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1. Preface

The Minimal Electroweak Standard Model (MSM) has been a remarkably
successful description of a great variety of experimental phenomena. Constructed
to incorporate quantum electrodynamics and the effective four-fermion (V-A)
description of the weak charged current, the MSM correctly predicted the
existence of the weak neutral current and has accurately described it from the eV
scale to the 100 GeV scale. The successes of the MSM have been so impressive
that few in our community would doubt that electroweak phenomena at the
100 GeV mass scale exhibit the features of a spontaneously broken, SU(2)×U(1)
gauge symmetry.

Nevertheless, few in the theoretical particle physics community believe that
MSM is a fully satisfactory and complete description of nature. The theory
contains many arbitrary parameters to describe the fermion mass sector. The
Higgs sector of the MSM is entirely ad-hoc and leads to a number of serious
theoretical problems that plague theories with fundamental scalars.

[1]

Unfortunately, few in the experimental particle physics community share the
view that is so widely held by our theoretical colleagues. As empiricists, we tend
to believe what we see and what we have seen is pure success. This has lead to an
extremely dangerous mindset within the experimental half of the community, that
the MSM is Correct! The average experimentalist really believes that an accurate
measurement of an electroweak observable is equivalent to a measurement of the
top quark mass.

I would like to remind this segment of the community that until quite recently,
all tests of the MSM have been sensitive to the tree-level structure of the gauge
boson and fermion sectors of the theory, the light particle content of the theory,
and the running of the electromagnetic coupling constant due to light particle
loops. We are just now achieving the sensitivity required to see heavy particle
loops, purely weak radiative corrections, and three-gauge boson interactions.
Deviations from the MSM may soon appear! Since we are entering a new regime
of sensitivity, it is very important to discard all notions that the MSM is correct.
All new results must be examined critically: those that appear to deviate from
the MSM, AND those that appear to confirm it. It is the mission of all those
working on precision tests of the MSM to prove it wrong, not to prove it right.
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Table I

The physical parameters which specify the electroweak Standard Model.

Parameter Tree-Level Expression Measured Value Precision

αem gg′/4π(g2 + g′
2

) [137.0359895(61)]−1 4.5×10−8

GF [〈φ〉20
√

8]−1 1.16637(2)×10−5 GeV−2 1.7×10−5

MZ [(g2 + g′
2

) 〈φ〉20 /2]1/2 91.187(7) GeV 7.7×10−5

2. Specification of the MSM

At tree-level, all low energy (
√
s <∼ 100 GeV) electroweak phenomena

depend on three parameters: the SU(2) coupling constant g, the U(1) coupling
constant g′, and the vacuum expectation value of the Higgs field 〈φ〉0. Since
these parameters are not measured directly, they must be determined from the
measured values of a set of three related physical parameters. In practice, most
electroweak renormalization schemes are based on a physical parameter set. The
conventional choice of the physical parameter set is: the electromagnetic fine
structure constant αem, the Fermi coupling constant GF , and the mass of the
Z boson MZ . The current values of these parameters and their tree-level MSM
expressions are listed in Table I. The current value of αem is extracted from
the remarkably precise measurements and QED calculations of the anomalous
magnetic moment of the electron.

[2]
The Fermi coupling constant is extracted from

precise measurements of muon lifetime.
[3]

The Z mass is a recent measurement

by the LEP Collaborations and the Working Group on LEP Energy.
[4]

Note that the physical parameters are measured at very different energy
scales. In order to carry out loop-level calculations, it is necessary to evolve the
low-energy parameters to the MZ scale. The evolved value of αem (due to known

physics only) is calculated via a dispersion integral approach to be
[5]

α(M2
Z) = [128.8± 0.12]−1. (1)

The uncertainty on α(M2
Z) is the dominant theoretical error on all electroweak

calculations. It is due to the uncertainty on the measured cross section for
e+e− → hadrons at low energies (

√
s <∼ 1 GeV) which is used in the dispersion

integral.
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2.1 MZ Measurement

The recent measurement of MZ by the LEP Collaborations
[4]

is based on
a scan of the Z lineshape that was performed in 1991. The 1991 energy scan
featured the use of resonant depolarization to monitor the beam energy. This
improved the knowledge of the energy scale of the machine by nearly a factor of
three over the previously published result.

In an electron-positron storage ring, the number of spin precessions per orbit
(the spin tune νs) is related to the beam energy Ebeam by the following expression:

Ebeam =
me

(g − 2)/2
· νs = 0.4406486(1) GeV · νs, (2)

where me and (g − 2)/2 are the mass and anomalous magnetic moment of the
electron, respectively. To measure the spin tune, the machine was operated
at a center of mass energy (Ecm) of 93 GeV at which it was possible to
develop transverse beam polarization. The spin tune was measured by creating
an artificial spin resonance by perturbing the beam with pulsed horizontal
magnets. In practice, one varies the frequency of pulsed magnets until the beam
polarization vanishes. This depolarization frequency fdep is related to the spin
tune by the following expression:

fdep = (νs − int(νs) · frev, (3)

where frev is the revolution frequency of the electron bunches along the nominal
orbit, 11245.50(4) Hz.

The resonant beam depolarization measurements are plotted as corrections to
the beam energy determined from flux loop measurements of a reference dipole
magnet in Fig. 1. The results of proton beam and flux loop calibrations are
also shown. The dotted lines show the previous and current uncertainties on
the energy scale. Note that the previous uncertainty was dominated by the
uncertainty on the magnet excitation curves which were needed to scale the
lower-energy proton calibrations to the operational energy of the machine. The
energy scale of the machine was established with a precision ∆Eabs of ±5.4 MeV
at Ecm = 93 GeV. The various contributions to this uncertainty are listed in
Table II.

The uncertainties on the actual scan-point energies Ei are given by the
following expression:

∆Ei
Ei

=
∆Eabs
93 GeV

⊕ |93 GeV − Ei|
Ei

∆Enon−lin⊕
(

∆E

E

)set
i

⊕ 1√
ni

(
∆E

E

)rep
i

, (4)

where ∆Enon−lin is the 1.5 MeV uncertainty in the scaling of LEP dipoles from
93 GeV to the operational energies, (∆E/E)seti is the 3×10−5 error on the setting
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Figure 1. Proton, flux loop, and resonant depolarization measurements of the LEP
beam energy are plotted as corrections to the energy determined by flux loop

measurements of a reference dipole magnet.
[4]

Table II

The components of the uncertainty on the LEP energy scale
[4]

at Ecm = 93 GeV.

Source of Uncertainty Uncertainty

Spread in depolarization measurements 3.7 MeV

Temperature effects in dipoles 3.0 MeV

Slope in flux loop measurements 2.0 MeV

Reproducibility of operational parameters 1.0 MeV

∆Eabs at Ecm = 93 GeV 5.3 MeV

of a scan point energy due to variations in the orbit and machine parameters,

ni is the number of fills at energy Ei, and (∆E/E)repi is the 10×10−5 spread in

fill energies at a given setting. The energy of an electron or positron bunch in

a storage ring increases in an rf station and decreases in an arc. This implies

that the center-of-mass collision energy is a function of position on the ring.

Corrections must be applied for the variation of the cm energies at the LEP

interaction regions (which vary by as much as 12 MeV). The uncertainties on

these corrections contribute another 1 MeV to the energy-scale uncertainties of

the experiments.

The Z mass is extracted from fits of a radiatively corrected Breit-Wigner

lineshape to the cross sections measured at six, off-peak scan energies. More

detail of this procedure is given in Sec. 4.2. The results are summarized in

Table III. The energy scale uncertainty contributes 6 MeV to the overall error

of each experiment. Uncertainties due to point-to-point luminosity errors and
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Table III

Measurements of MZ by the LEP Collaborations.
[4]

Experiment MZ (GeV) δMZ (GeV)

ALEPH 91.187 0.009

DELPHI 91.186 0.009

L3 91.195 0.009

OPAL 91.181 0.009

Common Energy Scale Error 0.006

Combined Result 91.187 0.007

radiative corrections are much smaller than the 7 MeV statistical errors on each
measurement.

3. Tree-Level Tests of the MSM

We consider next those electroweak tests that are sensitive primarily to the
tree-level structure of the MSM Lagrangian or to the particle content of the
theory. There are some electroweak measurements that clearly belong in this
category (e.g., the invisible width of the Z boson) but are more conveniently
discussed in the next chapter on loop-level tests.

