 algorithm within the scale

range 10�3 � f � 1 and found 70 <� �
(5)

MS
<
� 370 MeV [23,18], satisfying jrj < 0:5

(Fig. 5).
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In summary, the O(�2s) QCD calculations of jet rates have been employed in

domains of (yc,�MS
,f) where the magnitude of the next-to-leading order contribution

to the three-jet rate is typically not small, but is less than half the leading order

contribution. The only exception is for calculations using the E algorithm, in

which the relative contribution of the next-to-leading term is larger than 50% for

�
MS

> 150 MeV and f > 10�2, for example, a domain which has been included in

�s(M
2
Z) measurements presented by OPAL and SLD. The resulting �s(M

2
Z) values

have a stronger dependence on the renormalisation scale than those measured using

the other jet algorithms.

5. Summary and Conclusions

We have studied the application of O(�2s) perturbative QCD calculations of

jet rates in e+e� annihilation to the measurement of the strong coupling �s. We

have explained the non-trivial dependence of the measured values of �s(M
2
Z) on the

choice of renormalisation scale in terms of the structure of the calculations. Similar

dependences have been presented [18,19] for other e+e� event shapes, and it is likely

that their explanation is similar to the one we have described for jet rates.

We have studied the convergence properties of the O(�2s) perturbation series

for the three-jet rate in terms of variation of the jet resolution parameter yc, the

renormalisation scale factor f , and the strong interaction scale �
MS

. We found that

the magnitude of the next-to-leading contribution can be as large as (larger than)

50% of the leading contribution in some parts of the domains of (yc,�MS
,f) used to

measure �s with the D, E0, P, P0, G (E) jet algorithms, respectively. The D, E0, P,

P0 and G algorithms have pathological perturbation series for any reasonable value of

�
MS

at scales signi�cantly smaller than f � 10�3. Choosing the same range of f over
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which to measure �s(M
2
Z) for all algorithms can be dangerous, since the perturbation

series does not necessarily show the same degree of convergence in each case.

Finally, we note that progress has recently been made in the form of `resummed'

QCD calculations of event shape distributions in e+e� annihilation [31]. So far, only

the D algorithm has been found to have the necessary properties which allow the

resummation technique to be used to calculate jet rates complete at leading, and

partially at next-to-leading, order in ln(1=yc), up to all orders in �s [32]. The resulting

all-orders calculation, valid in the region where �sln(1=yc) � 1, may be combined with

the �xed second order results discussed here to yield improved predictions for multi-jet

rates at low yc. Clearly similar caution must be exercised with these new procedures

to ensure that the perturbative approach is reliable; this is discussed further in [17].

We thank our colleagues in the SLD experiment for support for this analysis. We

also thank S. Bethke, S. Brodsky, Z. Kunszt, B. Lampe and B.R. Webber for helpful
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Figure Captions

FIG. 1. (a) �s(M
2
Z) and (b) �2dof from O(�2s) QCD �ts to jet rates in Z0

! hadrons,

calculated with the Durham algorithm (see text). The band indicates the size of

statistical errors on the SLD measurements. (c), (d) are as (a), (b) for jet rates

calculated according to the E, E0, P, P0 and G algorithms.

FIG. 2. The value of the renormalisation scale factor at the stationary point of R3,

fs(yc), for the (a) D, (b) E, E0, P, P0 and G jet algorithms, and �
MS

= 200 MeV.

The arrows indicate the range �i
yc for each algorithm i (see text).

FIG. 3. D2(�MS
; f) calculated with the Durham algorithm for yc = (a) 0.03, (b)

0.10, (c) 0.28. In each case six curves are shown for the values of �
MS

indicated.
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The shaded bands represent the value of D2 measured by SLD, including the one

standard deviation uncertainty.

FIG. 4. (a) The ratio r(f) (see text) calculated for the E, E0 and P jet algorithms

at �
MS

= 200 MeV. The bands indicate the range of r corresponding to yc 2 �i
yc

for each algorithm i. (b) �s(f) for �MS
= 200 MeV.

FIG. 5. The range of f within which jr(�
MS

; f)j � � for the (a) D, (b) E, (c) E0, (d)

P, (e) P0 and (f) G jet algorithms. In each case the curves mark the boundary of the

f range for � = 0, 0.25, 0.5 and 1.0.
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