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ABSTRACT 

We consider the constraints imposed on meson wave functions by 

unitarity and by the favored values of the semileptonic decay constants. 

We show that they require unexpectedly large values of the intrinsic 

transverse momentum, especially in the case of the B meson. We also 

‘obtain a constraint on the heavy quark momentum fraction. 



- .-.- 
_ In this report, we show that nontrivial bounds from unitarity can be derived, 

relating meson decay constants to the transverse momentum distribution of the 

quark constituents. 

A heuristic overview of our procedure is as follows. We form positive-definite 

integrals containing the two-particle wave function $qQ(x, kl), whose integral cor- 

responds to the meson decay constant fh, and its square, whose integral is con- 

%ained by unitarity. We use the condition of positivity to derive constraints on 

the behavior of the wave function. 

The decay constant is defined by 

_.~ 
fh 

1 

2&%5= 0 J J 
dx 

Q d2kI 
ygp hdx, 4; Q> + O(Q-2) . 

f 

The wave function $‘4q is weakly dependent on the separation scale Q; we will 

ignore this dependence, and assume that Q is much larger than a typical intrinsic 

transverse momentum. We will always assume that the decay constant is real and 

.-- positive, thus fixing the phase of ?&Q. For pseudoscalar mesons, the decay constant 

fh is entirely independent of Q. 

The light-cone wave function must also satisfy 

1 J J dx 
Q d2k1 

0 s l&d2 L pv 7 

&here pV 5 1 is the probability to find the meson in its valence state. 
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-I Now, consider a region R of (x, kl)-space. Define 

AIRl = R 16,.$ ’ J dx d2kl 

F[R] = 2fi Re 

Thus A is the “area” of the region R, and F is the part of the decay constant 

,c_ontributed by the region R. Then we have 

/. 05 J dx d2kI R 16r3 Wq&>h) - b12 I Pv - 9 + b’A[R] , (3) 
C 

so that 

F[R] I d% Pv + b2A[R] 
b 

f.oP all regions R and positive real b. This modest equation turns out to have 
- _ 

significant consequences. 

Setting b = (P,/A[R])“‘, we obtain 

if we set P, = 1, the contribution to the decay constant from the region R cannot 

exceed this bound without violating unitarity. More realistic choices of P, lead to 

more stringent bounds on F[R]. 

For example, consider the 7r meson, whose decay constant is fn = 133 MeV. 

Define 

_: .-- _ hi. 6M2 E k: k: 2 _ 6 ,2 
-IF+ 

-- ~--J:?T - x3 x J 
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and let R F {(x, kl) : 6M2 5 Mgax}. Then A[R] = (ML,, + ms)/96r2, and 

(with NC = 3) we have 

(6) 

Thus unitarity requires that half of the pion decay constant must arise from 

the region in which 6M2 > 0.15GeV2, and at least 13% from the region where 

,m2 > 0.5GeV2. The contribution to the wave function from regions of sizable 

intrinsic transverse momentum is thus very substantial. 

Brodsky et al. [2] have estimated that PV(x) N 0.25; using this estimate in 

eq. (5) leads to the conclusion that half of the pion decay constant arises from the 

region in which 6M2 > 0.66 GeV2, and 39% from SM2 > 1 GeV2. The latter 

virtuality corresponds to jkl) = dw x 505 MeV. . ̂  

- Alternatively, we may consider a region R s { (2, kl) : k: < Q’}. Clearly - 
then A[R] = Q2/167r2, and we have F[R] < Qdm/27r. If P, = 0.25, we 

obtain Q > 5.13F[R], so that for example 26% of the pion decay constant must be 

contributed by the region where lk,l > 500 MeV. 