3.1 W/Z Cross Section Ratio

The CDF and D0 Collaborations have recently produced preliminary
measurements

[6,7]
of the ratio of W and Z cross sections with their 1992–1993

data. They measure the ratio R` which is defined as follows:

R` ≡
σ(pp̄→ W → `ν)

σ(pp̄→ Z → ``)
=
σ(pp̄→ W )

σ(pp̄→ Z)
· Γ(W → `ν)

Γ(Z → ``)
· ΓZ
ΓW

= rW/Z ·
Γ(W → `ν)

Γ(Z → ``)
· ΓZ
ΓW

,

(5)

where rW/Z is the ratio of the total cross sections for W and Z production; and
ΓW and ΓZ are the total widths of the two states, respectively. The measurement
of the cross-section ratio has a number of advantages over measurements of
the individual cross sections. Experimental uncertainties on the luminosity,
efficiencies, and acceptances cancel completely or partially. The ratio of the
total hadronic W and Z cross sections rW/Z is calculable to fairly high precision
(1–2.5%) and does not depend strongly on Standard Model assumptions (rW/Z
scales as [MW /MZ ]1.6). Finally, the quantityR` is sensitive to the particle content
and relative coupling strengths of the W final states.
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Table IV

The integrated luminosities (
∫
dtL), event sample sizes (Nevt), backgrounds (B),

acceptances (A), and efficiencies (ε) of the CDF and D0 lepton analyses.
[6,7]

CDF CDF D0 D0 D0 D0
W → eν Z → ee W → eν Z → ee W → µν Z → µµ∫

dtL (pb) 18.4 18.4 3.45 3.45 7.3 7.3

Nevt 10991 1053 2824 172 1576 93

B (%) 10.9+.8
−.5 4.9±0.9 3.6±1.2 10.3±2.6 24±4 6±3

A (%) 33.8±0.6 37.2±0.6 46.9±3.6 42.0±3.5 22.1±1.2 26.6±2.3

ε (%) 74.9±1.3 73.1±1.5 68.0±5.0 46.0±6.7 37.2±7.0 22.5±5.3

The measurements of the two groups are summarized in Table IV. The
CDF measurement is based on electron samples that incorporate most of their
new data. The D0 Collaboration measurements are based on small samples of
electron and muon final states. In order to minimize efficiency corrections, each
group attempts to select W and Z events with similar criteria. All gauge boson
candidates are required to contain a charged lepton that satisfies fairly strict
selection criteria. The second lepton in Z events is then required to pass much less
restrictive charged lepton identification criteria. The neutrino in W candidates
is the (largely kinematic) requirement that missing transverse energy be present.
The event totals for the six samples are listed in Table IV.

The event totals must be corrected for a number of backgrounds. The
W samples can contain hadronic events which fake the lepton identification
criteria, W decays into τν final states where the τ decays leptonically, and Z
decays to `` and ττ where one final-state lepton is undetected. The Z samples
can be contaminated by hadronic backgrounds, Z decays to ττ final states,
electromagnetically produced lepton pairs, and cosmic ray muon events. The
fractional backgrounds (B) are listed with the selection criteria acceptances (A)
and efficiencies (ε) in Table IV. Note that the background for the D0 W → eν
sample seems particularly small compared with the large efficiency-acceptance
product for the event selection. This may be due to the excellent hermeticity of
the D0 calorimeter in selecting events with missing transverse energy. It is also
clear that the much older CDF Collaboration now has an excellent understanding
of their acceptances and efficiencies.

The systematic uncertainties on the acceptance-efficiency products for W and
Z events cancel in part. The resulting measurements of R` are:

R` =


10.64± 0.36± 0.27, CDF electrons

10.55± 0.87± 1.07, D0 electrons

10.0± 1.1± 2.4, D0 muons.
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The interpretation of these results requires a calculation of the ratio of total
cross sections rW/Z at

√
s = 1.8 TeV. The two groups use slightly different values:

rW/Z =

{
3.23± 0.03, CDF

[8]

3.26± 0.08, D0.
[9]

The ratio R`/rW/Z is equal to the ratio of the W and Z leptonic branching ratios

(see Eq. (5)). The Z leptonic branching ratios have been measured at the 4×10−3

level by the LEP Collaborations (see Sec. 4.2.4). Using the calculated values rW/Z
and LEP measurements of Γ(Z → ``) and ΓZ , the CDF and D0 Collaborations
quote the following results for the leptonic branching ratio of the W :

Γ(W → `ν)

ΓW
=

{
0.1100± 0.0036± 0.0031, CDF (electrons)

0.108± 0.013, D0 (electrons+muons).

This way of quoting the results has the advantage that it minimizes MSM
bias and is sensitive to the presence of new (unseen) W decays or to unexpected
coupling differences among the final states. A second, more biased method is to
use the measured value of ΓZ and to assume that the ratio of leptonic widths
Γ(W → `ν)/Γ(Z → ``) is correctly predicted by the MSM. Equation (5) can
then be solved for the total width of the W ,

ΓW =

{
2.033± 0.069± 0.057 GeV, CDF

2.10± 0.25 GeV, D0.

However, since we know that the leptonic branching ratio of the Z is quite close
to the value predicted by the MSM, this approach implicitly fixes the leptonic
width of the W to its MSM value. The resulting value of ΓW contains no more
information than does the leptonic branching ratio.

The measured values of the W leptonic branching ratio are used to extract
limits on the top quark mass that are independent of assumptions about the top
quark final states. The expected inverse branching ratio is plotted against the
top mass in Fig. 2. The 95% upper limits from the preliminary CDF and D0
measurements are shown with the older, combined result

[10]
of the UA2 and CDF

Collaborations. The resulting model-independent lower limits on the top quark
mass are 42 GeV (D0) and 63 GeV (CDF).
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Figure 2. The inverse leptonic branching ratio of theW is plotted against the mass of the

top quark. The 95% upper limits from the preliminary CDF and D0 measurements
[6,7]

are shown with the older, combined results
[10]

of the UA2 and CDF Collaborations.
The resulting model-independent lower limits on the top quark mass are 42 GeV (D0)
and 63 GeV(CDF).

3.2 The Search for Z ′

The presence of a second neutral gauge boson would certainly affect the
structure of the Electroweak Standard Model. Two groups have presented limits
on the existence of such a state.

3.2.1 The CDF Search

The CDF Collaboration has searched
[11]

for the process pp̄ → Z ′ → ee with

a data sample corresponding to an exposure of 21 pb−1. They search for events
which satisfy their Z trigger and satisfy a set of selection criteria similar to that
used to measure R` (one strictly selected central electron and one loosely selected
electron in the entire instrumented acceptance). They observe 1244 ee candidates
of mass larger than 44 GeV. The observed ee mass distribution is shown in Fig. 3.
The largest observed mass is 320 GeV.

The net efficiency of the trigger and selection criteria is approximately 70%.
The geometrical acceptance increases from 34.7% at the Z pole to 52% at a pair
mass of 200 GeV and is roughly constant at larger masses. The limit on the
product σ(pp̄ → Z ′) · Br(Z ′ → e+e−) is extracted from a likelihood fit of the
mass spectrum expected for the processes pp̄ → Z,Z ′ → e+e− to the observed

8
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Figure 3. The mass distribution of 1244 ee events observed by the CDF Collaboration
[11]

in an exposure of 21 pb−1 in 1992–1993. The largest observed mass is 320 GeV.

mass spectrum. The limit is extracted for a series of Z ′ masses with the following
assumptions:

1. The Z ′ is assumed to have the same couplings to qq̄ and `+`− as does the Z.

2. The top quark mass is assumed to be 150 GeV so that Z ′ can decay into
tt̄ if it is kinematically allowed.

Comparing the measured and expected lepton pair production cross sections,
a 95% confidence lower limit on the Z ′ mass is extracted:

MZ′ < 495 GeV at 95% C.L.

3.2.2 The L3 Search

The L3 Collaboration has searched
[12]

for the mixing of the Z with a
larger-mass Z ′. In this case, the state observed at 91 GeV is a mass eigenstate
and is a mixture of the unmixed states Z0 and Z0′. The mixing is described by
a simple rotation matrix,(

Z

Z ′

)
=

(
cos θM sin θM

− sin θM cos θM

)(
Z0

Z0′

)
, (6)

where θM is the mixing angle. The mixing angle is related to the mixed masses
MZ and MZ′ , and the light unmixed mass M0 as follows:

tan2 θM =
M2

0 −M2
Z

M2
Z′ −M2

0

. (7)

The unmixed mass participates in the Standard Model expression

M0 =
MW

ρ cos θW
, (8)
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where ρ is the usual electroweak parameter. The presence of mixing strongly
affects the Z-fermion couplings and all of the Z-pole physical observables. The
peak hadronic cross section and ratio of the leptonic and hadronic widths are
sensitive to the strong coupling constant αs but are insensitive to loop-level
corrections. Together, they are particularly useful for Z ′ searches.

[14]
Recent

searches include all of the measured Z-pole quantities.
[15]

The L3 search is carried out by fitting a mixed-model to all of the measured
Z lineshape parameters (see Sec. 4.4). The ρ parameter in Eq. (8) is assumed

equal to 1. Several types of Z ′ bosons are considered:
[13]

Z ′χ, Z
′
ψ, Z ′η, and Z ′L−R.

The resulting limits are plotted in MZ′-θM space in Fig. 4. The sensitivity of
the search comes primarily from changes in the Z phenomenology caused by
the mixing and not from Z ′ interference effects. The limits therefore extend to
arbitrarily large values of MZ′ .

4. Loop-Level Tests of the MSM

The higher-order (loop-level) corrections to the various electroweak
observables are functions of the unknown parameters of the MSM, the top
quark mass (mt), and the Higgs boson mass (mH). This has the consequence
that the measurement of a single electroweak observable does not (in general)
test the model. The unknown parameters can usually be adjusted within the
allowed regions to give agreement with the measurement. To actually perform
meaningful tests, we therefore need measurements of several quantities that
have distinct dependence on the unknown parameters. This approach has the
additional benefit that observables with different dependence on mt and mH

often have different sensitivity to extensions of the MSM. The measurement of
complementary quantities will have considerable importance aftermt is measured,
especially when deviations from the MSM are found. The classes of loop-level
corrections to the tree-level electroweak Standard Model are illustrated in Fig. 5.
The oblique or vacuum polarization corrections produce large effects due to
the running of the electromagnetic coupling constant αem and smaller (but
measurable) effects due to heavy particles. The vertex corrections are expected
to be small (but not negligible) and generally uninteresting. The corrections to
the Zbb̄ vertex are an exception. They are sensitive to mt and to the presence of
new physics. Finally, box diagrams produce very small corrections in the gauges
that are used to perform the calculations and are generally ignored.
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Figure 4. The 95% C.L. limits extracted by the L3 Collaboration
[12]

on the existence
of a Z ′ mixed with the ordinary Z. The limits are shown in the space of mixing angle

θM and mass MZ′ for several Z ′ types.
[13]

11



     

(a)

(b)

(c)

Vi Vj

7560A510-93

Figure 5. The classes of loop-level corrections to the MSM: a) oblique or vacuum
polarization corrections, b) vertex corrections, and c) box diagrams.

