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ABSTRACT 

We use the BLM method to show that all perturbatively-calculable observables 

in &CD, including the annihilation ratio Rete-, the heavy quark potential, and 

radiative corrections to structure function sum rules, are related to each other at 

fixed relative scales. The commensurate scale relations connecting the effective 

charges for observables A and B have the form 

~A&?A) = QB(QB)(I +rA,BF+-.), 

where the coefficient ‘A/B is independent of the number of flavors ?ZF contributing 

to coupling constant renormalization. The ratio of scales AA/B = QA/QB is unique 

at leading order and guarantees that the observables A and B pass through new 

quark thresholds at the same physical scale. We also show that the commensurate 

scales satisfy the transitivity rule 

XA/B = XAIdC/B, 

which is the renormalization group property which ensures that predictions in 

PQCD are independent of the choice of an intermediate renormalization scheme C. 

In particular, scale-fixed predictions can be made without reference to theoretically- 

constructed renormalization schemes such as MS. QCD can thus be tested in a 

new and precise way by checking that the observables track both in their relative 

normalization and in their commensurate scale dependence. 



One of the most serious difficulties preventing precise tests of QCD is the scale 

ambiguity of its perturbative predictions. Consider a measurable quantity such as 

p = R,+,-(s) - 3Cei. The PQCD prediction is of the form 

[ 
4-4 4(P) 

P = ‘O%(P) 1+ v(p) ---y + f2(/4 7 + * * * 1 . 
Here as(p) = gi/4 ?r is the renormalized coupling defined in a specific renormal- 

ization scheme such as MS, and p is a particular choice of renormalization scale. 

Since p is a physical quantity, its value must be independent of the choice of p 

as well as the choice of renormalization scheme. Nevertheless, since we only have 

truncated PQCD predictions to a given order in or, the predictions do depend on 

p. In the specific case of I?,+,-, where we have predictions [1,2] through order 

o:, the sensitivity to ~1 has been shown to be less than 10% over a large range of 

en ~1 [2]. However, in the case of the hadronic beauty production cross section 

wl~2PT>(?sP + B + X), which has been computed to next-to-leading order in 

cys, the prediction [3] for the normalization of the heavy quark pi distribution at 

hadron colliders ranges over a factor of 4 if one chooses one “physical value” such 

asp=: $- mB + pT rather than an equally well motivated choice p = J3G-i. 
There is, in fact, no consensus on how to estimate the theoretical error due 

to the scale ambiguity, what constitutes a reasonable range of physical values, or 

indeed how to identify what the central value should be. Even worse, if we consider 

the renormalization scale ~1 as totally arbitrary, the next-to-leading coefficient r-r(p) 

in the perturbative expansion can take on the value zero or any other value. Thus 

it is difficult to assess the convergence of the truncated series, and finite-order 

analyses cannot be meaningfully compared to experiment. 
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The p dependence of the truncated prediction pi is often used as a guide 

to assess the accuracy of the perturbative prediction, since this dependence re- 

flects the presence of the uncalculated terms. However, the scale dependence 

of PN only reflects one aspect of the total series. For example, consider the 

orthopositronium Jpc = l-- d ecay rate computed in quantum electrodynam- 

ics: I’(e+e-) = ro [l - 10.3 (a/r) + . ..I. Th e ar e next-to-leading coefficient, 1 g 

rl = 10.3 shows that there is important new physics beyond Born approximation. 

The magnitude of the higher order terms in the decay rate is not related to the 

renormalization scale since the QED coupling cy does not run appreciably at the 

momentum transfers associated with positronium decay. 

Thus we have a difficult dilemma: If we take p as an unset parameter in PQCD 

predictions, then we have no reliable way to assess the accuracy of the truncated 

series or the parameters extracted from comparison with experiment. If we guess a 

value for .,x and its range, we are left with a prediction without an objective guide 

to its theoretical precision. The problem of the scale ambiguity is compounded in 

multi-scale problems where several plausible physical scales enter. 

In fact three quite distinct methods to set the renormalization scale in PQCD 

have been proposed in the literature: 

1. Fastest Apparent Convergence (FAC) [4]. This method chooses the renor- 

malization scale ~1 so that the next-to-leading order coefficient vanishes: 

v(p) = 0. 