Even more severe constraints can be derived for the B meson, due to the 

7 ..- unexpectedly large decay constant f~ ;2 190 h4eV [3,4] and to the expectation 

that the heavy b quark should carry the bulk of the longitudinal momentum. In 

this case, we define 

k? SM2 s =2+ k?+mi 
- X 

Defining R as above, we obtain the bound 

fi (ML,, + rni - mi)3’2 
WV 5 2n 

W&ax + m2,) - 
(7) 
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Using mg = 5.28 GeV and mb = 4.7 GeV, we find that the region SM2 < 4.0 GeV2 

can support only 100 MeV of the decay constant, and 6M2 < 6.7 GeV2 only 150 

MeV. Current lattice estimates tend to cluster around f~ = 190 MeV [4], while 

calculations using heavy-quark symmetry suggest fB = 240 MeV [3]. Thus even 

the most conservative estimates of the decay constant require the bQ states to carry 

a very substantial light-cone virtuality. 

A plausible upper bound for P,(B) is P,(B) 5 dm; this estimate arises 

. . from the assumption that gluons in the meson wavefunction are directly associated 

with one of the valence quarks, and that gluon radiation from the heavy quark 

is entirely suppressed. In actuality, we expect that this somewhat overestimates 

P,(B), and thus that P,(B) = 0.5 will lead to fairly conservative conclusions. 
. ̂  

; hserting fB = 190 MeV and P,(B) = 0.5 into eq. (7)) we find that half of 
- . 

fB must be contributed by the region 6M2 > 5.9 GeV2, and 23% by the region in 

which 6M2 > 10 GeV2. 

The numerically large value of fB can only be consistent with unitarity if the 

B wave function in the qq state is greatly spread out in momentum space. For 
-- 

.- 

example, at~x = 0.9 the value 6M2 = 10 GeV2 corresponds to (h-1( = 0.97 GeV, 

and ‘at x = 0.8 to lkll = 1.09 GeV; see Fig. 1. Such large transverse momenta, 

and sizable values of 1 - x, must be typical of the B meson. 

In place of the constant b of eq. (3)) we can insert an arbitrary function 

B(x) kl). This allows us to obtain unitarity bounds on the contribution to the _ .- --.- -.i 
&menf (B) from a region R. 
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-- The most interesting such constraints arise when we consider the contribution 

to ( Q2 - ki) from the region k: < Q2. With B s b(Q2 - k:), we obtain the 

bound 

Re [J $$(Q2 - k;)$] I $,/$ . 
k:<Q” 

Thus the contribution to the integral representing fr (k:) from the region k: < Q2 

‘i?bounded below by the constraint of unitarity, while that from the region k: > Q2 

is -greater than the corresponding integral with k: + Q2. Adding these two 

bounds, we obtain 

since this^holds for all Q, we obtain 

(k:) 2 $A + $fz = (455 IvleV)2; 
c v 

in the final step, we have inserted the favored value Pv(r) = 0.25. 

We can repeat this process for the B, or any other, meson. With the assump- 

tion that P;(B) = 0.5, we obtain (k:) 2 (2.4f~)~. Here the intimate connection 

between the decay constant and the spread in momentum space is made manifest. 

Of course, the resulting restrictions on the B meson are rather weak, since the 

region R in this case includes all values of x. 

We can correct this deficiency by using the function B = b(Mc, - 6M2) to 

constrain the moment of the virtuality. For nonzero masses, the resulting analytic 

F- 1.; ormu ae are quite inconvenient; however, in the phenomenologically interesting 
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region.150 MeV < fB/dm < 400 MeV, the lower bounds lie above the linear 

bound 

(6M2) > (33 GeV) (d& - 130 MeV). 
V 

The latter is thus a rigorous bound on the moment associated with the light-cone 

virtuality. For example, if fB = 27OJm MeV, we obtain (SM2) > 4.8 GeV2. 

;.+- We can repeat the analysis with the 7r or any other meson; for example, for 

the pion we obtain 
. . 

(ijM2) 2 (“‘~v~~~2 - ma> N 1.2 GeV2. 

Implicit in the above derivations is the assumption that the real part of the . . 
tail of the wavefunction has the same sign as the decay constant. At large values 

of the transverse momentum, this is a good assumption, since the one-gluon ex- 

change kernel whose contribution dominates the wavefunction at large momentum 

transfer [l] is real and positive. 

