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Abstract

The beam-beam interaction for a flat beam with a large horizontal

crossing angle is studied for the case in which the vertical betatron

function at the interaction point is comparable to the bunch length.

It is shown that the crossing with a large angle has less serious detri-

mental effects than is usually believed. A large crossing angle might

have several merits for future high-luminosity colliding rings.
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Int roduct ion

Nowadays, high luminosity e+e- colliding rings are being considered seri-

ously. Small bunch spacing is useful because collisions occur more frequently.

This causes the problem of parasitic collisions: bunches may interact with

each other not only at the interaction point (IP) but also at points around

the IP. These can be avoided by collision with a crossing angle. This, how-

ever, leads to another difficulty. The collision with a crossing angle causes an

instability due to the synchro-betatron (SB) resonances which are known to

have limited the performance of the DORIS collider [1]. It is widely believed

that SB resonances become more serious for larger crossing angles [2].
_-

The vertical betatron function at the IP (~~) considered in recent designs

is much smaller than traditional ones and is comparable to the bunch length

OZ. The analysis of the head-on collision for this c~e [3] has shown that

the SB resonances are weakened by the bunch-len@h effect. This can e~ily

be tested in simulation in which a bunch is split into several longitudinal
-.

slices. In this paper, we study the bunch-length effects in the collision with a

crossing angle [4]. We develop a new method of calculat ion. One ingredient is

the mapping, called synchro-beam mapping (SBM), which is symplectic in a

six-dimensional sense but is formulated only for the head-on collision [5]. The

other is a Lorentz transformation that transforms the collision with an angle

to a head-on collision [6] between bunches tilted horizontally. See Fig. 1.

Thanks to the six-dimensional nature of the SBM, it is relatively easy.
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Model

We resume one IP in a ring located at s = O, where s is the azimuthal

coordinate. At the IP, coordinates of a particle are boosted so that the

collision becomes head-on (Z). Then the particle interacts with the other

beam in this boosted frame in which the SBM is used. The particle is then

transformed back to the original frame (L-l). It is transformed from IP

to IP by betatron and synchrotron oscillations with radiation damping and

excitation (d). We denote the variables of each step m follows:

~-l ,

X(0)LZ*(O*)S31Z*’(0*)-Z (0)4Z(O) . . “ .

-.

We always transform quantities at s = O to those defined at s = O.

We employ the coordinate system x = (z, p., y, pv, z, p.; h,s) called the

accelerator coordinate. Here z and g are horizontal and vertical coordi-

nates, respectively, and their conjugate moment a are defined as (PZ,pv) =

my(dz/ds, dy/ds) /P., where P. is the absolute value oft he three-momentum.

P of the reference particle, m is the mass of the electron, and ~ is the rel-

ativistic Lorentz factor. We use z = s – d(s), where c is the light velocity,

t the arrival time at the position s, and pZ = ([PI – Po)/Po. The h is the

“Hamiltonian”: we use

h(pz, pv, p.) =pZ + 1 – ~(pz + 1)2 –p: –p;.

This is the momentum

which is the position in

--

- .-

(1)

along the reference trajectory, and s is the “time,”

the ring. Here we take the ultra-relativistic limit.
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Lorentz Boost: L

We perform a Lorentz transformation for the Cartesian coordinate: X =

(X, Y, Z, PX, PY, Pz; H, T), which is defined for the laboratory frame. Here

H is the true Hamiltonian, which is the energ, and

relations bet ween the accelerator coordinates are

[)[ 1
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The Lorentz boost which makes the collision head-on is

where
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It consists of a rotation in the X-Z plane by an angle @ and a boost to the

directionoftherotatedX. (See Fig.1). Here, @is the half-horizontalcrossing

angle, and * indicates the quantities in the boosted frame. The reference

particle Px = Py = O and H = CPOis transformed into P; = P; = O and

H*/c = P; = COS$Po.

The x(O) is transformed to z*(s*) by

- “..[
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-=-

and

--

- .-
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A ‘world point with s = O is not necessarily transformed to s* = O. We

need a transformation from z(0) to x* (O*): we thus perform the additional

transformation

dw:(O*)
W:(O*) = W;(S*) – s* = w~(s*) + h; sin @x(O).

ds”

Here Wi stands for (x, y, z), ~ = ~h*/~p~, and R = h(p~,p~,p~). From Eq.

