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Abstract

A first measurement of the longitudinal asymmetry of deep-inelastic scattering of

polarized electrons from a polarized 3He target at energies ranging from 19 to 26 GeV

has been performed at SLAC. The spin-structure function of the neutron gn1 has been

extracted from the measured asymmetries allowing for a test of the Ellis-Jaffe and

Bjorken sum rules. The Quark Parton Model (QPM) interpretation of the nucleon

spin-structure function is examined in light of the new results.

Introduction

In his pioneering work of 1966 and 1970, Bjorken [1] suggested that large

asymmetries could be observed in deep-inelastic polarized-electron scattering off

polarized-nucleon targets. Furthermore, he derived a fundamental relation known as the

Bjorken sum rule. The test of the latter, described by Feynman [2] as one that would

have a decisive influence on the future of high-energy physics, requires a measurement

of both proton and neutron spin-structure functions. In the early seventies—given the

perceived technical difficulties of polarized target developments—a measurement using a

polarized-proton target was viewed as feasible, while that of a polarized-neutron target

was, if not impossible, at least a very complicated task. Theoretical work initiated by

Gilman [3], within the framework of SU(3) symmetry, focused on writing separate sum

rules for the proton and the neutron. It was further developed by Ellis and Jaffe [4],

who assumed that the strange sea in the nucleon was unpolarized, and derived what is

known as the Ellis–Jaffe sum rule (E–J) for the proton and the neutron.
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Fig. 1. World results for proton asymmetries Ap1, and the QPM model [10]

Two early experiments performed in 1976 (E–80) [7] and in 1983 (E–130) [8] by the

Yale–SLAC collaboration at SLAC on a polarized proton target confirmed the suggestion

of Bjorken giving grounds to the naive picture of the QPM. While a good agreement with

the QPM prediction was observed in the x region dominated by the valence quarks, no

comparison was possible in the region of sea quarks due to a limited kinematic coverage.

A first experimental test of the E–J sum rule found it to be fulfilled, but with a large

uncertainty due the extrapolation uncertainty of Ap1 in the unmeasured low x region.

The debate on the detailed spin structure of the proton was revived in 1988, when

the European Muon Collaboration (EMC) [9] reported new results on polarized muon

scattering off a polarized proton target extending the measurements ofAp1 to low values of

x. An evaluation of the E–J sum rule on the proton using the new proton data displayed

a two standard and a half deviation from the predicted value. A QPM analysis of the

spin structure of the proton in terms of its flavor components revealed a small net total

spin contribution of the quarks, with a large negative strange-sea quarks component. It

was clear that more experiments were needed to set limits on various speculations arising

from these results, and to im prove our understanding of the nucleon spin structure. The

world proton asymmetry data are summarized in Fig. 1, with a QPM prediction [10]

consistent with the E–J sum rule.

We first define the quantities of physics interest, following with a description of the
3He (neutron) spin structure function measurement carried out at SLAC by the E–142

collaboration. Finally, in light of the new results, we examine the spin structure of the



  

nucleon, and present the crucial test of the Bjorken sum rule with a coherent set of

assumptions.

Asymmetries and Sum Rules

In deep-inelastic scattering, the measured longitudinal asymmetry A‖ can be

determined experimentally by measuring the difference over the sum in cross sections

of polarized electrons on polarized nucleons between states where the spins are parallel

and antiparallel [5,6],

A‖ =
σ↑↓ − σ↑↑
σ↑↓ + σ↑↑

=
1− ε

(1− εR) W1(Q2, ν)
[M(E + E′cosθ) G1(Q

2, ν)−Q2G2(Q
2, ν)] .

(1)

Here σ↑↑ (σ↓↑) is the inclusive d2σ↑↑/dΩdν (d2σ↓↑/dΩdν) differential scattering cross

section for longitudinal target spins parallel (antiparallel) to the incident electron spins.

A corresponding relationship exists for scattering of longitudinally polarized electrons

off a transversely polarized target where a transverse asymmetry is defined [6]:

A⊥ =
σ↓← − σ↑←
σ↓← + σ↑←

=
(1− ε)E′

(1− εR) W1(Q2, ν)
[(MG1(Q

2, ν) + 2EG2(Q
2, ν)) cosθ] , (2)

where

R =
W2

W1

(
1 +

ν2

Q2

)
− 1 ; ε =

[
1 + 2

(
1 +

ν2

Q2

)
tan2 θ

2

]−1

. (3)

Here σ↓←(σ↑←) is the inclusive scattering cross section for beam-spin antiparallel

(parallel) to the beam momentum, and for target-spin direction transverse to the beam

momentum and towards the direction of the scattered electron. In all cases, G1 and G2

are the spin-dependent structure functions, whereas W1 and W2 are the spin-averaged

structure functions; R is the ratio of longitudinal-to-transverse virtual-photoabsorption

cross sections; ε is the virtual photon polarization; M is the mass of the nucleon; Q2

is the square of the four-momentum of the virtual photon; E is the incident electron

energy; E′ is the scattered electron energy; ν = (E−E′) is the electron energy loss; and

θ is the electron scattering angle.