For example, in the derivation of the lower bound on (kl), the value of Q 

-- used is roughly 3fh/fl N 800 MeV. While not extremely large, this momentum .- 

transfer is sufficient to make the implicit assumption a quite plausible one. 

If we make the further assumption that the wave function depends only on 

the virtuality of the intermediate state, ti(x, kl) = $(SM2) and the measure of 

integration over the invariant phase space is 

_ .- 
--.- -.--- J (6M2 + rni - mz)2 (6M2 + rni + 2mi) d6M2 
‘fr. -; 96r2(6M2 + mg)3 

, 
(8) 

rni-rni 
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: It is then a simple problem in the calculus of variations to maximize the 

functional 

(x’) _ JXle’ kd 
= J$+,h) ’ (9) 

the first moment of the distribution amplitude, subject to the constraints of eq. (2) 

and a fixed value of fB. The extremal function has the form 

-” -- ,I) 0: (2 - X0) e(2 -x0), 

/. where 

;1 E f(1 + 
3m;t 

(6M2 + mi)(6M2 + rni + 2mE) ) 

is the average value of x1 along a curve of constant 6M2 [6], and x0 parametrizes 

the class-of constrained optimal functions. Thus we obtain the rigorous bound for 

sky positive function $(SM2) 

w < 0.84 for fB = lgo&$?j MeV . (10) 

This should be compared with the estimate (xi) = 0.90 obtained in [5], which 

-- is (barely) consistent with the estimate of fB in the same reference, but not with .- 
the currently preferred value. Similar constraints can be derived for any choice 

of fBldrn7 as shown in Fig. 2. Note that the assumption $J > 0 is crucial. 

If we choose the value fB/dm = 270 MeV, which we believe to be a fairly 

conservative estimate, we, obtain (x’) < 0.81 and consequently (2x - 1) < 0.61. 

This is a very stringent bound, applicable to a wide class of intuitively reasonable 

_ .- wavefunctions (though it can be circumvented by, for example, the introduction of - -. __- .-- 
&idely varying complex phase into the wavefunction). 

8 

. 



I 

- 

- .-’ 

T It is a simple matter to derive similar bounds on other moments of the distri- 

bution amplitude; for example, with fB/dm = 270 MeV we obtain 

((2x - 1)“) < 0.41 , ((2x - 1)“) < 0.35 , and ((I - x)-l) < 14.2 . 

One might expect that this method could also be used to improve our lower bound 

on (SM2); however, it turns out that it serves only to duplicate the bound we 
-” -- 
have already derived. A little thought shows why; the wavefunction 

. . 

$(6M2) = (ML,, - 6M2) O(M&. - 6M2) 

which realizes the bound is the same in both cases. 

. . It must be emphasized that (xn) represents a moment, rather than an expec- 

taDion value, and that unitarity can provide no constraints on expectation values. . . 
However, the amplitudes for exclusive processes are determined by convolutions of 

wave functions, not of their squares; thus Eq. (10) makes a strong statement about 

the shape of the wave function $ B + bq’ 

In sum, currently favored values for the meson decay constant fB can only be 
--- 

‘- %- reconciled with unitarity by allowing unexpectedly large values of kl, and values 

of x far from unity, to make sizable contributions to the wave function. 

We thank S. Brodsky, R. Akhoury, H. Quinn and M. Neubert for helpful 

conversations. This work was supported by Department of Energy contract DE- 

AC03-76SF00515. 
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Figure Captions 

Figure 1. Contours of constant 6M2 in the &:-plane for the B meson. Along 

the dotted line, the z-component of velocity is the same for the quark F 

and antiquark. Note that as 6M2 increases, x tends to decrease. 

Figure 2. The excluded region of the moment (x’) as a function of the param- 
; -- 

f&r fB/dm > fB, which controls the relation between the decay 

. . constant and the constraint of unitarity. The assumptions underlying 

this relation are discussed in the text. 
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