2. The Principle of Minimum Sensitivity (PMS) [5]. In this procedure, one 

argues that the best scale is the one that minimizes the scale dependence 

of the truncated prediction PN, since that is a characteristic property of the 

entire series. Thus in this method one chooses ~1 at the stationary point 
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d&d/i = 0. 

3. Brodsky-Lepage-Mackenzie (BLM) [6]. In the BLM scale-fixing method, the 

scale is chosen such that the coefficients ri are independent of the number of 

quark flavors renormalizing the gluon propagators. In practice, one chooses 

the scale so that nf does not appear in the next-to-leading order coefficient. 

That is, if rr(p) = TAO + rll(p)nf, where rro(p) and rrr(p) are nf inde- 

pendent, then one chooses the scale ~1 given by the condition rll (p) = 0. This 

prescription ensures that, as in quantum electrodynamics, vacuum polariza- 

tion contributions due to fermion pairs are all incorporated into the coupling 

constant o(p) rather than the coefficients. 

These scale-setting methods can give strikingly different results in practical 

applications, For example, Kramer and Lampe have analyzed [7] the application of 

the FAC, PMS, and BLM methods for the prediction of jet production fractions in 

e+e- annihilation in PQCD. Jets are defined by clustering particles with invariant 

mass less than ,/@Z, where y is the resolution parameter and ,/X is the total center- 

of-mass energy. Physically, one expects the renormalization scale ~1 to reflect the 

invariant mass of the jets, that is, ~1 should be of order ,/@. For example, in the 

analogous problem in QED, the maximum virtuality of the photon jet which sets 

the argument of the running coupling o(Q) cannot be larger than ,/@ Thus one 

expects ~1 to decrease as the resolution parameter y + 0. However, the scales 

chosen by the FAC and PMS methods do not reproduce this behavior (see Fig. 

1): The predicted scales pp~s(y) and ~FAC(~) rise without bound at small values 

for the jet fraction y. On the other hand, the BLM scale has the correct physical 

behavior as y + 0. Since the argument of the running coupling becomes small 

using the BLM method, standard QCD perturbation theory in crs[p~~~(y)] will 
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not be convergent in the low y domain [8]. In contrast, the scales chosen by PMS 

and FAC give no sign that the perturbative results break down in the soft region. 

‘*O* 
0.8 
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1 
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7-93 Y 7499Al 

Figure 1. The scale p/r s according to the BLM (dashed-dotted), PMS (dashed), FAC (full) 
and fi (dotted) procedures for the three-jet rate in e+e- annihilation, as computed by Kramer 
and Lampe [7]. Notice the strikingly different behavior of the BLM scale from the PMS and FAC 
scales at low y. In particular, the latter two methods predict increasing values of ~1 as the jet 
invariant mass M < &ys) decreases. 

In this talk we shall use the ‘BLM method to show that all perturbatively- 

calculable observables in QCD, including the annihilation ratio &t,-(Q2), the 

heavy quark potential, and the radiative corrections to the Bjorken sum rule can 

be related to each other at fixed relative scales. The “commensurate scale relation” 

for observables A and B in terms of their effective charges has the form 

HA = ~B(QB) (1 + ~AIBF + . . -> . 

The ratio of the scales X,/B = QA/QB is chosen so that the coefficient rA/B is in- 

dependent of the number of flavors nF contributing to coupling constant renormal- 

ization, which guarantees that the observables A and B pass through new quark 

thresholds at the same physical scale. We shall show that the value of XA,B is 
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unique at leading order, and that the relative scales satisfy the transitivity rule [9] 

XA/B = XA/C b/B * 

This is equivalent to the group property defined by Peterman and Stiickelberg [lo] 

which ensures that predictions in PQCD are independent of the choice of an inter- 

mediate renormalization scheme C [ll]. In particular, scale-fixed predictions can 

be made without reference to theoretically-constructed renormalization schemes 

such as MS; QCD can thus be tested by checking that the observables track both 

in their relative normalization and commensurate scale dependence. 

