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ABSTRACT 

Recently, we have proposed a new front-form quantization which treated both 

the X+ and the z- coordinates as front-form ‘times.’ This quantization was found 

to preserve parity explicitly. In this paper we extend this construction to local 

Abelian gauge fields . We quantize this theory using a method proposed originally 

by Faddeev and Jackiw . We emphasize here the feature that quantizing along 

both z+ and x- , gauge theories does not require extra constraints (also known as 

‘gauge conditions’) to determine the solution uniquely. 
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1. Introduction 

Front-form quantization is usually done by quantization along the front x+ = 

const . Usually this is done by quantizing a system with constraints 111 PI 131141 In 

a previous papers’51 Is1 [‘I we introduced a quantization which treated x+ and z- 

on equal footing!’ The main argument given was that this new approach was 

manifestly parity invariant. We also pointed out that this new approach had the 

same number of degrees of freedom as the equal-time approach. 

We’d like to point out that in some work involving initial value problems in 

gravity using front-form coordinatestgl [“I ‘**1[121 ‘13’ , the initial data for these coordi- 

nates is also specified along both x+ = const and x- = const surfaces as well as 

at x+ = zc- = 0 . R. Penrose [ll] points out that in this approach there are no 

constraints . In this paper we study how this approach could bypass much of the 

difficulty coming from the presence of constraints in the presence of local Abelian 

(W)) !3 au e s g Y mmetry. (A future paper will look at the non-Abelian (SU(N)) 

case. The point is as follows: in usual gauge theory quantization, the gauge con- 

dition is ‘a relation (constraint) between the quantizing degrees of freedom (the 

initial data). We show in this work that using the two null hyperplanes, we don’t 

need any constraints between initial data. 

There are two points which we should mention. First, the use of the reduced 

phase space quantization of Faddeev and Jackiw”‘] (see also[151 ) allows us to get the 

commutation relations easily. Second, as they point out, if the two-form (which 

goes in defining the equations of motion ) is invertible, then there are no con- 

straints . This fact coupled with Penrose’s remark [ll] seem to imply that using 

two null hyperplanes, we always have an invertible two-form , hence never any 

constraints. Obviously this greatly facilitates the quantization procedure. 



2. Reduced Phase Space Quantization of QED 

We follow the reduced phase space quantization of Faddeev and Jackiw [14] to 

study QED : 

L = -~F~~F~U + its&+ - QYyucl, - m&b + LI 

where ,!II is the interaction part of the Lagrangean: 

LI = -e&“t+bAv 

(2.1) 

(2.2) 

The Euler-Lagrange equations of motion are 

tYpFp” - e$y’t+b = 0 P-3) 

(iy,iY - m - ey,Ap)t,b = 0 (2.4 

To obtain the Hamiltonians for evolution along x+ and x-, we follow the 

approach of previous papers [5] and [6] , so we write L out explicitly : 

L&J: = { - iF,,F” - F+-F+- - F+;F” - F-iF-’ 

. - 
-2ed~A+llr+-2~~tA-~-+e~:yoy.Ailjl-+e~iyay.ili~++~:~ 

+d 
ia+ . 
2$-- ;(a+$!)$- +-$j-~O~i++- + ~(&$!)~O~i$+ 

-t,b~~o~i~$++ ~(&$~)~o~iy”- -m$!$$- - m+b~$$+} dx-dxld2xL (2.5) 

where $+ = A+$ and Ah = &‘Y* . Note also that 8, = & so that a- = 

aa+ = 2& and d+ = 2d- = 2& . The corresponding conjugate momenta for 
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x+-derivatives are 
dL 

?d = 8(8-A;) = -5 
$+i 

Tdx) = afz e+t 
a(a-+) = 2 + 

qt(x) = dL %t a(a-+t) = -z 
For the momenta corresponding to x--d erivatives we get similar forms: 

dL 
” = d(d+Ai) 

= +-i 

t%(x) = ac;$) = ;e 

P&9 = 
aL 

aP+G> 
= -;+- 

P-6) 

P-7) 

P-8) 

P-9) 

(2.10) 

(2.11) 

We rewrite Ld4x in the following way 

Ld4x = i(*Aa-Ai + ril3-A; + pid+Ai + pAd+Ai 

+qd-++ + qa-$+ t (a-$$@ t (a-@r~t 

+&$a+4 t pq$++ t p$a+$- t p@+$- t (a-&p@ t (a-$t)p,t}d4x 

-?idx+ - Kdx- + M&x (2.12) 

