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Nonlinear magnetic fields and chromaticity will cause the vertical off-axis injected beam to fila- 

ment. In the absence of radiation damping, the vertical beam profile will approach a characteristic 

stationary “double horn” distribution. In this note we derive the electric potential and a general- 

ized Bassetti-Erskine formula for this stationary distribution. Results from multi-particle tracking 

illustrate the injection process 
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1 INTRODUCTION 

In the present design of the PEP-II a vertical injection scheme has been adopted for 
the high-energy and the low-energy rings (HER and LER). Due to different nonlin- 
ear effects, such as the head-on and the parasitic beam-beam interactions, fringing 
fields, and higher magnetic multipoles, the tune will depend on the amplitude of 
the betatron oscillation. As a consequence, an off-centered vertical beam will start 
to filament into an elongated shape in vertical phase space. 

The following list gives a rough estimate of the number of turns until the elon- 
gated beam distribution closes to a circular annulus: 

A: LER including nonlinear magnetic elements 8000 turns 
B: linear LER with parasitic crossing 8000 turns 
C: LER with errors, solenoid and fringe fields 1500 turns 

The estimated turn number originates: in case A from a normal-form analysis of the 
one turn map,’ in case B from Section 4.4.6.1 of the Conceptual Design Report,2 
and in case C from the fast Fourier transform of the tracking data of three different 
error seeds. These values should be compared to one transverse damping time, 
which is about 5000 turns. 

Another source of filamentation, in addition to nonlinear fields, is chromatic- 
ity, which also generates a spread in tune. In this case, however, the original phase 
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space distribution will be recovered after a full synchrotron period, since the energy 
deviation will change sign after half a synchrotron oscillation. This chromatic tune 
dependence leads to the observed decoherence and recoherence of the barycenter 
motion in a storage ring.3 Note, however, that a second-order chromaticity con- 
tribution will produce an irreversible distortion of the beam distribution in phase 
space. 

The decoherence of a Gaussian beam due to the beam-beam interaction has been 
studied recently for the Superconducting Super Collider.4 It was found that the 
decoherence time (number of turns) has the form N&e& = const/[, where < is the 
beam-beam tune shift parameter, and const RS 1. 

I attempted to simulate the injection process into the LER by means of multi- 
particle tracking. One thousand particles have been tracked over 10,000 turns in a 
LER lattice including orbit, quadrupole, and higher multipole errors. No radiation 
effects have been considered. The injected beam was assumed to be Gaussian with 
a, = 4 mm, by = 0.4 mm, bL = 0.004, and Q, = 1 mm. The vertical barycenter 
at injection was at < y >= 20 mm. Figure 1 displays the vertical beam profiles on 
turns Nr. 1, 100, 500, 2000, 5000, and 9000. The profile approaches a stationary 
“double horn” distribution. 

Section 2 shows the derivation of the stationary distribution after filamentation 
and discusses the effect of radiation damping. The electric potential and the elec- 
tric field of a Gaussian distribution in the horizontal plane and a “double horn” 
distribution in the vertical plane are derived in Section 3. 

FIGURE 1: Projection of the beam distribution on the vertical axis (1000 particles). 
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2 PROJECTION OF THE PHASE SPACE DISTRIBUTION FUNCTION 

I use action-angle variables to describe an off-center injected beam. At the moment 
of injection, the beam is assumed to be Gaussian. The time dependent distribution 
function after off-axis injection is given by 5 

*(J,944 = &exp (-d (J+Jo-2dGcos(4-ut-do))} , (1) 
0 . 

where cc denotes the injected emittance, and JO and 40 are the coordinates of the 
injected beam centroid. The frequency w depends on the action variable in the 
form of a Taylor expansion: 

w = WIJ bH( J) 
=---ET* (2) 

The coefficients p,, are evaluated either by means of a Hamilton-Jacobi perturbation 
technique7 or by normal-form methods. r16 I suppose the Hamiltonian is nondegen- 
erate: 

w#O and 920. 

These conditions exclude more than just linear systems. The distribution function 
given in Eq. 1 satisfies Liouville’s equations 

where [ , ] denotes the Poisson bracket. In addition to the action-angle variables, 
we use the normalized variables (<, q), 

q = &?cos(~) and < = asin(4), 

which are related to the measurable coordinates (2,~) by 

(4 

where cr and p are the Twiss parameters. In order to evaluate the density distri- 
bution in the variable <, we have to integrate the distribution with respect to dv. 
For the moment the Taylor expansion in Eq. 2 is truncated at N = 1; hence only 
sextupole and octupole terms contribute. 

To obtain the vertical beam profile we substitute the normalized variables ([, 17) 
in Eq. 1 for the action-angle variables and integrate over 77: 
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with 

NF)=/w{--&( $ - 2qmcos(wt + 40) - 2<&%sin(wt + do))} dv. 

(6) 
TO evaluate the integral I use the expansion of the exponent into a series of modified 
Bessel functions,g 

,+cos(+) = kz:_I,(.,.i’# and ersin(+) = 2 (--i)“lk(c)e’Q . (7) 
k=-CXJ 

The remaining integral is tabulated9 

R(t) = 2 2 ~~m-2k eimrp+Jo/2~oa~~k (&) I,,.,-~~ (e) , 

WI=-ca kc-co 

(8) 
where 

‘p=(l- ;P1F2)Wot + 40, and (Y, = 1+&n with 0 = coplwot . 