(l), it is easy to show that

1
. Po) = h(P:7P; ,P; ;p;).h*(PG,P~,P:;P~) = _h(Px,Pv,Pz,

--
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We have thus obtained L:

x“ = tan~z + [1 + h~sin@]x ,

Y* = y + sin #hjx ,

Z* = Z/COS# + h: sin #X ,

P; = (pz - tan @h)/cos @ ,

P; = Py/cos4 7

P; = PZ – tan 4PZ + tan2 ~h.

This map is quasi-symplectic: the Jacobian of the transformation is 1/ COS3~.

This is not a problem because the inverse factor COS3@ is applied by Z-l
-.—

afterwards. Within the ultrarelativistic approximation, the Z is exact.

Beam-Beam Force: SBM

The strong beam is cut into slices: each slice is represented

coordinate, denoted by zt. (We use t to indicate quantities

by its z*(O*)

of the strong

beam.) At s* = O, we have o; = oz/ cos @. The first and second moments of

the particle distribution at the locations of the slices are (only terms linear

with respect to dynamical variables in Z are taken)

Xt = sin #zt, yt = 0, p; = 0, p~ = 0, P; = o,

z~l = X11, E~2 = x22/ COS2@, 213 = 233, and XL = 2~~/COS2@.

The SBM is described in detail in Ref. [5]. It can be represented by a
-—

- .-
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Hamiltonian H = Hbb(x*)6(s*), where Hbb is defined implicitly by

eXp : Hbb := ~eXp : ~(Z*,2t) : .
~t

Here the Lie algebra notation [7] is used: F(x*, zt) describes the interaction

of a particle in the weak beam with a slice having zt. It is applied such that

a particle collides first with the slice with the largest zt and then with the

next largest and so on. Here

F(X*; Zt) = n*u(x*, Y*; x~,(s), xi,(s)),

- where r~*is the number of particles in the slice, S = S(Z*, zt) = (z* – zt)/2

-“” is the value of s* for the real collision, X* = x* + p~S – Xt(zt), and Y* =

Y* + pjS – Yt(zt). We assume the transverse distribution of each slice is

Gaussian so that the electromagnetic potential U is

Here r. is the cl~sicd electron radius, and To is the ~ associated with Po. In

a simulation, the longitudinal slices are positioned in such a way that each

slice represents the same number of particles [5]. Note than in applying the

kick to a test particle, we should use E~l and EL at S(Z*, zt): E~l(S) =

Z~l(0) + 2Z~2(0)S + Z]2(0)S2, etc.

.—
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Arc: A

Weuseasimple mapping forthe arc. Acoordinate zistransformed first by

x ~diag(VZ, VV,VZ)x, where

( Cospz –~~ sin p.
v==

)
1

Atsin pz/~ A; cos p.

with AZ,Y,Z= exp( – 1/TX,y,z). Here the Ts are the damping times expressed

in number of turns. Then we apply [5]
---

‘-’1,
X+x+ox

r“
Px + Px + 0:. 1 – A:~2,

c 3)
o l–~2+y+y+oy r“Py + Py +u~, 1 – ~~r47

dP%+Pz +0: 1 – A:?5,

where the ?s are Gaussian random numbers with < ? >= O and < ?2 >= 1,

re~esenting the radiation excit at ions.

Simulation

We performed a weak-strong simulation using the set of parameters listed in

Table 1. We tracked 50 particles for 10,000 turns and accumulated data for

beam sizes and the largest particle amplitudes. For the present parameters,

the case with 5 slices gave results almost identical with those using more
.-

slices.
- .-
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For the value Vx,v = 0.01 of the nominal beam-beam parameter, the

beam sizes are shown in Fig. 2. For @ = O, the peaks indicate the res-

onances (from left to right) n(vZ – q$/2) + m(vu – qY/2) + lVZ = integer

for (n, m,l) = (0,2,–1), (0,2, –2), (2, –2, –l), (2, –2,0), (0,4,0), (2,2,0),

(2, 2, –l), (O, 2, 2), (O, 2, 1), and (O, 2, O). Here VZ,V,Zare the tunes. For@= 5

mrad, the major difference is that (1, 2, O) and (1, –2, O) appear. The latter

two resonances are not SB r=onances and are stronger for larger @. These

are induced by the nonlinear terms in Z and Z–l.
. .

Letting qz,y = 0.05, we compare results for several values of ~. See Figs. 3

and 4. It appears that the effects of @ on as (Figs. 3 and 4a) and amplitudes

(Fig. 4b) incre~e with @ at first but decrease for larger ~. This is quite-c-

ontrary to what is expected from Piwinski’s formalism [2].