The meaning of these terms is as follows : the first bracket represents the p-q- 

dot terms which go into the definitions of the canonical commutation relations; 

the second and third term are the Hamiltonians which define the evolution of the 

system along x+ , given by 3-1, and along x- given by K finally, the last term 
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contains the remaining pieces which give the ‘constraints’, though are not ‘true 

constraints’ [14] as are consistent with the gauge field equations of motions. The 

Hamiltonians ‘FI and K: are : 

3-1 = dx-dx; 1 
2 { 5CB-z) +24$+++ t 2e$!A-$- t $~~o~if$$- + et,b~+/oyiA'$- 

-~(a.it)ror.~-ei’roriAi~+ t m+:$$-- t rn$t$J+} (2.13) 

K= dxt2dx’ { i(Bc2) t 2e$f_A.-$- t 2e$iA+t+h+ + $~~o~i$~-e$~~o~iA’$+ 

-i(&+i)ToTi$- t e$~~oyiA'$- t m$!$$+ t m&$$-} (2.14) 

where B- = B+ = J-F12 
4 ’ 

and for the ‘constraints’ we get whatever is left over 

.M = { -- diA+F+’ - diA-F-’ 1 F+iF+- + 2eA+$!$+ + aeA-t,b!tj-} (2.15) 

Well, we can rewrite is as ( up to total derivatives) : 

M = A+& + A-C, (2.16) 

and the ‘constraints’ C, and CP are 

C, = -d-F-+ - aiF’+ + 2e$!$+ (2.17) 

Cp = -a+F+- - aiF’- + 2e$t$- (2.18) 

We see that C, = C, = 0 identically by the classical equation of motion for the 

gauge fields , as in equation [(2.3)] for v = +, -. 
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I 

Let us write the Ldx* with the explicit momenta dependence ( up to total 

derivatives which we can discard [ 14]t161 ), so as to make the resulting commutation 

relation clear : 

L&x = ;2{*,dA; - Aid& + qdt,lq - dq$+ + d$& - t,l$dqt} dx;dx’ 

+:2{ PAdA; - AidpA + p$d+- - dp+$- + d$f_ptit - +tdP+t} dx+dx* 
2 

-‘Hdx+ - &ix- + A+Cdx + A-$&x (2.19) 

We see now that we have two types of evolutions, one along x+, for which the first 

term in equation (2.19) g ives the commutation relations along surfaces x+ = y+ 

according to the form: 

[a$“& = I‘;; a,b= 1,..8 (2.20) 

with 

(1 = 7&J” = 7&s” = 7r4,t4 = r4t ,t5 = Al, cf6 = A2, t7 = t,b+,t8 = +; (2.21) 

and 

r15 = rz6 = r37 = r48 = 2 = -r4a = -r57 = -rS2 = -rSl (2.22) 

and all the other r’s are 0 . The second term in equation (2.19) gives the com- 

mutation relations along surfaces x- = y- according to the form : 

with 

[r&r+] = A;; a,b= 1,..8 (2.23) 

q1 = pf4, q2 = pi, rj3 = 7r+, q4 = 7r$ot) q5 = A1,$ = A2,v7 = T,!+$ = $1 (2.24) 

and 

A15 = A26 = A37 = A4s = 2 = -A4s = -A57 = -As2 = -As1 (2.25) 

and all the other A’s are 0 . Going now to the quantum commutators, we get the 
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following relations for fields at equal x+ = y+ , the usual front-form ‘time’ : 

[A’(x+, x- ,x1), aa(Y+Y y-7 Yl)lz+=y+ = ;qx- - y-)S2(x, - Yl)S’j (2.26) 

w ( + x+,x- ,x1),~~(Y+,Y-,YI))z+=y+ = +$+w -YT2h -Yd (2.27) 

(l&(x+, x- ,Zl)rT~t(Y+,Y-,YI)}Zt=~t = ++6(x- - y-)S2(x, - yl) (2.28) 

Thus, the physical (quantized) degrees of freedom on x+ = 0 are A’ , ++ and $i. 

For fields at equal x- = y-, a new front-form ‘time’, we get: 

[A”(x+, x- , xl),.7r;(Y+, y-, Yl)lz-cy- = ;scx- - y-)S2(x, - y1)6’j (2.29) 

- 
w-c x+ ,x-, 4, P+(Y+, Y-, YI)),-=,- = +$4x+ - Y+)&~ - Ye> (2.30) 

{d(x+,x- ,x1), P&+, Y-, Yd},-=,- = +4x+ - Y+)+~ - Ye) (2.31) 

Here, the physical (quantized) degrees of freedom on x- = 0 are A’ , $- and $t. 