It is interesting that the task of setting the renormalization scale has never 

been considered a problem or ambiguity in perturbative QED. For example, the 

leading-order parallel-helicity amplitude electron-electron scattering has the form 

M ee+ee(++;++) = $f Q(i) + F a(u) . 

Here o(Q) = cy(Qo)/(l - II[Q2, Qi, ~(QO)]) is the QED running coupling which 

sums all vacuum polarization insertions II into the renormalized photon propagator. 

The value a(O) is conventionally normalized by Coulomb scattering at t = -Q2 = 

0. Notice that both physical scales t and u appear in the argument of the running 

coupling constant in the cross-section; if one chooses any other scale for the running 

coupling, in either the direct or crossed graph amplitude, then one generates a 

spurious geometric series in nf (a/r) h(-t/p2) or nf (a/r) ln(-u/p2), where nf 

represents the number of fermions contributing to the vacuum polarization of the 

photon propagator. 

In general, the “skeleton” expansion of Feynman amplitudes in QED guarantees 

that all dependence of an observable on the variable nf is summed into the running 
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coupling constant; the coefficients in QED perturbation series are thus always nf- 

independent once the proper scale in CY has been set. Note that the variable nf is 

defined to count only vacuum polarization insertions, not light-by-light loops, since 

such contributions do not contribute to the coupling constant renormalization in 

QED. 

The use of the running coupling constant o(Q) in QED allows one to sum in 

closed form all proper and improper vacuum polarization insertions to all orders, 

thus going well beyond ordinary perturbation theory. For example, consider the 

perturbative series for the lepton magnetic anomalous moment: 

4Qf) ae = 2a + r2 a2(Q;) 
w2 

+y3 a3(Qa + . . . 
79 

the values Q1 = e-‘j4 me, etc., can be determined either by the explicit insertion 

of the rrmning coupling into the ‘integrand of the Feynman amplitude and the 

mean value theorem, or equivalently, by simply requiring that the coefficients r, 

be independent of nf. (Light-by-light scattering contributions are not related to 

coupling constant renormalization and thus enter explicitly in the order o3 coef- 

ficient .) Thus the formula for the anomalous moment using the running coupling 

is form invariant, identical for each lepton e = e,p,~, since the dependence on 

lepton vacuum polarization insertions is implicitly contained in the dependence 

of the running coupling constant. These examples are illustrations of the general 

principle that observables such as the anomalous moments can be related to other 

observables such as the heavy lepton potential V(Q2) = -4?ro(Q2)/Q2 which can 

be taken as the empirical definition of the on-shell scheme usually used to define 

4Q2>- 
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The same procedure can easily be adapted [6] to non-Abelian theories such 

as &CD. One of the most useful observables in QCD is the heavy quark potential 

since it can be computed in lattice gauge theory from a Wilson loop, and it can 

be extracted phenomenologically from the heavy quarkonium spectrum. If the 

interacting quarks have infinite mass, then all radiative correction are associated 

with the exchange diagrams, rather than the vertex corrections. It is convenient 

to write the heavy quark potential as V(Q2) = -4&‘~av(Q)/Q~. This defines 

the “effective charge” ov(Q2) h w ere by definition the “self-scale” Q2 = -t is the 

momentum transfer squared. The subscript V indicates that the coupling is defined 

through the potential. 

In fact, any perturbatively-calculable physical quantity can be used to define 

an effective charge [4] by incorporating the entire radiative correction into its 

definition; for example 

I&+,-(Q2) E R;+,-(Q2) [l + *] , 

where R” is the Born result and Q2 = s = Ezm is the annihilation energy squared. 

An important result is that all effective charges QA(Q) satisfy the Gell-Mann-Low 

renormalization group equation with the same /?o and /3r; different schemes or effec- 

tive charges only differ through the third and higher coefficients of the p function. 

Thus, any effective charge can be used as a reference running coupling constant 

in QCD to define the renormalization procedure. More generally, each effective 

charge or renormalization scheme, including MS, is a special case of the universal 

coupling function o(Q,,&) [12]. P e erman and Stiickelberg have shown [lo] that t 

all effective charges are related to each other through a set of evolution equations 
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in the scheme parameters Pn. Physical results relating observables must of course 

be independent of the choice of any intermediate renormalization scheme. 