There are two approaches loop-level testing of the MSM:

1. The MSM is simultaneously fit to all measured electroweak observables.
The fit is used to estimate the unknown parameters, and the goodness of
fit is an indicator of the validity of the model. This approach is esthetically
clean and generally uninformative. Deviations from the MSM might affect
only a small number of the measured observables. In this case, the goodness
of fit would not be the most efficient indicator of the validity of the MSM.

2. A second approach is to attempt to characterize possible deviations in
a model-independent way. Unfortunately, no truly model-independent
approach has yet been proposed. Those that have been proposed make
the not very radical assumptions that the MSM is correct at tree-level (the
ρ parameter is unity at lowest order) and that the running of αem due to
light particle loops is correctly calculated. A number of three-parameter
schemes have been suggested: the S,T ,U scheme of Peskin and Takeuchi;

[16]

the SZ ,SW ,T scheme of Marciano and Rosner;
[17]

the hAZ ,hAW ,hV scheme

of Kennedy and Langacker;
[18]

and the ε1,ε2,ε3 scheme of Altarelli, Barbieri,

and Jadach.
[19]

These parameterizations differ somewhat in definition and
concept (some include only oblique corrections, and others also incorporate
vertex corrections). However, they are quite similar operationally, and to
the extent that oblique corrections dominate, they are related by simple
linear transformations.

For reasons of purely personal convenience, this talk is organized with the
S,T ,U scheme of Peskin and Takeuchi.
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4.1 The S,T,U(V) Scheme

The S,T ,U scheme is an approximation that is defined entirely in terms of

the gauge boson self-energies Πij(q
2) (see Fig. 5) where the indices i and j take

the values 1,2,3,Q to indicate the gauge bosons W1,W2,W3,A, respectively. To

implement the scheme, these functions are approximated by the first two terms

of a Taylor series,

Πij(q
2) = Πij(0) + q2Π′ij(q

2), (9)

where the functions Π′ij are the derivatives of Πij only at q2 = 0.

The parameters S,T , and U are defined as follows:

αS = 4e2
[
Π′33(0)− Π′3Q(0)

]
αT =

e2

s20c
2
0M

2
Z

[Π11(0)− Π33(0)]

αU = 4e2
[
Π′11(0)− Π′33(0)

]
,

(10)

where α = α(M2
Z) was defined in Eq. (1), and s0 and c0 are the sine and cosine

functions of the angle θ0,

sin2 2θ0 =
4πα(M2

Z)√
2GFM

2
Z

.

The S parameter is weak isospin symmetric and characterizes the size of the

sector that contributes to Π33. It has a logarithmic dependence on mt and mH .

The T parameter characterizes the degree of breaking of the custodial SU(2)

symmetry that ensures the unity of the ρ parameter. It has an approximately

quadratic dependence on mt and a logarithmic dependence on mH . In the MSM

and many of its extensions, the U parameter is associated with somewhat smaller

corrections than are S and T . It has a logarithmic dependence upon mt and

is independent of mH . The effective Lagrangian for neutral current processes

depends on S and T only. The charged current effective Lagrangian depends on

S, T , and U . Since most of the electroweak observables that have been measured

concern neutral current processes, and since U is associated with small effects in

well-studied theories, it is customary to assume that U is zero.

The corrections that are associated with S and T typically alter the value of

an electroweak observable by a few percent or less. Therefore, the S-T dependence

of an observable is well-described by a simple linear expansion. The general

scheme is to calculate the value of an observable Oi as accurately as is possible at
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some reference value of mt and mH , Ōi(m
ref
t ,mref

H ). The value of the observable
at other values of mt and mH is then given by the simple expansion,

Oi = Ōi(m
ref
t ,mref

H ) + ai

(
S − Sref

)
+ bi

(
T − T ref

)
, (11)

where Sref and T ref are the values of S and T at mref
t and mref

H and where the
coefficients ai and bi are constants that are independent of the true values of S
and T (mt and mh).

The definitions of S and T in terms of gauge boson self-energies contain
intrinsically arbitrary offsets. It is therefore convenient to redefine S and T to be
S − Sref and T − T ref , respectively. The conventional choice of reference point

is (mref
t , mref

H ) = (150 GeV, 1000 GeV).

A small problem arises when considering observables that depend on the
strong coupling constant αs. The current experimental uncertainty on αs leads

to non-negligible uncertainties on the predicted values Ōi(m
ref
t ,mref

H ). In the
past, these uncertainties have been incorporated by increasing the experimental
uncertainties on the affected observables. If the ensuing correlations are properly
accounted, this technique does not sacrifice any sensitivity.

A more elegant approach is to properly recognize that the predicted values
of the observables do depend on αs and to include αs as a free or constrained
parameter. Fits to the data can then be used to estimate αs. The uncertainty on
S and T that is associated with the additional degree of freedom can be included
by integrating over all values of αs in the standard way. We therefore add to the
S,T ,U scheme, a fourth parameter V which is defined as the difference between

αs and a reference value, V ≡ αs−αrefs . Equation (11) can now be expressed as

Oi = Ōi(m
ref
t ,mref

H , αrefs ) + ai · S + bi · T + di · V, (12)

where di depends weakly on the reference value αs. To minimize the V
corrections, the reference value is chosen to be 0.123, which is indicated by various
QCD measurements at the Z-pole.

[20]

It is clear from Eqs. (11) and (12) that a measurement of an electroweak
observable defines a linear confidence band in S-T space. It is also clear that
observables with different S-T slopes mST

i = −ai/bi provide different information
about the electroweak Standard Model.

As an example, we can consider a set of three old electroweak measurements
(in this case, old means that new results are not given in this talk): the ratio of

the W and Z masses, MW /MZ ;
[21]

the ratio of the neutral current and charged

current cross sections in neutrino-nucleon scattering, Rν ;
[22]

and the effective weak
charge extracted from measurements of atomic parity violation in the Cs atom,
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Figure 6. The 68% confidence regions in S-T space that are associated with the
measurements listed in Table V. The vertical contours show the MSM predictions for
mH values of 60 GeV and 1000 GeV. The dots indicate various top quark masses
between 75 GeV (bottom) and 225 GeV (top) in units of 25 GeV.

Table V

Existing measurements of several electroweak observables and their S,T ,V parameters

(see Eq. (12) for the parameter definitions). The parameters di are zero for these

observables.

Obs. Measured Value Ōi
[24]

ai
[16]

bi
[16]

mST

MW /MZ 0.8789±0.0030
[21]

0.8791 −3.15×10−3 4.86×10−3 0.65

Rν 0.312±0.003
[22]

0.3130 −2.32×10−3 6.46×10−3 0.36

QW (Cs) −71.0±1.8
[23] −73.4 −7.90×10−1 −6.46×10−2 −72

QW .
[23]

The current measurements of these quantities and their S-T slopes are

listed in Table V. The corresponding 68% confidence regions in S-T space are

shown in Fig. 6. The vertical contours show the MSM predictions for mH values

of 60 GeV and 1000 GeV. The dots indicate various top quark masses between

75 GeV (bottom) and 225 GeV (top) in units of 25 GeV.

15



     

Note that the interpretation of the quantity Rν requires a knowledge of the
quantity r which is defined as the ratio of antineutrino and neutrino charged
current cross sections. We use the CDHS value

[25]
r = 0.383. It has recently

become fashionable for neutrino experiments (CCFR) to quote their Rν results
solely in terms of the on-shell electroweak mixing parameter sin2 θW ≡ 1 −
M2
W /M

2
Z . This procedure requires the application of loop-level MSM electroweak

corrections which, due to fortuitous cancellations,
[26]

have small mt dependence.

Unfortunately, the resulting value of sin2 θW has an MSM bias. This is made clear
by examining the S-T slopes of sin2 θW (same as MW /MZ) and Rν . They differ
rather substantially (see Table V and Fig. 6). It is clear that these quantities
are not equivalent. We urge the relevant parties to present their results in a less
model-dependent way.

4.2 Z Lineshape Parameters

4.2.1 Definitions

The LEP Collaborations have measured a number of parameters that are
associated with the cross sections for the processes e+e− → Z → qq̄ and
e+e− → Z → `+`−.

To excellent approximation, the hadronic cross section can be described by a
radiatively corrected relativistic Breit-Wigner cross section,

σhad(slab) =

∫
dx1dx2De(x1)De(x2)

σ0Γ
2
Zs

2/M2
Z

(s−M2
Z)2 + Γ2

Zs
2/M2

Z

, (13)

where slab is square of the nominal center-of-mass energy, x1 and x2 are the
momentum fractions carried by the electron and positron after radiating, De(x)
is the electron structure function, s = slabx1x2 is the cm energy after initial state
radiation, MZ is the Z mass, ΓZ is the Z width, and σ0 is the so-called peak
cross section (actually not the maximum cross section). The peak cross section
can be expressed in terms of the electronic and hadronic partial widths Γee and
Γhad as follows:

σ0 =
12π

M2
Z

· ΓeeΓhad
Γ2
Z

. (14)

The differential leptonic cross sections can be expressed as follows:

dσ`
d cos θ∗

= σhad(slab) ·
1

R`
· 3
8

[
1 + cos2 θ∗ +

8

3
A`FB cos θ∗

]
F`(cos θ∗), (15)

where θ∗ is the angle of the outgoing lepton with respect to the incident electron
direction, R` is the ratio of the leptonic and hadronic widths Γ`/Γhad, A

`
FB(slab)
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is the empirical forward-backward asymmetry measured at slab, and F` is a
correction factor to take the t channel process into account for final state electrons
(Fµ = Fτ = 1 for all θ∗).