Note that A+ and A- do not enter in the list of physical (quantized) degrees of 

freedom. 

The equations of motions are now like in Faddeev and Jackiw [14] 

ati raba-tb = F (2.32) 

for the Z+ variation, and 

A,bd-rjb = - 
817” 

(2.33) 

for the x- variation . For a = 5 and b = 1, equation (2.32) gives 

a+F+l = -!-24~7oWb- t 2e+t+foWj+ (2.34) 

which is just the equation of motion [(2.3)] for v = 1 . For a = 7 and b = 3 we 
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recover the equation of motion for +l 

ia-& = i 
%$t 
Yj-7O’Yi - m$!F •t 2t$~A+ (2.35) 

We get similar results from (2.33). 

But what is the meaning of the fields A+ and A- ? They obey the following 

coupled set of differential equations ,according to C, and CP : 

iafa-A+ - i(a+)2Ae - (@)2A+ = -@@-A’ + ‘Je$:$+ (2.36) 

- ;(T)2A+ - (a’)2A- = -&-A’+ 2e&b- (2.37) 

We’ve arranged the equations so that all the known fields, the independent fields 

are on the right-hand side, and the ‘new’ fields are on the left-hand side. The point 

is that these are not constraint equations since they are not relations between the 

initial data , since neither A+ nor A- get initialized on either hyperplane! We 

introduce these new fields so that we preserve Lorentz covariance and so that we 

have the same equations of motion in the Euler-Lagrange case and the Hamiltonian 

case. 

Inverting these equations, we got the following equations for A+ and A- : 

A+ = ((di)2)-1didSAi - ((c3i)2)-1e+~$+ + (d+T - (@)2)-1e$~++ 

-((a”)“)-‘(a+X - (ai)2)-1(a+)2e7J!$+ (2.38) 

A- = ((d’)2)-1didSAi - ((ai)2)-‘e+t~- + (d-a+ - (a’)2)-le+t$- 

-((ai)2)-‘(i3-a+ - (ai)2)-1(X)2e$t$- (2.39) 

To fully define these fields, we need to define the operators ((ai)2)-1 and (a+$ - 

(P)2)-1 . Then we’ll have A+ and A- completely determined in terms of known 

fields. 
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This is quite straight-forward. For the definition of (a+)-l, we use the idea of 

Zhang and Harindranath [16] of taking anti-periodic boundary conditions for all 

the fields. This determines then the definition for this operator we are considering. 

It is 

J ~emiktx-{ ’ 
k+ + ic 

+ (2.40) 

which leads to the following form for its square 

1 2 1 
(,) fW) = ij 

J 

dk+ 
-p 

-iktx- 
+ k+ y ;,}2f(k+) (2.41) 

- 
In position space, the operator (a+)-‘, is just the convoluted epsilon distribution 

[16], while the operator ( d+)-2, becomes 

x 
f J dx-6(x- - x’-)6(x- - x”-) = -lx’- - ~“-1 + X 

-A 
(2.42) 

As Zhang and Harindranath point out, it is crucial that we take this definition in 

getting a consistent specification of the front-form singularity k+ = 0. 

We treat the sibling operator (a-)-‘, like we did (a+)-‘. We have 

$f(x+) = i J  gemikwxt { k- \  ie t  k- ‘_ ie}f(k-) (2.43) 

This leads to the following form for its square 

($j2f(x+) = f J ze-ik-xt { k- l+ ic t k- ‘_ i,}2.f(k-) (2.44) 

Just like above, the operator (a-)-‘, is just the convoluted epsilon distribution 
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[16], while the operator (c?-)-~, becomes 

x 
1 
z J dx-6(x+ - x’+)c(x+ - x”+) = -Ix’+ - x”+I t X (2.45) 

-A 

The other two operators are simpler to define. ((ai)2)-’ becomes 

&kl e+ikol ((ai)2)-1.fh) = J 02-k: + +fW (2.46) 

while (d+& - (ai)2)-’ becomes 

(d+d- - (ai)2)-’ = J ie f@+, k-, h) (2.47) 

3. Quantization of the Fields 

Now that we have the commutation relations, we are ready to define the fields 

Ai and 4. According to [ll], using two null hyperplanes, the initial data must 

be specified on each of the hyperplanes as well as on their intersection . In this 

case, we will have initialization on the two surfaces x+ = 0 and x- = 0 . We will 

require, though, that on the intersection of these surfaces, at x+ = x- = 0 these 

fields satisfy certain consistency conditions. This works out as follows. 