The system of Eqs. (1) and (2) allows for the separate determination of G1 and G2,

knowing W2 and W1. In the scaling limit (ν and Q2 large), these structure functions are

predicted to depend only on the Bjorken variable x = Q2/2Mν, yielding

MW1(ν,Q
2)→ F1(x) , νW2(ν,Q

2)→ F2(x) ,

M2νG1(ν,Q
2)→ g1(x) , Mν2G2(ν,Q

2)→ g2(x) .
(4)



  

The experimental asymmetries A‖ and A⊥ are related to the virtual photon-nucleon

longitudinal and transverse asymmetries, A1 and A2 respectively, via

A‖ = D(A1 + ηA2 , A⊥ = d(A2 − ζA1) ,

D = (1−E′ε/E)/(1 + εR) , η = ε
√
Q2/(E − E′ε) ,

d = D
√

2ε/(1 + ε) , ζ = η(1 + ε)/2ε .

(5)

The proton (neutron) spin structure function is extracted in the finiteQ2 region following

the relation

g
p(n)
1 =

[
A
p(n)
1 F

p(n)
1 + A

p(n)
2 F

p(n)
1

(
2Mx

ν

)1/2
]/(

1 +
2Mx

ν

)
, (6)

where F
p(n)
1 is the spin averaged structure function of the proton ( neutron). Within the

QPM interpretation, F
p(n)
1 (x) and g

p(n)
1 (x) are related to the momentum distribution of

the constituents as

F1(x) =
1

2

∑f

i=1
z2
i

[
q↑i (x) + q↓i (x)

]
, g1(x) =

1

2

∑f

i=1
z2
i

[
q↑f (x)− q

↓
f (x)

]
,

(7)

where i runs over the number of flavors, zi are the quark fractional charges, and q↑i , (q↓)i
are the quark plus antiquark momentum distributions for quark and antiquarks spins

parallel (antiparallel) to the nucleon spin. Using the following set of assumptions—quark

current algebra, isospin symmetry, SU(3) symmetry in the decay of the baryon octet,

and zero net polarization for the strange-sea quarks—the Ellis–Jaffe sum rule on the

proton (neutron) is expressed to first order correction in αs as follows [11]:

Ip(n) =

1∫
0

g
p(n)
1 (x) dx =

1

12

gA
gV

{[
1(−1) +

5

3

(3F −D
F +D

)]
− αs

π

[
1(−1) +

7

9

(3F −D
F +D

)]}
,

(8)

where αs is the QCD strong coupling constant, and F and D are the SU(3) invariant

matrix elements of the axial vector current. From neutron β decay, we obtain (gA/gV ) =

F+D = 1.2573±0.0028. Following [11], we use F = 0.459±0.008 andD = 0.798∓0.008,

giving F/D = 0.575± 0.016. Within the QPM interpretation, we rewrite In in terms of

quark polarizations ∆q ≡
∫ 1
0 dx[q

↑(x)− q↓(x)] at finite Q2 :

In =
2

9
(∆u− 2∆d+ ∆s)

(
1− αs

π

)
+

1

9
(∆u+ ∆d− 2∆s)

(
1− αs

3π

)
. (9)

The primary motivation of the E–142 measurement of the neutron spin structure

function is the test of the Bjorken sum rule. The later is insensitive to the details of



  

nucleon structure but depends solely on quark current algebra and isospin symmetry. It

is expressed as the difference between the proton and the neutron spin structure function

g1(x,Q
2) integrals. The Bjorken sum rule is expressed to first order in αs as

Ip − In =

∫ 1

0
gp1(x,Q

2)− gn1 (x,Q2) dx =
1

12

gA
gV

[
1− αs(Q

2)

π

]
. (10)

Higher order PQCD [12], as well as higher twist [13] corrections, although not

included in Eq. (10), are important in the analysis of the Bjorken sum rule and must be

considered at low Q2.