The measurements of A`FB(slab) must be fit to a Standard Model calculation
to correct for Z-γ interference arising from off-pole energies, initial state radiation,
and the imaginary part of the photon self-energy. The resulting tree-level

asymmetries A`,0FB are related to effective leptonic vector (g`V ) and axial-vector

(g`A) couplings of the Z as follows,

A`,0FB =
3

4
· 2geV g

e
A

(geV )2 + (geA)2
· 2g`V g

`
A

(g`V )2 + (g`A)2

=
3

4
· Ae · A`,

(16)

where the definitions of Ae and A` are obvious.

The leptonic partial widths can be expressed within this scheme as follows:

Γ`` =
GFM

3
Z

6π
√

2

[(
g`V

)2
+
(
g`A

)2
]
·
(

1 +
3α

4π

)
, (17)

where the final state electromagnetic vertex correction is included explicitly.
Equations (16) and (17) define the effective couplings g`V and g`A in terms of
physical parameters. The couplings therefore contain the entire spectrum of
electroweak radiative corrections.

It has become standard to define the effective electroweak mixing parameter
sin2 θeff

W in terms of the ratio g`V /g
`
A,

sin2 θeff
W ≡ 1− 4g`V /g

`
A '

(
sin2 θeff

W

)ref
+ 0.0036 · S − 0.0025 · T, (18)

where we have included the S-T trajectory relative to the reference value
[24]

(sin2 θeff
W )ref = 0.2336. This S-T trajectory which has a slope of 1.4 describes

most of the electroweak observables that are measured at the Z pole. As defined,
the parameter sin2 θeff

W incorporates the electroweak vertex corrections that affect
the Z`` vertex. However to excellent approximation, it also describes the Zqq̄
couplings

sin2 θeff
W ' 1− 4|Qq|gqV /g

q
A, (19)

where Qq is a quark charge. The errors introduced by this approximation are at

the level ∆ sin2 θeff
W ∼ 1− 2× 10−4 except for b quarks which have larger vertex

corrections.
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Table VI

A summary of the event samples used by the LEP Collaborations to measure various

electroweak observables.
[27]

Event totals are given in thousands of events.

ALEPH DELPHI L3 OPAL LEP

qq̄ ’91-’92 451 365 423 454 1693

’92 686 695 677 733 2791

total 1137 1060 1100 1187 4484

`+`− ’91-’92 55 37 40 58 190

’92 82 76 58 88 304

total 137 113 98 146 494

4.2.2 The Measurements

The LEP Collaborations have recently produced a grand combination of
all of their electroweak results from their 1990–1991 and 1992 runs.

[27]
This

remarkable document is highly recommended to all workers in the field of
precision electroweak testing.

The LEP results are based on total samples of 4×106 hadronic Z events and
0.5×106 leptonic events. The event samples of the individual experiments are
summarized in Table VI.

Each group performs a nine-parameter simultaneous fit to its hadronic and

leptonic data samples. The fit parameters are MZ , ΓZ , σ0, Re, Rµ, Rτ , A
e,0
FB,

Aµ,0FB, and Aτ,0FB. The systematic uncertainties that affect this analysis are listed
in Table VII. Note that the luminosity errors do not include the theoretical
uncertainty on the small-angle Bhabha cross section. This uncertainty depends
on the acceptance of each luminosity monitor. It is quoted as 0.25% for ALEPH
and L3 and 0.3% for DELPHI and OPAL. The errors affecting the hadronic
and leptonic cross section measurements are due to uncertainties on selection
efficiencies and backgrounds. The systematic errors on the forward backward
asymmetries are due to uncertainties on acceptances (probably very small),
energy scale, and radiative corrections.
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Table VII

A summary of the systematic errors that affect measurements of the Z lineshape and

leptonic forward-backward asymmetries.
[27]

The common error due to the LEP energy

scale uncertainty is not included.

ALEPH DELPHI L3 OPAL

’91 ’92 ’91 ’92 ’91 ’92 ’91 ’92
prel prel prel prel

L(a) 0.45% 0.35%(b) 0.5% 0.6% 0.5% 0.5% 0.60% 0.41%

0.15%(c)

σhad 0.2% 0.17% 0.2% 0.28% 0.15% 0.14% 0.20% 0.20%

σe 0.4% 0.4% 0.5% 0.6% 0.4% 0.4% 0.45% 0.22%

σµ 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.25% 0.19%

στ 0.6% 0.5% 0.75% 0.75% 0.7% 0.7% 0.76% 0.44%

AeFB (d) (d) 0.002 0.004 0.0045 0.002 0.003 0.002

AµFB (d) (d) 0.003 0.002 0.003 0.003 0.003 0.001

AτFB (d) (d) 0.002 0.004 0.006 0.003 0.003 0.002

(a)Does not include the theoretical error on the small-angle Bhabha cross section. The

theoretical error is acceptance dependent and is 0.25% for ALEPH and L3 and 0.3% for

DELPHI and OPAL. (b)Without the ALEPH silicon calorimeter. (c)With the ALEPH silicon

calorimeter. (d)This error has not been accurately estimated since it is known to be smaller

than the statistical error.

The results of the nine-parameter fits are listed in Table VIII. The combined
LEP result accounts for common energy scale and luminosity uncertainties. We

see that the measurements of R` and A`,0FB are consistent with lepton universality.
Assuming that lepton universality is valid, the data are then fit to a five-parameter

hypothesis which depends on MZ , ΓZ , σ0, R`, and A`,0FB. The results of this
analysis are summarized in Table IX. Note that the individual errors within
the five and nine parameter sets are correlated. The correlation matrices are
reproduced in Appendix A.

4.2.3 Interpretation of the Lineshape Parameters

The hadronic width of the Z is affected by a 4% QCD vertex correction,

Γhad = Γ0
had

(
1 +

αs
π

+ ...
)
,

where Γ0
had is the uncorrected width. This implies that the lineshape parameters

ΓZ , R`, and σ0 depend on V (αs). The S, T , and V dependence of these quantities
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Table VIII

The results of nine-parameter fits to the hadronic and leptonic cross sections measured

by the four LEP experiments.
[27]

The LEP totals include common energy scale and

luminosity errors.

Param ALEPH DELPHI L3 OPAL LEP

MZ (GeV) 91.187(9) 91.187(9) 91.195(9) 91.182(9) 91.187(7)

ΓZ (GeV) 2.501(11) 2.482(12) 2.493(10) 2.483(12) 2.489(7)

σ0 (nb) 41.61(16) 41.02(27) 41.33(26) 41.71(23) 41.56(14)

Re 20.58(15) 20.70(18) 20.90(16) 20.83(16) 20.743(80)

Rµ 20.82(15) 20.48(15) 21.02(16) 20.78(11) 20.764(69)

Rτ 20.62(17) 20.88(20) 20.78(20) 21.01(15) 20.832(88)

Ae,0FB 0.0185(59) 0.0237(92) 0.0135(78) 0.0062(80) 0.0153(38)

Aµ,0FB 0.0147(47) 0.0143(50) 0.0167(64) 0.0099(42) 0.0132(26)

Aτ,0FB 0.0182(53) 0.0213(68) 0.0257(89) 0.0205(52) 0.0204(32)

χ2/dof 27.1/27

Table IX

The results of five-parameter fits to the hadronic and leptonic cross sections measured

by the four LEP experiments.
[27]

The LEP totals include common energy scale and

luminosity errors.

Param ALEPH DELPHI L3 OPAL LEP

MZ (GeV) 91.187(9) 91.187(9) 91.195(9) 91.181(9) 91.187(7)

ΓZ (GeV) 2.501(11) 2.482(12) 2.493(10) 2.482(12) 2.489(7)

σ0 (nb) 41.61(16) 41.02(27) 41.33(26) 41.70(23) 41.56(14)

R` 20.68(10) 20.65(11) 20.92(11) 20.835(86) 20.763(49)

A`,0FB 0.0168(32) 0.0179(38) 0.0178(44) 0.0128(30) 0.0158(18)

χ2/dof 30.8/31

are listed in Table X. Note that R` and σ0 are simple functions of sin2 θeff
W and

have the characteristic S-T slope of 1.4 (all wavefunction renormalization terms
cancel). The total width is unique among the directly measured Z parameters in
that its S-T trajectory differs from mST = 1.4.

The 68% confidence regions in S-T space that are associated with the
V -dependent lineshape parameters are plotted in Fig. 7. For simplicity, the
contours are plotted at V = 0. Note that σ0 is particularly insensitive to S
and T . It therefore determines V more or less independently of S and T . The
vertical contours show the same MSM predictions that are plotted in Fig. 6.
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Table X

The S, T , and V dependence of the lineshape parameters (see Eq. (12) for the

definitions).