On x+ = 0 we have then : 

A;(x+ = 0, x-, xl) = J fL${ti(k’; kl)a(k+, kl)e-ik.xtEf(k+, kl)a’(k+, k&+ik.x} 

++(x+ = o, x-, xl) = J 21 + $$i& c { b(k+, h)u+(k+, klv Wikex x 
td+(k+, kl)w+(k+, kl, X)e+ik.x} (3.2) 

In this case, ik.x = ik+x- - ‘k z 1. 1 and the polarization vector is Ei(k+, kl). x 
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On the other hyperplane, x- = 0 we get similar forms: 

Ai(x- = 0, x+, XL) = J d2kl dk- 
(211)3&+ -, k&i(k-, kl)eqi’.’ +it(k-, kl)ii+(k-, kl)e+i’*x} 

(3.3) 

+,-(x- = 0, x+, x1) = J f$$$g c { b(k-, kl)u-(k-, kl, p)emiiax c 
+8(k-, k&-(k-, kl,p)e+ir.z} (3.4) 

Here , ;i.x = ik-x+ - ikl.xl . 

We require now that the fields be consistent at x+ = x- = 0. This means that 

we have 

Ai(x+ = 0, X- = 0 ) XL) = Ai(x- = 0, X+ = 0, Xl) P-5) 

This implies 

J $g{ei(k’, kl)u(k+, kl)e+ik’.xL + Ei(k+, kl)*u+(k+, kl)e-ikL.xL} 

= J $${ii(k-, kl)ii(k-, kl)e+ikL.xL + ii(k-, kl)*Ct(k-, kl)e-ik’*xL} P-6) 
As k+ and k- are just dummy variables here, we get that 

u(k+, kl) = h(k+, kl), u+(k+, kl) = ii+@+, kl) P-7) 

as well as 

ci(k+, kl) = ii(k+, kl) (3.8) 

and we need to point out that the variables are the same for both creation oper- 

ators. So this means that 

u(k+, kl) # &(k-, kl), ci(k+,kl) # G(k-,kl) (3.9) 

hence the field Ai has different effects on the two surfaces. On x+ = 0, Ai(x+ = 

0, x-, xl) creates or destroys vector quanta with momentum k = (k+, kl) and 
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polarization ti(k+, kl). On X- = 0, Ai(x- = 0, X+ , xl) creates or destroys quanta 

with momentum i = (k-, kl) and polarization ci(k-, kl) !“I 

The analysis for the fermion fields goes through just like in the previous paper 

[61 * 
What about the fields A+ and A- ? As mentioned in the previous section, as 

these fields are not initialized on any of the surfaces, they do not constitute con- 

straints. We have solved equations ((2.36)] and [(2.37)] in terms of the independent 

degrees of freedom A’ and 1c, + , +- in equations [(2.38)] and [(2.39)]. We get the 

following : 

A+(x+, x- , xI) = ((a’)2)-1did+Ai(x+ = 0, f-,q) 

-((ai)2)-1e+~$+(x+ = 0, x- ,x1) + (d+X - (ai)2)-1e+~$+(x+ = O,X-,XJJ 

-((~i)2)-‘(f3+f3- - (f3i)2)-1(tl+)2et)~t)+(x+ = 0, x-, xl) (3.10) 

A-(x-,x+ ,x1) = ((6i)2)-1did+Ai(x- = 0,x+,x1) 

-(a")2)-le$t$-(x- = 0, x+ , XI) + (Xf3+ - (ai)2)-‘e+t+-(x- = 0, x+, XL) 

-((43i)2)-l(a-a+ - (ai)2)-1(a-)2e$t$-(x- = 0, x+,x*) (3.11) 

where we use the definitions [(2.46)], [(2.47)], [(2.41)] and [(2.44)] . 

So all the fields coming in the definition of QED are defined and A+ or A- do 

not represent new modes or new quanta. It is important to point out here that our 

gauge field A has only two physical degrees of freedom , A’, i = 1,2. The fields 

A+ and A- are needed to guarantee Lorentz covariance, but are not gotten from 

some constraint equations. 