E–142 Measurement

The experiment used the SLAC polarized electron beam at the three “magic”

energies 19.4, 22.7, and 25.5 GeV, so that the electron spin is longitudinal as it enters

End Station A. The electron beam helicity was reversed randomly on a pulse-to-pulse

basis, allowing for the cancellation of many of the beam systematic errors. This was

achieved by reversing the laser beam circular polarization used for photoemission from

the AlGaAs photocathode in the electron source. The delivered beam polarization (Pl)

was measured by a single arm Moller polarimeter and found to be stable at an average

value of (38.8 ± 1.6)%, where the uncertainty is dominated by the measurement of the

foil magnetization.

The target was a newly-built 30-cm-long, high-pressure double cell filled with a

mixture of 3He, rubidium, and nitrogen [14]. With end windows approximately 0.012-cm

thick, this target operated at number density of 2.3× 1020 atoms/cm2 (8.6 atm at 0◦C)

. Polarization of 3He was achieved by optically pumping the rubidium vapor, which

transfered its polarization to the 3He nuclei by spin exchange collisions. The small added

quantity of nitrogen (1.9 × 1018 atoms/cm3) increased the optical pumping efficiency.

The 3He polarization (Pt) was measured with an NMR setup and observed to be variying

slowly during the experiment, between 30% and 40% with a relative uncertainty ∆Pt/Pt

of 7%. The polarization of the target was reversed frequently as a mean to cancel

systematic effects.

Data were collected using two single-arm spectrometers at scattering angles of 4.5◦

and 7◦ [15], covering a kinematical range of 0.03< x < 0.6 and Q2 > 1 (GeV/c)2. In each

spectrometer arm, the electron detector package consisted of two threshold Čerenkov

counters, six planes of hodoscopes, and a 24-radiation-length shower counter composed

of 200 lead-glass blocks. The momentum resolution (rms) from hodoscope tracking was

∆E′/E′ ∼ 3%, and the shower energy resolution was typically 15%/
√
E′(GeV).



  

The experimental raw counting asymmetry ∆ was converted to the experimental

asymmetry A‖, using the relation

∆ =
(N↑↓ −N↑↑)
(N↑↓ +N↑↑)

, A‖ =
∆

PbPtf
, (11)

where N↑↓ (N↑↑) represents the rate of scattered electrons for each bin of x and Q2

when the electron beam helicity is antiparallel (parallel) to the target spin, and f is the

dilution factor that corresponds to the fraction of events that originated from scattering

off the neutron in 3He.

Small corrections for deadtime, pair-electron contamination, and misidentified pions

were applied. These corrections are x dependent, and dominate in the low x region. The

largest systematic uncertainty in the measurement of A‖ comes from the determination

of the dilution factor f . This factor was measured using glass cell runs, with variable

pressures of 3He to separate the scattering contribution of 3He from that of glass, and

was found to be 0.11 ± 0.02. False asymmetries were measured to be consistent with

zero by comparing data with target spins in opposite directions.

External radiative corrections were evaluated using the Mo and Tsai method [17],

and found to be small because of the relatively thin target (∼ 0.3% radiation length).

Internal radiative corrections were more important, and were evaluated using the exact

procedure of Kukhto and Shumeiko [16]. The total radiative corrections amounted to

a relative change of the asymmetry ranging from 30% at low x to 15% at large x.

Recent studies by several groups [18–20] have concluded that in deep-inelastic scattering

a polarized 3He nucleus target can be regarded as a good model of a polarized neutron,

provided a small correction for the S′ and D states is applied. To extract the neutron

asymmetry from the measured 3He asymmetry, we followed the method described in

[19], allowing for a correction from the polarization of the two protons in 3He (∼ −2.7%

per proton) and a correction for the polarization of the neutron in 3He (∼87%).

Figure 2(a) shows the results of the physics asymmetry An1 as a function of x.

Statistical and systematic errors are presented, added in quadrature. Since no significant

Q2 dependence of the measurement was observed, data at a fixed x bin were averaged

over different Q2. The extraction of gn1 used the measurement of the transverse

asymmetry [Eq. (2)] which amounted to An2 = 0.0± 0.25 over the full range in x. Figure

2(b) shows gn1 as a function of x, obtained using Eq. (6), where F1 was derived from a

global fit to the SLAC data for R [21] and the recent NMC parametrization for F2 [22].

Although small (∼ 0.1), there is a clear trend towards negative asymmetries An1 in the

region 0.03 < x < 0.2.
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Fig. 2(a) Neutron asymmetries An1 and (b) spin-structure function gn1 as a function of x.