Observable Ōi
[24]

ai
[16]

bi
[16]

di mST

ΓZ (GeV) 2.485 −9.58×10−3 2.62×10−2 5.87×10−1 0.37

σ0 (nb) 41.447 2.19×10−2 −1.55×10−2 −5.58 1.4

R` 20.753 −5.99×10−2 4.24×10−2 7.01 1.4

0 2 4–2–4
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T
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ΓZ

σo

R

Figure 7. The 68% confidence regions in S-T space that are associated with the
V -dependent lineshape parameters ΓZ , R`, and σ0. The contours are plotted at
V = 0. The vertical contours show the MSM predictions for mH values of 60 GeV
and 1000 GeV. The dots indicate various top quark masses between 75 GeV (bottom)
and 225 GeV (top) in units of 25 GeV.

4.2.4 Derived Lineshape Parameters

A number of quantities can be derived from the five- and-nine parameter sets

of measured quantities. These derived parameters obviously do not contain any

additional information regarding the validity of the MSM but are useful for other

purposes. Using the definitions of R` and σ0 (see Eq. (14)), it is straightforward

to determine the hadronic and leptonic widths, Γhad and Γ``, from the measured

parameters MZ , ΓZ , R`, and σ0. The invisible width Γinv ≡ ΓZ − Γhad − 3Γ``
follows in straightforward fashion. The vector and axial vector couplings, g`V
and g`A, can be determined from the parameters A`,0FB and Γ``. Finally, it is

straightforward to determine the parameter sin2 θeff
W from the forward-backward

asymmetries A`,0FB.
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Table XI

Parameters that are derived from the measured lineshape parameters of the LEP

Collaborations.
[27]

Without Lepton Universality

Γee (MeV) 83.86±0.30

Γµµ (MeV) 83.78±0.40

Γττ (MeV) 83.50±0.45

With Lepton Universality

Γ`` (MeV) 83.82±0.27

Γhad (MeV) 1740.3±5.9

Γinv (MeV) 497.6±4.3

(g`V )2 0.00134±0.00015

(g`A)2 0.25088±0.00083

sin2 θeffW 0.2318±0.0010

The derived lineshape parameters are listed in Table XI. Note that the full
error matrices have been used to account for correlations among the measured
parameters.

The derived value for the ratio of the invisible and leptonic widths is
Γinv/Γ`` = 5.936 ± 0.054. This ratio is converted into the number of light
neutrinos Nν by dividing by the MSM value for the ratio of neutrino and leptonic
widths, Γνν/Γ`` = 1.993 ± 0.003. The result is in excellent agreement with the
three-light-neutrino structure of the MSM,

Nν = 2.980± 0.027.

4.3 Final-State Polarization of the τ

The process e+e− → Z → ff̄ produces polarized final state fermions.
Defining the polarization in terms of a left-handed basis, the final state
polarization is expected to have the following dependence on couplings and the
fermion direction:

Pf =
Af (1 + cos2 θ∗) + 2Ae cos θ∗

1 + cos2 θ∗ + 2AeAf cos θ∗
, (20)

where Ae and Af are defined in Eq. (16). When averaged over all angles, the
average final-state fermion polarization P̄f is simply Af .

The τ is the only short-lived final-state fermion that is well-enough
understood to serve as a polarimeter. In general, the decay of a polarized τ− can
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Table XII

Typical characteristics of Pτ measurements with various final states. The analyzing

power ap is defined as the product δPτ ·
√
Ndec.

Final State eνν̄ µνν̄ πν ρν a1ν

Branching Ratio (%) 18 18 12 24 8

Acceptance 0.4 0.7 0.6 0.5 0.5

Analyzing Power ap 5 5 1.8 2.3 3.1

Relative Precision 2.7 2.1 1.0 1.0 2.2

be described by anN -dimensional decay distribution that has a linear dependence
upon Pτ ,

1

Γ

dNΓ

dxN
= A(x1, ..., xN ) + PτB(x1, ..., xN ), (21)

where A and B are calculable functions. In practice, two-body hadronic final
states (πν, ρν, and a1ν) have the largest analyzing powers, and the three-body
leptonic final states are the second most efficient. For π and ` final states, one
kinematic variable describes the visible final state (N = 1). The ρ and a1 final
states are described by three and six kinematic variables, respectively.

The final-state polarization is measured by isolating a sample of particular
τ final states and fitting the appropriate version of Eq. (21) to the measured
kinematic distributions. The features of typical Pτ measurements with the
various final states are listed in Table XII. The analyzing power ap characterizes
the statistical precision δPτ that is obtainable with a sample of Ndec decays,
δPτ = ap/

√
Ndec. The πν final state has the best analyzing power but is

comparable in overall precision with the more copious ρν final state.

Measurements of Pτ are sensitive to uncertainties in the detector acceptances,
backgrounds, interchannel cross talk, and energy scales. The a1ν final state
is sufficiently complex that the hadronic decay chain must be modelled which
leads to a systematic uncertainty. The most precise Pτ measurements have been
performed by the ALEPH Collaboration.

[28]
The systematic uncertainties that are

associated with their analyses are summarized in Table XIII.

Two of the LEP Collaborations (ALEPH and OPAL) have measured Pτ as
a function of θ∗ and have used Eq. (20) to extract Ae in addition to Aτ . Small
corrections (∼0.002–0.003) must be applied to Aτ and Ae to account for Z-γ
interference arising from the usual sources. The results are listed in Table XIV.
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Table XIII

The systematic uncertainties that affect the ALEPH τ polarization measurements.
[28]

Uncertainty eνν̄ µνν̄ πν ρν a1ν

Acceptance 0.011 0.012 0.016 0.024 0.014

τ Background 0.016 0.012 0.010 0.007 0.020

Non-τ Background 0.012 0.008 0.002 0.003 —

Energy Calibration 0.032 0.014 0.001 0.012 0.001

Model Dependence — — — — 0.012

Monte Carlo Stat. 0.021 0.017 0.008 0.010 0.020

Total Syst. Error 0.045 0.029 0.018 0.030 0.034

Table XIV

The parameters Aτ and Ae that are extracted from τ polarization by the LEP

Collaborations.
[27]

Experiment Aτ Ae

ALEPH (’90+’91) 0.143±0.023 0.120±0.026

DELPHI (’90+’91+’92) 0.151±0.029 —

L3 (’90+’91+’92) 0.133±0.024 —

OPAL (’90+’91) 0.117±0.046 0.231±0.083

LEP Average 0.139±0.014 0.130±0.025

χ2/dof 0.5/3 1.6/1

4.4 Lepton Universality

For each lepton flavor, the measured forward-backward asymmetry and
partial width determine the couplings gV and gA. The values of Aτ and Ae
that are extracted from the τ polarization measurements are used to improve the
determinations of the τ and electron couplings. The 1σ (39%) confidence region
in the gV -gA space of each flavor is shown in Fig. 8. Note that they are consistent
with lepton universality. If lepton universality is assumed, the data determine
the solid ellipse.
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Figure 8. The 1σ (39%) confidence regions in gV -gA space that are extracted from

measurements of A`,0FB , Γ``, Aτ , and Ae for the three lepton flavors.
[27]

The shaded
region shows the MSM expectation.

The best estimates of g`V and g`A are listed in Table XV. The vector and axial
vector coupling ratios are as follows:

gµV /g
e
V = 0.77± 0.21

gτV /g
e
V = 1.00± 0.13

gµA/g
e
A = 1.0006± 0.0026

gτA/g
e
A = 0.9990± 0.0029.

The axial vector couplings are consistent with universality at the 0.3% level.
The much smaller vector couplings are consistent with lepton universality at the
10–20% level.
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Table XV

The vector and axial vector leptonic couplings extracted from measurements of A`,0FB ,

Γ``, Aτ , and Ae by the LEP Collaborations.
[27]

Without Lepton Universality

geV -0.0373±0.0031

gµV -0.0288±0.0064

gτV -0.0372±0.0032

geA -0.50096±0.00093

gµA -0.5013±0.0012

gτA -0.5005±0.0014

With Lepton Universality

g`V -0.0359±0.0018

gτA -0.50093±0.00082

4.5 Quark Forward-Backward Asymmetries

At the Z pole, the quark forward-backward asymmetries are also sensitive
measures of sin2 θeff

W . At sin2 θeff
W ' 0.232, derivatives of the u- and d-quark

asymmetries with respect to sin2 θeff
W are quite large,

dAuFB
d sin2 θeff

W

' −4.3 and
dAdFB

d sin2 θeff
W

' −5.6.

To measure these asymmetries, it is necessary to identify the final state quark or
mixture of final state quarks and to identify the quark (as opposed to antiquark)
direction.