Discussion

To und~s.tand this discrepancy, it seems useful to consider the luminosity L

and effective beam-beam parameter (V in the boosted frame. Including the

hourglass [8] and the beam-tilt effects, but excluding the dynamical effects,

we define

{
RL =$= ~‘aebKO(b), (2)

- .-
--
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where Lo is the luminosity wit bout hourglass reduction or tilt effect, p is

the longitudinal distribution function of the strong beam, Ko is a Bessel

function, and ~Y(z, OZ, OY) is Montague’s reduction factor [9] of (Y for an off-

center particle, which falls quite rapidly wit h ~. These are shown in Fig. 4c.

For small ~, R< is larger than 1 due to the hourglws effect which makes the

beam-beam interaction more serious. This decreases rapidly for larger ~. At

the same time, RL also decreases but less rapidly.

The essential difference from Piwinski’s formalism [1] is the inclusion of

the bunch-length effects by using several slices. In fact, if we use only one

slice, the effect grows almost proportionally to @ and does not decrease. From

--- Eqs. (2) and (3), it seems that two parameters are important: R = oZ/~~ and

@ = @aZ/O. (Piwinski angle). For R ~ 1, the hourglass effect is important

even for @ = O [3]. When @ ~ 1 the tilt effect is important. Piwinski’s

formalism worked well for DORIS where R <<1 and @ N 0.5 (DORIS used

vertical crossing, so 0$ is replaced by Oy in 0). In Piwinski’s formalism, R(

and RL -decrewe in the same manner, because am is simply replaced by an

effective value of 0. [1].

From simulation results shown above, and from results with several other

sets of parameters, it seems that as and the maximum amplitudes become

largest at around @ = 1/2, and they become almost nominal values for

A large ~ (0 ~ 1) might have several merits for high luminosity rings:

1) Luminosity reduction is only of geometrical origin: compared to @ =

O, RL is small, but Rt is even smaller, so that the beam blowup is less

‘- serious. Since L is proportional to l/(OZOV ), it has a second maximum at
- .-
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@ N 1. In the example used in Fig. 3, as a function of 0, L(0)/LO = 86%,

L(0.5)/Lo = 31%, and L(l.13)/Lo = 50%. (For shorter bunches, this merit

becomes less remarkable but still exists. For OZ = ~~/2 with the other

parameters unchanged, for example, the maximum occurs at around @ = 1.4

and L/L. = 5670); 2) If we also use the crab crossing [10], the geometrical

reduction of the luminosity might be recovered. Even without it, the loss of

the luminosity relative to @ = O is less than one halfi 3) The beam separation

around the IP is easier; 4) The good region in the tune plane is much wider.

See Fig. 3.

The rate of fall-off of the beam size with @ depends a little on the tunes.

-=. At some resonances, in particular, the beam sizes remain large. These points

can be avoided easily.
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Standard parameters

emitt antes (~z,~y) (2x 10-8, 2x 10-lo)m

betatron functions at IP (E> P;) (1,0.01) m

bunch length Oz 0.01 m

relative ener~ spread GE IO-3

tunes (Vz, v=) (0.2,0.08)

damping times (~.,~,,~z) (2000,2000,1000) turns

-=-

-..
--
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Figure 1: Beams colliding at an angle in the original frame (a) and in the

boosted frame (b). Thecoordinate frames are also shown. The direction of

the Lorentz boost Z is indicated by a dotted line.

Figure2: OV/o~ (solid) andoZ/o~ (dotted) vs. UVfor (a) @ = Omrad and

(b) @ = 5 mrad, with q = 0.01.

Figure3: oV/o~ (solid) andoZ/a~ (dotted) vs. vV for(a) @= Omrad, (b)

@ = 5 mrad, and (c) @ =20 mrd, with q = 0.05.

Figure4: The @dependence of(a) aV/o~ (solid) andaZ/o~ (dotted), (b)

AZ (solid) and Av (dotted), ,the horizontal and vertical matimum amplitudes

being normalized to o~,V, and (c) the luminosity reduction factor RL (solid),

the ( reduction factor Rt for z = O particle (dashed), and the same for z = OZ

particle (dotted). Vertical tune Uyis 0.15. For the present set of parameters,

@=10 mrad corresponds to @ = 0.707.
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(a) Boost
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