Sum Rules Tests and Nucleon Spin Structure

To test the sum rules and interpret the spin structure of the nucleon in terms of its

constituents spin, In is evaluated at a fixed average value Q2. All gn1 data points are

evolved to the average value of Q2 assuming An1 to be Q2 independent. Integrating the

measured range of x we find

∫ 0.6

0.03
gn1
[
〈Q2〉 = 2(GeV/c)2, x

]
dx = −0.019± 0.007 (stat)± 0.006 (syst) . (12)

To evaluate the missing part of the integral, we consider the low- and high-x regions

separately. For 0 ≤ x < 0.03, we assume a plausible form of extrapolation of the

spin-structure function gn1 (x) = gn1 (x0)(x/x0)
α, as suggested by Regge theory [23],

with g1(x0 = 0.03) = −0.175 and 0 ≤ α ≤ 0.5. For high-x we extrapolate A1(x),

using isospin arguments and the QPM. We assume that A1(x) → +1 as x → 1.

After adding the contribution from the unmeasured region, we find an experimental

value In =
∫ 1
0 g

n
1 (x)dx = −0.022 ± 0.011 at an average 〈Q2〉 of 2(GeV/c)2. Because of

the low average value of the momemtum transfer, a serious consideration might be given

to the contribution of higher twist effects and higher order in the PQCD corrections.

To have a consistent comparison with the EMC analysis of the proton, where Ip was

determined at a much larger average Q2, we choose to evolve our data to the same Q2.

This was done by assuming once more that the physics asymmetry An1 is Q2 independent,

which has to some extent been observed on the proton data [9]. Equivalently, this implies

a common Q2-dependence of both gn1 and Fn1 , such that An1 is relatively constant as Q2

varies. Although this choice is not unique, we feel it is sensible, given the very poor

low-Q2 evaluation of higher twist effects at the present time. For example, in [24] it is



  

argued that since the integral
∫ 1
0 g

p
1(x)dx is very insensitive to 〈Q2〉, a better test of the

Bjorken sum rule, as well as evaluation of the quark contributions to the nucleon spin, is

performed by evolving the EMC proton results to low momentum transfer. Uncertainties

due to the lack of reliable calculation of higher twist effects makes this procedure not

necessarily attractive.

In the QPM interpretation, we use Eq. (9) and the E–142 result at Q2 = 10.7

(GeV/c)2; namely, In = −0.031 ± 0.007 ± 0.009, combined with the neutron β-decay

relation ∆u − ∆d = gA/gV = 1.257± and the SU(3) symmetry in the decay of the

baryon octet ∆d − ∆s = F − D = −0.34 ± 0.17 to find the net quark polarization

∆u + ∆d + ∆s ∼ 0.5, while ∆s ∼ −0.03. Notice that contrary to the proton results

of EMC [9] and the Spin Muon Collaboration (SMC) [26], E–142 results agree with the

Ellis-Jaffe sum rule, and predicts a small strange-quark contribution to the net neutron

polarization. This result is also consistent with the analysis of Ref. [25] where a bound

on the strange-sea polarization |∆s| ≤ 0.021± 0.001 is argued.

We now turn to a fundamental test of the Bjorken sum rule, at a unified value for

Q2 of 10.7 (GeV/c)2, using results from the EMC and E–142 experiments:

EMC Ip(〈Q2〉 = 10.7) = 0.131± 0.01± 0.015

E− 142 In(〈Q2〉 = 10.7) = −0.031± 0.007± 0.009
, (13)

with an “experimental” difference Ip − In = 0.161 ± 0.021. This difference is now

compared to the theoretical prediction of Bjorken, corrected for higher-order PQCD

terms at the same value of Q2 [12]:

Ip−n =
1

6

gA
gV

[
1− αs

π
− 3.58

(αs
π

)2
− 20.4

(αs
π

)3
. . .

]
= 0.185± 0.004 .

We observe that within approximately one standard deviation, the Bjorken sum rule is

verified.

In conclusion, the Ellis-Jaffe sum rule is confirmed by the E–142 results to within

one standard deviation. The QPM interpretation of E–142 results lead to a small (few

percent at most) strange-sea quark contribution to the nucleon net polarization, but a

large total quark contribution to the spin of the nucleon (∼ 50%). Within the available

uncertainty of the existing proton and the new neutron data, the Bjorken sum rule is

verified when the comparison is performed at high-Q2. A more reliable and precise

test at high-Q2 is desirable. This should be achieved as we enter a new generation of

proposed experiments that will be performed at CERN (SMC), HERA (Hermes), and

SLAC (E–154, E–155) on the proton, deuteron, and 3He.
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