4.5.1 Average Quark Asymmetries

The simplest technique is to sum over all final-state quark flavors. The q
direction must be determined on a statistical basis from total charges of the jets.
The determination the q direction is complicated by the fact that the negatively
charged hemisphere is the forward direction for d-type quarks and the backward
hemisphere for u-type quarks. The charge determination is based on a quantity
known as the momentum weighted jet charge which is calculated from the charged
tracks in each event,

Q ≡
∑
qisgn(~pi · T̂ )|~pi · T̂ |κ∑

|~pi · T̂ |κ
, (22)

where qi is the charge sign of the ith track, ~pi is the momentum of the ith track,
κ is a weighting exponent, and T̂ is the direction of the thrust axis.
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The quantity Q is used in two different ways. In the first, the z component of
the thrust axis is taken to be positive (in the incident electron direction). In this
case, the average value of Q is the so-called forward-backward jet charge QFB.
The expected value of this quantity is given by the following expression:

QFB =
1

Γhad

∑
f

αf · 2QfAfFB · Γff , (23)

where f labels the final state quarks, αf is an analysis and detector dependent
analyzing power, and Qf is the quark charge. It is clear from Eq. (23) that the
u-type quarks with (Qu, A

u
FB, Γuu) of (2/3, ∼0.067, 297 MeV) tend to cancel

the effects of the d-type quarks which are described by the parameters (−1/3,
∼0.095, 383 MeV). The resulting value of QFB is very small (' −0.006)

The second way to use the momentum-weighted jet charge is to assign the q
direction as the thrust direction such that Q is negative. The data can then be
fit to the usual angular distribution,

dN

d cos θ∗
=

3

8

[
1 + cos2θ∗ +

8

3
AhFB cos θ∗

]
, (24)

where AhFB is now an average quark asymmetry. The expected value of AhFB is
given by the following expression:

AhFB =
1

Γhad

∑
f

αf ·
−Qf
|Qf |

AfFB · Γff . (25)

This quantity weights each quark component with unit weight (instead of the
quark charge). The d-type quarks dominate the average which results in a larger
asymmetry (∼0.04).

The interpretation of either QFB or AhFB requires a knowledge of the
analyzing powers. These must be derived from detailed simulations of the
fragmentation process and detector response. However if one has a flavor-tagged
sample, it is possible to determine αf directly from the data by using the
correlation between the Q measured in opposite thrust hemispheres.

The ALEPH and DELPHI Collaborations have performed measurements of
QFB, and the OPAL Collaboration has performed a measurement of AhFB. Since
the measured quantities depend on analyzing powers which are particular to
the individual measurements, the results are quoted in terms of sin2 θeff

W . The

results are listed in Table XVI. The JETSET fragmentation model
[29]

is used
by the experiments to calculate their analyzing powers. The results are most
sensitive to the JETSET s/u parameter which describes strange quark production
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Table XVI

The values of sin2 θeffW determined from measurements of the average quark

forward-backward asymmetries by the LEP Collaborations.
[27]

Experiment Measurement s/u sin2 θeffW

ALEPH (89-92) QFB 0.315±0.045 0.2317±0.0013±0.0011

DELPHI (90-91) QFB 0.315±0.045 0.2345±0.0030±0.0027

OPAL (90-91) AhFB 0.285±0.050 0.2321±0.0017±0.0028

Average 0.2320±0.0011±0.0011

from string-breaking. The allowed ranges for this parameter are also listed in
Table XVI. The systematic error on the ALEPH measurement has improved
markedly this year.

[30]
This QFB measurement is now as precise as the individual

three-flavor measurements of A`,0FB.

4.5.2 Heavy Quark Forward-Backward Asymmetries

The dilution of the measured asymmetries can be avoided by the use of flavor
tagging. Accurate flavor tagging is possible only with b and c quarks. Three
techniques are currently used to do this:

1. The traditional technique is to use large p-pt leptons to tag the flavor and
sign of the final-state jets. The mixing-diluted b-quark asymmetry ĀbFB
and the c-quark asymmetry AcFB are extracted from a fit to the observed
p-pt spectrum. The model used in the fitting procedure must contain a
number of lepton sources:

(a) b→ `− which occurs with asymmetry ĀbFB;

(b) b→ τ− → `− which occurs with asymmetry ĀbFB;

(c) b→ c→ `+ which occurs with asymmetry −ĀbFB;

(d) b→ c̄→ `− which occurs with asymmetry ĀbFB;

(e) b→ J/ψ → `− which occurs with zero asymmetry; and

(f) c→ `+ which occurs with asymmetry −AcFB.

2. The advent of high-precision vertex detectors has lead to the use of
lifetime tagging techniques to isolate fairly pure samples of b final states.
The b-b̄ separation is then achieved with the momentum-weighted jet
charge technique. The determination of the jet charge analyzing power
is substantially more reliable in this case for two reasons. The first is that
the b-quark fragmentation function is peaked at large momentum fraction.
The large momentum tracks in the event are mostly from the b-hadron
decay chains which are well-measured and modelled. The second reason is
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that with a relatively pure b sample, the analyzing power can be directly
extracted from the data by using the correlation between the jet charge
measured in opposite thrust hemispheres.

3. Prompt c quarks and c quarks from b decays can fragment intoD∗+ mesons.
These decay into the following easily recognized and charge signed states:

D∗± → π±
(
D0

D̄0

)
→ π±(K∓π±), π±(K∓π±π0), and π±(K∓π±π∓π±).

The b-quark asymmetries are diluted by B0-B̄0 mixing. The dilution is
described by the following expression:

ĀbFB = (1− 2χM )AbFB, (26)

where χM is the well-known mixing parameter that is measured from the ratio
of like-sign and opposite-sign dilepton events. The LEP Collaborations use the
following value to correct their AbFB measurements,

χM = 0.115± 0.009± 0.006.

The results of six measurements of AbFB and six measurements of AcFB
performed by the LEP Collaborations are summarized in Table XVII. The
common systematic errors are itemized in the central regions of the table.

The asymmetries listed in Table XVII must be corrected for final-state
gluon radiation and electroweak interference arising from off-peak energies and
initial-state radiation. The corrected values are

Ab,0FB = 0.099± 0.006 and Ac,0FB = 0.075± 0.015.

The interpretation of these numbers is discussed in Sec. 4.7.

4.6 Left-Right Asymmetry

In 1992, the SLD Collaboration performed the first measurement of the
left-right Z cross section asymmetry ALR.

[31]
This quantity is defined in terms

of the cross sections for producing Z bosons with left- and right-handed electron
beams, σL and σR, respectively. Assuming that the beam polarization is Pe, the
measured asymmetry has a particularly simple form,

ArawLR ≡
σL − σR
σL + σR

= Pe · ALR = Pe · Ae, (27)

where ALR = Ae directly determines sin2 θeff
W . Note that ALR has the following

properties: it is a sensitive function of sin2 θeff
W , it is large (0.1–0.2), and it does

not depend on the couplings of the Z to its final states.
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Table XVII
A summary of the b-quark and c-quark forward-backward asymmetry measurements

that have been performed by the LEP Collaborations.
[27]

ALEPH DELPHI L3 OPAL ALEPH DELPHI LEP
`, high pt µ, high pt ` ` vertex vertex avg.

90–92 91–92 90–92 90–91 92 91–92

AbFB (%) 8.1 10.2 9.1 9.1 10.9 11.6 9.4

Stat. error ±1.0 ±1.6 ±1.0 ±1.8 ±1.2 ±1.9 ±0.5

Uncorr. Sys. ±0.1 ±0.9 ±0.5 ±0.4 ±0.5 ±1.7 ±0.2

SL Model ±0.12 (b) (b) ±0.30 (d) (d)

SL BR ±0.09 ±0.46 ±0.18 ±0.25 (d) (d)

Fragment. ±0.12 ±0.46 ±0.08 ±0.05 ±0.10 ±0.80

Γbb/Γcc ±0.08 (b) ±0.04 ±0.45 ±0.11 ±0.50

Mixing ±0.23 ±0.30 ±0.26 ±0.26 ±0.13 ±0.30

AcFB (c) ±0.46 (a) (a) (c) (e)

Total Corr. ±0.3 ±0.8 ±0.3 ±0.6 ±0.2 ±1.0 ±0.3

√
s 91.27 91.27 91.27 91.23 91.28 91.27 91.27

χ2/dof 3.8/5

ALEPH L3 OPAL ALEPH DELPHI OPAL LEP
` ` ` D∗ D∗ D∗ avg.

90–91 90–92 90–91 90–91 90–91 91–92

AcFB (%) 9.9 6.0 1.4 6.8 10.7 5.2 6.6

Stat. error ±2.0 ±2.2 ±3.0 ±4.2 ±7.5 ±2.8 ±1.2

Uncorr. Sys. ±1.5 ±2.2 ±1.7 ±0.7 ±1.0 ±0.9 ±0.7

SL Model ±0.76 (b) ±0.62 (d) (d) (d)

SL BR ±0.51 ±1.31 ±0.66 (d) (d) (d)

Fragment. (a) ±0.45 ±0.21 ±0.18 ±0.13(f) ±0.12

Γbb/Γcc (a) ±0.22 ±0.60 (a) (f) (a)

Mixing,AbFB (d, a) (d, a) (d, a) ±0.54 ±0.86(f) ±0.80

D∗ BR (d) (d) (d) ±0.18 ±0.13(f) ±0.12

Total Corr. ±0.9 ±1.4 ±1.1 ±0.6 ±0.9 ±0.8 ±0.7

√
s 91.23 91.27 91.23 91.23 91.23 91.27 91.25

χ2/dof 4.5/5

(a)Fitted simultaneously and included in the statistical or uncorrelated error. (b)Treated

together with the SL BR error. (c)Standard Model relationship of AbFB and AcFB is assumed.
(d)Not applicable. (e)Negligible. (e)Breakdown of systematic error inferred from other D∗ tag

measurements.

30



      

Table XVIII

The properties of several Z pole asymmetry measurements. It is assumed that

x ≡ sin2 θeffW = 0.232.