Let us now consider expanding any observable or effective charge ~A(Q,J) in 

terms of cuv : 

PA= w(f+ +(&p nF +B)F+-] . 

Since a~ sums all vacuum polarization contributions by definition, no coefficient 

in the series expansion in a~ can depend on ?ZF; i.e. all vacuum polarization 

contributions are already incorporated into the definition of cyv. Thus we must 

shift the scale ~1 in the argument of crv to the scale [6] Qv = eaAvP(p)p: 

PA = w(Qv) [l + r;l” 7 + . . .] , 

where rt’” = 3 + (33/2) Avp is the next-to-leading coefficient in the expansion of 

the observable A in scheme V. Thus the relative scale between the two observables 

A and V, AA/V = QA/&v, is fixed by the requirement that the coefficients in 

the expansion in crv scheme are independent of vacuum polarization corrections. 

Alternatively, one can derive the same result by explicitly integrating the one loop 

integrals in the calculation of the observable A using c~v(!?~) in the integrand, 

where e2 is the four-momentum transferred squared carried by the gluon. (In 

practice one only needs to compute the mean-value of en .t2 = en Qb [13].) One 

can eliminate the nF vacuum polarization dependence that appears in the higher 

order coefficients by allowing a new scale to appear in each order of perturbation 

theory. In practice, only the leading order commensurate scale is required in order 

to test PQCD to good precision. 
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We can compute other observables B and even effective charges such as om 

as an expansion in crv scheme: 

~B(QB) = w(Qv) [I+ T;‘~ T + . . .] , 

B/V where Qv = QB/XBIV and again tr must be independent of vacuum polariza- 

tion contributions. We can now substitute and eliminate crv(Qv) : 

~B(Q~)=%&h)[l+r;'~ ?+...I , 

where QBIQA = XB/A = XB/VIXA/V, and ~1 BIA = rfVV _ /IV 
1 - Note also the 

symmetry property XB/AXA/B = 1. Alternatively, we can compute the commensu- 

rate scale &A = QB/XBIA directly by requiring rF’A to be nF-independent. The 

result is in agreement with the transitivity rule: the BLM procedure for fixing the 

commensurate scale ratio between two observables is independent of the interme- 

diate renormalization scheme. The scale-fixed relation between the heavy quark 

potential and crm is [6, 141 cyv(Q) = om(e-5/6Q)[1 - 2(om/7r) + *. a]. 

The transitivity and symmetry properties of the commensurate scales are the 

scale transformations of the renormalization “group” as originally defined by Pe- 

terman and Stiickelberg [lo]. The predicted relation between observables must be 

independent of the order one makes substitutions; i.e. the algebraic path one takes 

to relate the observables. It is important to note that the PMS method, which fixes 

the renormalization scale by finding the point of minimal sensitivity to p, does not 

satisfy these group properties [9]. Th e results are chaotic in the sense that the 

final scale depends on the path of applying the PMS procedure. Furthermore, any 

method which fixes the scale in QCD must also be applicable to Abelian theories 
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such as QED, since in the limit NC -+ 0 the perturbative coefficients in QCD 

coincide with the perturbative coefficients of an Abelian analog of QCD [15]. 

The commensurate scale relations provide a new way to test &CD: One can 

compare two observables by checking that their effective charges agree both in 

normalization and in their scale dependence. The ratio of commensurate scales 

XA,B is fixed uniquely: it ensures that both observables A and B pass through 

heavy quark thresholds at precisely the same physical point. Theoretical calcula- 

tions are often performed most advantageously in MS scheme, but all reference to 

such constructed schemes may be eliminated when comparisons are made between 

observables. This also avoids the problem that one need not expand observables 

in terms of couplings which have singular or ill-defined functional dependence. 