Let us point out that these equations are different in nature than similar equa- 

tions one gets in the case of constraint quantization. In the constrained case, one 
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needs to solve the constraint equation before quantization. This is often hard and 

sometimes impossible analytically. Here, we have already quantized our theory and 

are computing new fields, so we are past the quantization stage. The quantization 

procedure seems easier in this approach than in the constrained approaches [l], [2], 

4. Parity in Front-Form Quantization 

We are ready now to study how the fields A’ , $+ and r,l~- transform under 

parity. For this we use (Bjorken and Drell for instance[181 ) : 

PA’(x+, x-, xl)T1 = -A’(x-, x+, -xl) (4.1) 

since under parity (x+, x-, x1) -+ (xc-, x+, - xl) and the vector field has negative 

intrinsic parity. For the vector field we get 

PA’(x+ = 0, x-, xl)T1 = 7’ J $${.i(k’; kl)u(k+, kl)emikax 

This becomes 

(4.2) 

pA’(x+ = 0, x-,x1)7+ = J d~2~~~’ .f&{ - ei(k-, -kl)u(k-, -kl)e-ik’*x’ 

-c;(k-, -kl)u+(k-, -kl)e+ik’.x’} (4.3) 

if 

and 

Pu(k+, kl)P-’ = u(k-, -kJ, Pu+(k+, kl)T1 = u+(k-, -kl) 

Pti(k+, kl)P-’ = -ci(k-, -kl) (4.4 

and ik’.x’ = ik-x+ - iklxl . Redefining variables (k- , - kl) --t (I-, II), we get 
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the result 

pA’(x+ = 0, x-,x1)7’-’ = -A’(x- = 0, x+, -xl) (4.5) 

Let us consider the fermion fields now. In this case we have the same result of the 

previous paper [6] 

P$(x:+, x-, xp-l = yl&(x-, x+, -x1) w-9 

and we expect that fields defined on x+ will be mapped into fields defined on x- 

by parity. Indeed, that is what we find for $.J+ . 

We derive now these relations for arbitrary x+ and x-. Note that for the x+ 

evolution we have 

A’(a+, x-, xl) = emipmxt A’(x+ = 0, x-, -xl) 

or 

$-(x+, X-, xl) i emipbx+$-(X+ = 0, X-, -X1) 

so that the parity-transformed field is 

PA’(x+, X-, xl)psl = pe-iP-xtp-l’#PAi(x+ = 0, x-, -xl)?-1 

which becomes 

PA”(x+, x-, xl)Pml = e-iPtx-Ai(x- = 0, x+, -xl) 

since 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

by use of the equations (2.13) and (2.14). A similar result holds for the fermion 

case. 
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We also get the generator of x- evolutions to transform properly as well since 

pp+p-~~ Jcp-l= J%zp- (4.12) 

again, by use of equations (2.14) and (2.13). 

Since now the generators of evolution along x+ and x- (N and K: respectively), 

transform properly under parity , we can evolve the parity relations obtained at 

x+ = 0 and x- = 0 to relations for arbitrary x+ and x-. For the vector case we 

get 

PA’(x+, x-, xl)@ = -A’(x-, x+, -xl) (4.13) 

as expected from previous work [5] . 

For the fermion case, we get [7] 

p++(x+, x-, XI)P = Yolqx-?x+7 --zd (4.14) 

which show very clearly that parity maps independent fields on x+ = 0 [$+(x+ = 

0, x-, XL)] , to independent fields on x- = 0 [$-(x- = 0, x+, xl)] , demonstrating 

the it is crucial that we take both x+ = 0 and x- = 0 as quantizing surfaces if we 

desire to have fields with parity as an explicit symmetry as already noted [6]. 

Thus far we have looked at transformation properties of independent fields on 

x+ = 0 . It is quite straightforward to show that we get similar results for the 

fields which are initialized on x- = 0 : 

PA”(x-, x+,xl)T1 = -A’(x+, x-, -xl) (4.15) 

for the vector field and 

pqJ-(x--, x+, x*)7+ = +/o++(x+9-7 -4 (4.16) 

for the fermion field [7] . 
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Let us examine the parity transformation properties of the fields A+ and A-. 

It is a straightforward exercise to check, using equations [(3.10)] and [(3.11)] that 

we get 

PA+(x+ = 0,x-,x*)P-' = A-(x- =0,x+,-x1) (4.17) 

due to the transformation properties of the fields A' and $J+. We likewise get 

PA+(x+,x-,x1)7'-'= A-(x-,x+,-xl) (4.18) 

for arbitrary x+. 

For the other field A-, results come out as expected as well 

PA-(x- = O,x+,s$'-' =A+(x+ =0,x-,-x1) (4.19) 

due to the transformation properties of the fields A' and $-. We likewise get 

PA-(x-,x+,il)P-' = A+(x+,x-,-xl) (4.20) 

for arbitrary x-. This completes our demonstration that fields defined on x+ = 0 

and x- = 0 transform properly under parity, and define QED consistently. 
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