Property ArawLR A`FB AbFB P̄τ

Asymmetry Size 0.14Pe 0.016 0.099 0.14

Fraction of Visible Z Decays 96% 3 × 4% 19% 4%

Efficiency(ε) × Acceptance(A) 90% 70-80% ∼10% ∼30%/τ

Sensitivity to sin2 θeffW (∂A/∂x) 7.9Pe 1.7 5.6 7.9

Pe Correction yes no no no

ε×A Correction no yes yes yes

Background Correction no no yes yes

B0B̄0 Mixing Correction no no yes no

Sensitivity to initial state weak strong 2×ALR ∼weak
radiation and cm energy

Relative sample size needed 1 ∼150 ∼60 ∼200
for equal stat. precision Pe = 65%

The left-right asymmetry is measured by counting nearly all Z decay modes

(e+e− final states are excluded) for each of the two longitudinal polarization states

of the electron beam. The measurement requires knowledge of the absolute beam

polarization, but does not require knowledge of the absolute luminosity, detector

acceptance, or efficiency. The properties of the measured asymmetry (ArawLR ) are

contrasted with those of the other Z pole asymmetries in Table XVIII. Assuming

a beam polarization of 65%, the measurement of ALR has 60–200 times more

statistical power and is more precise systematically than measurements of the

other observables.

In 1992, the SLAC Linear Collider (SLC) was first operated with a polarized

electron beam. During that run, the SLD accumulated approximately 10,000 Z

events with an average beam polarization of 22%. In 1993, the SLC performance

was improved substantially, and a newly-developed strained lattice GaAs

cathode
[32]

has greatly improved the degree of beam polarization. Approximately

50,000 events were accumulated with an average beam polarization larger than

60%.

The technique used to measure ALR is quite straightforward. A simple

calorimeter-based analysis isolates hadronic and τ+τ− final states. Electron

pair final states are excluded to avoid contamination from the large t-channel

γ-exchange subprocess. Since the electron beam helicity is changed randomly

on each machine pulse, the left- and right-handed luminosities are quite similar.

The measured asymmetry is formed from the number of events produced with
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Table XIX

The systematic uncertainties that affected polarization measurement in 1992 and

preliminary values for the 1993 run.

Systematic Uncertainty δPe/Pe(1992) δPe/Pe(1993)

Laser Polarization 2.0% <∼1.5%

Analyzing Power Calibration 0.4% 0.5%

Detector Linearity 1.5% ∼0.7%

Interchannel Consistency 0.9% 0.5%

Electronic Noise Correction 0.4% 0.5%

Total Systematic Uncertainty 2.7% <∼1.8%

left-handed electron beam NL and the number produced with right-handed beam
NR,

ArawLR =
NL −NR
NL +NR

. (28)

The measured asymmetry ArawLR is related to ALR by the following expression
which incorporates a number of small correction terms in square brackets:

ALR =
ArawLR

Pe
+

1

Pe

[
ArawLR fb + (ArawLR )2AP − Ecm

σ′(Ecm)

σ(Ecm)
AE − Aε − AL

]
, (29)

where Pe is the luminosity-weighted average beam polarization; fb is the
background fraction; σ(E) is the unpolarized Z cross section at energy E; σ′(E)
is the derivative of the cross section with respect to E; and AP , AE , Aε, and AL
are the left-right asymmetries of the beam polarization, the center-of-mass energy,
the product of detector acceptance and efficiency, and the integrated luminosity,
respectively.

The dominant systematic error on the ALR determination is the uncertainty
on the beam polarization measured by the SLD Compton polarimeter. The
various contributions to the 1992 and preliminary 1993 systematic polarization
uncertainties are listed in Table XIX.

The 1992 and preliminary 1993 values of the various corrections to ArawLR that
are defined in Eq. (29) are listed in Table XX. Note that the 1993 luminosity
asymmetry is measured directly using a new high-statistics monitor that detects
forward-radiative Bhabha scattering events.

In 1993, the SLC was operated with a flat electron beam. The vertical
beam size of 0.9 µm may have been limited by chromatic aberrations. If this
were the case, then the luminosity-weighted beam energy might differ from the
average beam energy. Since the direction of the beam polarization vector at
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Table XX

Corrections to ALR for the 1992 measurement along with preliminary values for the

1993 measurement.

δALR/ALR(%) δALR/ALR(%)

Correction 1992 1993

Background (fb) <1.4 0.6±0.3

L-R Polarization Asymmetry (AP) 0.006 0.018±0.030

L-R Energy Asymmetry (AE) −0.07 −0.01

L-R Efficiency Asymmetry (Aε) ∼0 ∼0

L-R Luminosity Asymmetry (AL) 0.8±1.9 0.2±0.03

Total Correction 0±2.4 0.8±0.3

the SLC interaction point is correlated with the beam energy, this leads to
the possibility that the luminosity-weighted polarization might differ from the
average beam polarization measured by the Compton polarimeter. Extensive
measurements of the polarization-energy correlation and the machine energy
spread have led to the conclusion that the difference between the average beam
polarization and the luminosity-weighted quantity is less than 1%. The same
studies indicate that the spin transmission of the SLC arc is larger than previously
thought (>∼95%). Unfortunately, this puts the beam polarization measured by
the Compton polarimeter into disagreement with the polarization measured in
the linac by a diagnostic Møller polarimeter. As this document is being written,
a number of tests are in progress. Until they are complete, no preliminary result
from the 1993 run will be available.

The value of ALR measured in 1992 and the preliminary errors on the 1993
result are as follows:

ALR(91.55 GeV) = 0.100± 0.044± 0.004 (1992),

ALR(91.28 GeV) = ± 0.007± 0.003 (1993).

Applying very small corrections for Z-γ interference arising from operation at
off-pole energies and initial state radiation, these results can be expressed in
terms of sin2 θeff

W ,

sin2 θeff
W =

{
0.2378± 0.0056± 0.0005 (1992)

±0.0009± 0.0004 (1993).

33



     

4.7 Determination of sin2 θeff
W

We should note that the procedures used to extract the various Z-pole
asymmetries do contain some Standard Model bias. In all cases, corrections for
electroweak interference are applied. The approximate sizes of these corrections
are as follows: A`FB (100%), AcFB (15%), AbFB (4.5%), and Pτ/ALR (2.8%).
Within the context of the MSM, these corrections are largely tree-level and can
be applied without much bias to the loop-level tests. However, we are definitely
allowing ourselves to be guided by MSM expectations. Should deviations from
the MSM appear, these assumptions may require modification.

The use of the parameter sin2 θeff
W to characterize the neutral-current couplings

of the various fermions is an MSM-inspired assumption that is amenable to test.
Using Eqs. (18) and (19), values of sin2 θeff

W are extracted from the measured
values of all of the Z-pole asymmetries and are listed in Table XXI. Note that
the different techniques yield remarkably self-consistent results. Assuming that
the various electroweak corrections have not caused undue bias, it does appear
that it is possible to characterize the ratio of vector and axial vector couplings to
the Z with a single parameter. The combined result, sin2 θeff

W = 0.2321± 0.0006,
is currently the most precise of the electroweak tests. The corresponding 68%
confidence region in S-T space is shown in Fig. 9. Note that it occupies less area
than any of the confidence regions that we’ve plotted previously.

4.8 Zbb̄ Vertex

The corrections to the Zbb̄ vertex differ somewhat from those that affect
the lighter quark vertices. The effect of the top quark, which leads to larger
mt-dependent effects, is unsuppressed by CKM factors. Extensions to the MSM
which contain mass-dependent couplings can also produce significant effects upon
the vertex. The most sensitive test of these corrections is the measurement of the
ratio Γbb/Γhad. This work is described in the presentation of W. Venus at this

Symposium.
[33]

4.9 Interpretation of Loop-Level Tests

As was discussed at the beginning of this chapter, there are two approaches
to the testing of the MSM. The first is to fit the MSM to all observations and to
examine the goodness-of-fit. The second is to fit a more general parameterization
of the loop-level corrections to the data. The results can then be compared with
the predictions of the MSM.
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Figure 9. The 68% confidence region in S-T space that corresponds to the measured
value of sin2 θeffW . The vertical contours show the MSM predictions for mH values of
60 GeV and 1000 GeV. The dots indicate various top quark masses between 75 GeV
(bottom) and 225 GeV (top) in units of 25 GeV.

Table XXI

A summary of all measurements that determine sin2 θeffW .

Observable Number of Meas. sin2 θeffW

A`,0FB 4 0.2318±0.0010

Aτ 4 0.2325±0.0018

Ae 2 0.2337±0.0032

Ab,0FB 6 0.2322±0.0011

Ac,0FB 6 0.2313±0.0036

QFB 3 0.2320±0.0016

LEP Average 25 0.2321±0.0006

χ2/dof 0.5/5

ALR 1 (1992 only) 0.2378±0.0056

World Average 26 0.2322±0.0006

χ2/dof 1.5/6
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Table XXII

The measured observables used by the LEP Collaborations
[27]

in their analysis of the

MSM.

Observable Measurement

LEP Results

MZ (GeV) 91.187±0.007

ΓZ (GeV) 2.489±0.007

σ0 (nb) 41.56±0.14

R` 20.763±0.049

A`,0FB 0.0158±0.0018

+ correlation matrix

Aτ 0.0139±0.014

Ae 0.0130±0.025

Ab,0FB 0.099±0.006

Ac,0FB 0.075±0.015

Γbb/Γhad 0.2200±0.0027

sin2 θeffW from QFB 0.2320±0.0016

pp̄ and νN Results

MW /MZ 0.8813±0.0041
[21]

MW (GeV) 79.91±0.39
[21]

1−M2
W /M

2
Z 0.2256±0.0047

[25,35]

4.9.1 The MSM Hypothesis

The LEP Collaborations
[27]

have performed a fit of the MSM (using the

computer codes ZFITTER
[24]

and BHM
[34]

) to the measured observables listed

in Table XXII (they incorporate the LEP lineshape parameter correlation matrix

which is reproduced in Appendix A).