To evaluate the stationary distribution, I put t + 00 and recognize that l/a = 0 
for m # 0. Thus, in the summation over m, only the contribution for m = 0 remains 
non-zero. The cases ~1 = 0 or wc = 0 have been excluded by our assumption in 
Eq. 3. Using Eqs. 5 and 8 we obtain 

h(t) = -&C’+Jd 
kgm(-l)X1k (2) 12k (q) . (9) 

Using the generating function of the Bessel function in Eq. 7, the stationary dis- 
tribution function can be represented as an integral: 

Figure 2.shows a typical example of a stationary beam profile after off-axis injection. 
It was obtained from Eq. 10 and agrees very well with the profiles in Fig. 1 which 
were generated by multi-particle tracking. 

These “double horn” profiles have been obtained from wire scanner measurements 
in proton storage rings after the beam has been deflected from the closed orbit. 
Similar density profiles have been measured in the Stanford Linear Collider linac, 
where the wakefields and chromaticity are the primary causes of the filamentation 
process. 

Up to this point the Hamiltonian has been truncated to second order in J. Pro- 
vided a stationary distribution exists, the solution in Eq. 9 is valid for a non- 
truncated Hamiltonian, e.g., N = 00 in Eq. 2. This statement is proven in the 
appendix. 
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FIGURE 2: Stationary vertical beam profile 

It is worth pointing out that the result of the transient profile in Eq. 9 can easily 
be modified to take the effect of radiation damping into account. The following 
replacements have to be made:1° 

1 ,. 
wept _ Zwc~r(e2*lr - l), cc _ cc(t) = c,~e-~~/~, and JO ti J(t) = Joe 

-2t/r 

(1;) 

where r denotes the damping time. Notice that the Liouville Theorem is still valid, 
and (J, 4) are no longer canonical variables. 

3 POTENTIAL OF AN OFF-AXIS INJECTED BUNCH AFTER FILAMEN- 
TATION 

Ions, trapped in the field of the electron beam, may cause significant degradation of 
machine performance.ll Another relevant effect at injection is the parasitic beam- 
beam interaction.12 The beam-beam kick and the kick received by the ions have to 
be derived from the beam potential. In this section, I evaluate the beam potential 
based on the “double horn” distribution. To be specific, the injection is assumed 
to take place in the vertical plane. I will proceed in a manner very similar to the 
treatment of a bi-Gaussian distribution. l3 The potential of the beam is given by 
the Poisson equation 

v2u = -47rp ; 

where cgs units are used. It was shown in Ref. 13 that the inhomogeneous diffusion 
equation 

V2U+A 2dU dt = -4rp 

is considerably easier to solve than the Poisson equation. The Green’s function of 
the non-homogeneous diffusion equation is given by l4 

G(z, y, 7) = i exp{-A2(c2 + y2)/4r}u(7), (12) 
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where U(T) denotes the step function. Now the beam potential can be expressed as 

d-&o P(ZO, YO)G(~ - 20, Y - l/o, 71, (13) 

For the bunch density after filamentation, I use a Gaussian distribution for the 
horizontal plane and the “double horn” distribution in the vertical plane. With 
Eqs. 4 and 10 we obtain 

P(Z, Y> = Nbe e-“lXd$exp{-& (y-dmcos($))‘J, (14) 
2?f%T&T~O 

where the factor Nbe takes into account the charge of the bunch, and a, and uY 
refer to the transverse beam sizes at injection. Inserting Eqs. 14 and 12 into Eq. 
13 and evaluating the integrals over (dzc, dye), let A -+ 0 and find 

00 
U(z, y) = + dq 

J {/ 

* w 
dlC, ( - 2o,+q + - zig) exp (-ig) IO (2$J 

0 0 
1 &q/qG ’ 

(15) 
with 

?a$) = Y - J~cow. (16) 
The second term in Eq. 15 is due to the condition U(Z = 0, y = 0) = 0. With 
the help of Eq. 7, we may express the integral over d+ in terms of modified Bessel 
functions: 

U(z, y) = 

Given the potential, it is straightforward to derive the electric field. For the bi- 
Gaussian distribution this was done by Bassetti and Erskine.15 I follow closely their 
derivation and obtain 

where $4) is defined in Eq. 16, and W(Z) denotes the complex error function.16 
Figure 3 compares the vertical electric field due to the “double horn” distribution 
with the field due to a centered Gaussian distribution. 

-- 
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FIGURE 3: Vertical electric field due to different beam profiles. 

4 SUMMARY 

A simple extension of the Bassetti-Erskine formula for the electric field of an off-axis 
injected beam after filamentation has been derived. This expression will be useful 
in simulations of coherent effects at injection. 
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APPENDIX 
In the case of a linear Hamiltonian, the density profile remains Gaussian, the 

initial oscillation of the barycenter will never damp out, and a stationary density 
profile does not exist. Here I suppose the Hamiltonian is nondegenerate, the Taylor 
expansion in Eq. 2 is not necessarily truncated, and a stationary solution exists. I 
will show that the stationary density profile is given by Eq. 9. 

Prom the assumptions, the stationary solution must be related to the time average 
by 

where Q is given by Eq. 1. The integration over dt leads to a series of modified 
Bessel functions Ik. The subsequent T + 00 limit eliminates all Ik except of the 
IO contribution 

Next I replace J by the normalized variables ([, 71). A special case of Gegenbauer’s 
addition theorem reads l7 

kc-cm 

and with Eq. 18, 

kg’(-l)kIk ( y ) Jrn ,-(2J0+(~+tl’)/(z~o)I~ (i!$) d,,. 

--co 

(20) 
The subsequent integration over dq leads to Eq. 9: 

h&) = 
- &@+Jo) 

kEm(-l)kIk (2) I2k (T) . (21) 

It is straightforward to show that the stationary projection of the distribution 
function is normalized to unity: Jpoo([)d< = 1 : 