The physical value of the commensurate scale in a~ scheme reflects the mean 

virtuality of the exchanged gluon. However, in other schemes, including MS, the 

argument of the effective charge is displaced from its physical value. The rela- 

tive scale for a number of observables is indicated in Table I. For example, the 

physical scale for the branching ratio ‘r + yX when expanded in terms of ov is 

(1/2.77)Mr - (1/3)My, which reflects the fact that the final state phase space 

is divided among three vector systems. (When one expands in MS scheme, the 

corresponding scale is O.l57i&.) S imilarly, the physical scale appropriate to the 

hadronic decays of the 773 is (l/1.67)&, N (1/2)M,,. 
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Table I 

Leading Order Commensurate Scale Relations 

a&0.435&) 

or( 1.36Q) 4Q) a~(0.614Q) 

After scale-fixing, the ratio of hadronic to leptonic decay rates for the Y has 

the form [6] 

I’(Y’ + hadrons) 10(7? - 9) a&(O.l57i&) 

I?(Y + p+p-) = 817rei ‘Y&D [ 
1 - 14.0(5) ?+...I . 

Thus as is the case of positronium decay, the next to leading coefficient is very large, 

and perturbation theory is not likely to’be reliable for this observable. On the other 

hand, the commensurate scales for the second moment of the non-singlet structure 

function M2 and the effective charges in the Bjorken Sum Rule (and the Gross- 

Llewellyn-Smith Sum Rule) are not far from the physical value Q when expressed 

in cuv scheme. At large n the commensurate scale for M, is proportional to l/fi 

at large n, reflecting the fact that the available phase-space for parton emission 

decreases as n increases. In multiple-scale problems, the commensurate scale can 

depend on all of the physical invariants. For example, the scale controlling the 

evolution equation for the non-singlet structure function depends on XBj as well 

as Q [16]. In th e case of inclusive reactions which factorize at leading twist, each 

structure function, fragmentation function, and subprocess cross section can have 

its own commensurate scale. 
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A number of examples of commensurate scale relations between various single- 

scale observables based on published three-loop MS calculations are given in Table 

II. For simplicity we have used the leading-order scale determined by eliminating 

the nf dependence from the next-to-leading coefficient. The next-to-leading coeffi- 

cient becomes a rational polynomial in NC after scale fixing. We take nf = 3 to fix 

the higher order term. In principle, one can improve these relations by requiring 

that all coefficients must be nf-independent in crv scheme. As in the example 

of the muon anomalous moment, the commensurate scale appearing in argument 

of the higher order contributions may differ from the scale of the next-to-leading 

order term. The extension of the BLM procedure to higher orders has also been 

discussed recently by Grunberg and Kataev [17] and by Samuel and Surguladze [2]. 

An interesting illustration of commensurate scale relations is the connection 

between the effective charge oygl for the Bjorken sum rule for the first moment of 

the isospin non-singlet helicity-dependent structure functions: l?+ G (gA/6) [l - 

(asI (Q>/41 and th e e ec ff t ive charge for the annihilation cross section: 

CY,JQ) = q(O.52Q) [l - y + mm.] . 

Mattingly and Stevenson [18] h ave recently obtained an empirical form for CYR(Q) 

by smearing the annihilation cross section data and fitting to the three loop form 

using the PMS scale. Since the PMS and BLM scale are nearly coincident in 

this case, we can use their determination for OR to predict the Bjorken sum 

rule radiative corrections [19]. F or example, at the scale appropriate to the El42 

spin-dependent structure function measurements at SLAC, Q2 = 2 GeV2, one 

finds a~(0.52Q)/r N 0.16 and hence as1 (1.4 GeV)/r N 0.14 which corresponds 

to Ipmn = 0.180. The predictions for the Bjorken sum rule at EMC and SMC 

14 



Table II 

Commensurate Scale Relations For Effective Charges to Order (Y: 

a~(&) = qg(0.70759Q) [l + (l/12) (a&r) - 15.7331 (‘y&/x2) + . . .] 

on(Q) = a&0.36788&) - (11/12) (o&r) + 0.21527 (+&r2) + *. .] 

aR(Q) = ag,(1.92344Q) [l+ (as&r) - 14.115(cr;,/7r2) + ...I 

agJQ) = aR(0.519903Q) [l - (o&r) + 16.115 @i/r”) + s. .] 

aR(Q) = 0,(2.20707&) [l + O(c+) - 5.94141 (&r”) + . . .] 