Since the dependence of the loop-level corrections on mH is quite weak,

the data do not constrain the Higgs mass to a physically interesting confidence

interval. Therefore, the fit is performed with mH fixed to the values 60 GeV,

300 GeV, and 1000 GeV. The quantities mt and αs are allowed to vary as

free parameters. The fit is performed on the LEP measurements alone and

upon a combination of the LEP results and measurements from hadron collider

and neutrino experiments (see Table XXII). The results are summarized in

Table XXIII. Note that the central value of each confidence interval refers to

the mH = 300 GeV fit. The variation of the result with Higgs mass is presented

as the second set of errors in each case.
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Figure 10. The value χ2 for the combined fit of the LEP Collaborations
[27]

(column
three in Table XXIII) is plotted as a function of mt for three values of mH .

Table XXIII

The results of the MSM fit to all observables performed by the LEP Collaborations.
[27]

Parameter LEP Measurements LEP Measurements
+ Collider and ν data

mt (GeV) 166+17+19
−19−22 164+16+18

−17−21

αs(M
2
Z) 0.120±0.006±0.002 0.120±0.006±0.002

χ2/dof 3.5/8 4.4/11

sin2 θeffW 0.2324±0.0005+0.0001
−0.0002 0.2325±0.0005+0.0001

−0.0002

1−M2
W /M

2
Z 0.2255±0.0019+0.0005

−0.0003 0.2257±0.0017+0.0004
−0.0003

MW (GeV) 80.25±0.10+0.02
−0.03 80.24±0.09+0.01

−0.02

It is clear that the MSM describes all observations quite well. The best
estimates of mt and αs are 164+16+18

−17−21 GeV and 0.120±0.006±0.002, respectively.

The value χ2 for the combined fit (column three in Table XXIII) is plotted as a
function of mt for each mH value in Fig. 10. Note that the data have a small
(but not significant) preference for smaller mH values.
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Table XXIV

The results of S, T , V fits to all observables.

Parameter αs constrained αs free
(0.123±0.006)

S −0.45±0.31 −0.44±0.31

T −0.05±0.32 −0.03±0.33

V −0.001±0.004 −0.003±0.006
(αs = 0.120± 0.006)

χ2/dof 3.0/10 2.9/9

4.9.2 The S, T , V Analysis

We can now fit all of the observables that have been discussed in this

chapter to common values of S, T , and V . Using the correlation matrix for

the LEP lineshape parameters (see Appendix A), an S, T , V fit was performed

to the measurements of MW /MZ , Rν , QW , ΓZ , R`, σ0, A
`,0
FB, Aτ , Ae, A

b,0
FB,

Ac,0FB, and sin2 θeff
W (QFB). The fits were performed with αs constrained to the

value extracted from QCD measurements,
[20]

0.123±0.006, and with αs (V ) as a

completely free parameter. The results are listed in Table XXIV.
?

In order to display the result in S-T space, the parameter probability

distribution is integrated over all values of V . This is equivalent to a contraction

of the 3×3 inverse parameter covariance matrix to a 2×2 matrix (see Appendix B

for details). The 68% and 90% confidence regions that correspond to the αs-free

fit are shown in Fig. 11. Although the central value of S is unphysical in the

MSM sense, it is clear that the fit is consistent with the MSM contours. It is

also clear that the data favor a more negative value of S (which corresponds to

a lighter Higgs boson).

The consistency of the measured S-T confidence region and the MSM

contours can be quantified by performing a fit of the contour functions S(mt,mH)

and T (mt,mH) to the measured ellipses. The Higgs mass is fixed to 60 GeV,

300 GeV, 1000 GeV, and the top mass is allowed to vary as a free parameter.

The results of these fits are summarized in Table XXV. The fit probabilities are

excellent in all cases. Again, it is clear that lighter Higgs bosons are preferred but

not significantly. The central values of the mt confidence intervals agree well with

the full MSM fits performed by LEP Collaborations. Note however, that the mt

uncertainties are substantially smaller than those associated with the MSM fits.

? The results presented at the Symposium were based on an MSM calculation of the
reference values that did not include order ααs corrections. The resulting value of V
was somewhat more negative.
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Figure 11. The 68% and 90% confidence regions in S-T space that result from the
αs-free fit to all observables. The vertical contours show the MSM predictions for mH

values of 60 GeV and 1000 GeV. The dots indicate various top quark masses between
75 GeV (bottom) and 225 GeV (top) in units of 25 GeV.

Table XXV

The results of MSM fits to the measured S-T ellipses.

αs constrained αs free

mH (GeV) mt (GeV) P (χ2) mt (GeV) P (χ2)

60 146+12
−13 56% 148+13

−14 84%

300 166±12 44% 167+12
−13 46%

1000 182+11
−12 29% 184±12 31%

The small mt confidence intervals are a consequence of the fact that the S-T fits
prefer an unphysical (in the MSM sense) region of S-T space. It is clear that true
MSM fits (which implicitly constrain S and T to an MSM contour) are needed
to estimate MSM parameters.
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5. Concluding Remarks

1. The Minimal Electroweak Standard Model continues to resist our attempts
to finds its cracks. The precision of current electroweak tests is now
comparable to the magnitude of purely weak corrections, and no deviations
from the MSM are yet apparent.

2. The LEP experiments have measured the S-T trajectories corresponding
to ΓZ (mST = 0.37) and sin2 θeff

W (mST = 1.4) very precisely. In the
near future, the uncertainty on ΓZ should improve from 7 MeV to some
value in the neighborhood of 3 MeV. The uncertainty on the sin2 θeff

W

trajectory should benefit from the new measurement of ALR by SLD and
from continued progress at LEP.

3. New measurements of MW by the CDF and D0 Collaborations should
improve the constraints on the mST = 0.65 trajectory in near future. (They
should also provide important information on the U parameter.)

4. The discovery of the t quark and the subsequent measurement of its mass
will greatly improve the power of the MSM tests. An additional benefit will
be that the business of precision electroweak testing can escape (somewhat)
from the shadow of parameter estimation and be recognized for what it
is, the testing of the Electroweak Standard Model. So to our Tevatron
colleagues, please hurry!
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APPENDIX A: LEP Lineshape Parameter Correlation Matrices

Table XXVI

The correlation matrix for the LEP total nine-parameter fit
[27]

given in Table VIII.

MZ ΓZ σ0 Re Rµ Rτ Ae,0FB Aµ,0FB Aτ,0FB

MZ 1.000 –0.157 0.006 0.029 –0.002 –0.003 0.025 0.056 0.048

ΓZ –0.157 1.000 –0.070 0.001 0.006 –0.001 0.000 0.004 0.006

σ0 0.006 –0.070 1.000 0.071 0.100 0.085 0.008 –0.002 –0.001

Re 0.029 0.001 0.071 1.000 0.102 0.072 –0.023 0.021 0.018

Rµ –0.002 0.006 0.100 0.102 1.000 0.076 –0.001 0.007 –0.002

Rτ –0.003 –0.001 0.085 0.072 0.076 1.000 0.000 –0.002 0.006

Ae,0FB 0.025 0.000 0.008 –0.023 –0.001 0.000 1.000 –0.062 –0.048

Aµ,0FB 0.056 0.004 –0.002 0.021 0.007 –0.002 –0.062 1.000 0.119

Aτ,0FB 0.048 0.006 –0.001 0.018 –0.002 0.006 –0.048 0.119 1.000

Table XXVII

The correlation matrix for the LEP total five-parameter fit
[27]

given in Table IX.

MZ ΓZ σ0 R` A`,0FB

MZ 1.000 −0.157 0.007 0.012 0.075

ΓZ −0.157 1.000 −0.070 0.003 0.006

σ0 0.007 −0.070 1.000 0.137 0.003

R` 0.012 0.003 0.137 1.000 0.008

A`,0FB 0.075 0.006 0.003 0.008 1.000

APPENDIX B: The V Integration

The confidence intervals of the three-parameter fit for S, T , and V are derived
in the usual way from an expansion of χ2 about its minimum in parameter
space. Denoting the parameters as Ai = (S, T, V ) and the minimum point as
A∗i = (S∗, T ∗, V ∗), the χ2 expansion is given by the following expression:

χ2 = χ2(A∗) +
1

2

∂2χ2

∂Ai∂Aj

∣∣∣∣
A∗

(Ai − A∗i )(Aj − A∗j)

χ2 = χ2(A∗) + Cij(Ai − A∗i )(Aj − A∗j),
(30)
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where Cij is the inverse parameter covariance matrix. The usual single-parameter
confidence intervals are found by integrating the χ2 probability,

dP = const · e−χ2/2dA1dA2dA3, (31)

over two of the parameters. The RMS of the remaining Gaussian distribution
has the familiar form σi =

√
(C−1)ii where C−1 is the inverse of C. However

to obtain the equation of the S-T ellipse, we wish to integrate Eq. (31) over A3

only. The resulting Gaussian distribution can be represented as the reduced χ2,

χ̄2 = χ2(A∗) + C̄ij(Ai − A∗i )(Aj − A∗j), (32)

where the reduced inverse covariance matrix C̄ is given by the following simple
expression:

C̄11 = C11 −
C13C31

C33

C̄12 = C12 −
C13C32

C33

C̄22 = C22 −
C23C32

C33
.

(33)

Equations (32) and (33) define the two-dimensional ellipses that are plotted in
Fig. 11.
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