o+(Q) = oR(0.45309Q) [l + O(a&r) + 5.94141 (&r2) + . . .] 

agr(Q) = cr,(l.l4746Q) [l - (o&r) + 10.1736 (&r”) + . . a] 

c&j) = agl (0.87149Q) [l + (o,&) - 8.17363 (& /r2) + . . .] 

momentum transfers Q2 = 10.7 GeV2 and Q2 = 4.6 GeV2 are o,,(3.27 GeV)/r 21 

0.09 and a,,(2.14 GeV)/r N 0.11, corresponding to I’pmn = 0.190 and rp+ = 

0.186, respectively. Alternatively, for the El42 data, we can use the commensurate 

scale relation 

agl(Q) = a,(l.l45Q)[l - F + ...I , 

and the empirical determination [2] a,(m,)/r 2~ 0.19 to find a consistent determi- 

nation cr,,(1.55 GeV)/?r N 0.15. Th e uncertainty in the PQCD radiative corrections 

is thus considerable smaller than usually assumed [19]. 
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The commensurate scale relations between observables can be tested at quite 

low momentum transfers, even where PQCD relationships would be expected to 

break down. It is likely that some of the higher twist contributions common to the 

two observables are also correctly represented by the commensurate scale relations. 

In contrast, expansions of any observable in om (Q) must break down at low 

momentum transfer since crm (Q) becomes singular at Q = Am (For example, 

in the t’Hooft scheme where the higher order /In = 0 for n = 2,3, . . . , (r&Q) has 

a simple pole at Q = Am) Th e commensurate scale relations allow tests of QCD 

without explicit reference to schemes such as MS. It is thus reasonable to expect 

that the series expansions are more convergent when one relates finite observables 

to each other. 

The BLM scale has also recently been used by Lepage and Mackenzie [13] and 

their co-workers to improve lattice perturbation theory. By using the BLM method 

one can eliminate CYL&t& in favor of crv thus avoiding an expansion with artifi- 

cially large coefficients. The lattice determination, together with the empirical con- 

straints from the heavy quarkonium spectra, promises to provide a well-determined 

effective charge ov(Q) which could be adopted as the QCD standard coupling. 

After one fixes the renormalization scale ~1 to the BLM value, it is still use- 

ful to compute the logarithmic derivative of the truncated perturbative prediction 

dlnpN/dlnp at the BLM-determined scale. If this derivative is large, or equiva- 

lently, if the BLM and PMS scales strongly differ, then one knows that the trun- 

cated perturbative expansion cannot be numerically reliable, since the entire series 

is independent of ,X Note that this is a necessary condition for a reliable series, 

not a sufficient one, as evidenced by the large coefficients in the positronium and 

quarkonium decay widths which appear when the scales are set correctly. In the 
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case of the two and three jet decay fractions in e+e- annihilation, the BLM and 

PMS scales strongly differ at low values of the jet discriminant y. Thus, by using 

this criterion, we establish that the perturbation theory must fail in the small y 

regime, requiring careful resummation of the c&z y series. [8] 

However, if we restrict the analysis to jets with invariant mass M < fl, with 

0.14 > y > 0.05, then we have an ideal situation, since both the PMS and FAC 

scales nearly coincide with the BLM scale when one computes jet ratios in the 

MS scheme (See Fig. 1.) i.e., the renormalization scale dependence in this case 

is minimal at the BLM scale, and the computed NLO coefficient is nearly zero. 

In fact, Kramer and Lampe [7] find that the BLM scale and the NLO PQCD 

predictions give a consistent description of the LEP 2-jet and S-jet data for 0.14 > 

y > 0.05 at the 2. Neglecting possible uncertainties due to hadronization effects, 

this allows a determination of cys with remarkably small error: [7] am(M,) = 

0.107 f 0.003, which corresponds to 12% = 100 f 20 MeV. 

The BLM method and the commensurate scale relations presented in this talk 

can be applied to the whole range of QCD and standard model processes, making 

the tests of theory much more sensitive. The method should also improve precision 

tests of electroweak, supersymmetry and other non-Abelian theories. 
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