On the R and R_{τ} Ratios at the Five-Loop Level of Perturbative QCD*

Mark A. Samuel
Department of Physics
Oklahoma State University
Stillwater, OK 74078
and
Stanford Linear Accelerator Center
Stanford University, Stanford, California 94309
and
G. LI
Department of Physics
Oklahoma State University
Stillwater, OK 74078

Abstract

We study perturbative QCD at the five-loop level. In particular we consider $R=\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow\right.$ hadrons $) / \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$and $R_{\tau}=\Gamma(\tau \rightarrow \nu+$ hadrons) $/ \Gamma(\tau \rightarrow e \nu \bar{\nu})$. We use our method to estimate the five-loop coefficients. As a result, we obtain $\alpha_{s}\left(M_{Z}\right)=0.1186(11)$ and $\alpha_{s}(34 \mathrm{GeV})=0.1396(16)$, which are accurate at the 1% level. We also find $R=3.8350(18)$ which is consistent with R_{τ} and is accurate to 0.05%.

Submitted to Physical Review Letters.

[^0]Perturbative QCD has been used to describe the strong interaction very successfully, when the energy scale is large enough. This includes the R ratio

$$
\begin{equation*}
R=\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons } / \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)\right. \tag{1}
\end{equation*}
$$

and also the R_{τ} ratio

$$
\begin{equation*}
R_{\tau}=\frac{\Gamma(\tau \rightarrow \nu+\text { hadrons })}{\Gamma(\tau \rightarrow e \nu \bar{\nu})} \tag{2}
\end{equation*}
$$

even though the mass scale M_{τ} is not very large. Recently Braaten [1] presented a discussion of R_{τ} and as well, a new quantity, the spin asymmetry parameter A_{τ} where

$$
\begin{equation*}
A_{\tau}=\frac{R_{F}-R_{B}}{R_{F}+R_{B}} \tag{3}
\end{equation*}
$$

R_{F} and R_{B} are the "forward" and "backward" components of R_{τ}

$$
\begin{equation*}
R_{\tau}=R_{F}+R_{B} \tag{4}
\end{equation*}
$$

The lowest order estimates are

$$
R_{\tau}=3
$$

and

$$
\begin{equation*}
A_{\tau}=1 / 3 \tag{5}
\end{equation*}
$$

These estimates are changed by perturbative and non-perturbative corrections as follows:

$$
\because \quad . \quad R_{F}=2 S_{E W}\left(1+f_{F}^{(0)}+f_{F}^{(2)}+f_{F}^{(4)}+f_{F}^{(6)}+\cdots\right)
$$

and

$$
\begin{equation*}
R_{B}=S_{E W}\left(1+f_{B}^{(0)}+f_{B}^{(2)}+f_{B}^{(4)}+f_{B}^{(6)}+\cdots\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{E W}=1.019 \tag{7}
\end{equation*}
$$

is the electroweak correction and the $f_{F}^{(n)}$ and $f_{B}^{(n)}$ are proportional to $1 / M_{\tau}^{n}$ with coefficients that depend logarithmically on M_{τ}.

The purely perturbative QCD effects from the interactions of massless quarks and gluons for $N_{f}=3$ are

$$
\begin{equation*}
f_{F}^{(0)}=\frac{\alpha_{s}}{\pi}+5.765\left(\frac{\alpha_{s}}{\pi}\right)^{2}+34.48\left(\frac{\alpha_{s}}{\pi}\right)^{3}+\left(d_{4}^{(3)}+165.1\right)\left(\frac{\alpha_{s}}{\pi}\right)^{4} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{B}^{(0)}=\frac{\alpha_{s}}{\pi}+4.077\left(\frac{\alpha_{s}}{\pi}\right)^{2}+10.13\left(\frac{\alpha_{s}}{\pi}\right)^{3}+\left(d_{4}^{(3)}-96.1\right)\left(\frac{\alpha_{s}}{\pi}\right)^{4} \tag{9}
\end{equation*}
$$

where $\alpha_{s}=\alpha_{s}\left(M_{\tau}\right)$ is the running coupling constant of QCD in the $\overline{\mathrm{MS}}$ scheme evaluated at the scale M_{τ}. The coefficient $d_{4}^{(3)}$ is the fifth coefficient in the series

$$
d_{0}=1, d_{1}=1, d_{2}=1.64 \text { and } d_{3}=6.37
$$

and has not yet been calculated (perturbative expansion of $\left.-2 \pi^{2} s(d / d s) \pi^{(1)}(s)\right)$. We will use our estimation method which makes use of Padé approximants to estimate the value of d_{4}.

From Eq. (9) the Padé Approximant Prediction (PAP) is $d_{4}^{(3)}=41$. From the equation below it it is $d_{4}^{(3)}=116$. Applying it directly to the d_{i} series we obtain $d_{4}^{(3)}=31$. The average is $d_{4}^{(3)}=55$. Finally the PAP for the $\left(\alpha_{s} / \pi\right)^{4}$ term for R_{τ} is 133 . Thus $d_{4}^{(3)}=133-78=55$, in agreement with the average above.

For further details, see our earlier papers [2]. Thus we take as our value, with conservative error estimates

$$
d_{4}^{(3)}=55 \begin{gather*}
+60 \tag{10}\\
-24
\end{gather*} \text {. }
$$

This is our result for $N_{f}=3$.
Our results for

$$
f_{F}^{1}=f_{F}^{(2)}+f_{F}^{(4)}+f_{F}^{(6)}=0.0304
$$

and

$$
\begin{equation*}
f_{B}^{1}=f_{B}^{(2)}+f_{B}^{(4)}+f_{B}^{(6)}=-0.1082 \tag{11}
\end{equation*}
$$

agree with those of Braaten. The relative contribution to R_{τ} is

$$
\begin{equation*}
\frac{\left(2 f_{F}^{1}+f_{B}^{1}\right)}{3}=-1.58 \% \tag{12}
\end{equation*}
$$

There are various experimental values for R_{τ}. We use the world-average [3] for B_{e} and B_{μ}. From $B_{e}=17.76(15) \%$ we obtain

$$
\begin{equation*}
R_{\tau}=3.658(31) \tag{13}
\end{equation*}
$$

and from $B_{\mu}=17.53(19) \%$ we obtain

$$
\begin{equation*}
R_{\tau}=3.629(24) \tag{14}
\end{equation*}
$$

The weighted average of Eqs. (13) and (14) is

$$
\begin{equation*}
R_{\tau}=3.640(19) \tag{15}
\end{equation*}
$$

From the measured τ lifetime [4], $\tau_{\tau}=0.2957(32) \times 10^{-12} S$ one obtains

$$
\begin{equation*}
R_{\tau}=3.549(39) \tag{16}
\end{equation*}
$$

We take as our value the weighted average of Eqs. (15) and (16)

$$
\begin{equation*}
R_{\tau}=3.623(17) \tag{17}
\end{equation*}
$$

(sce also Ref. [5]).
Now from Eqs. (4), (6), (7), (8), (9), (10), (12) and (17) we obtain our result for $\alpha_{s}\left(M_{\tau}\right)$,

$$
\begin{equation*}
\alpha_{s}\left(M_{\tau}\right)=0.3233(89) \tag{18}
\end{equation*}
$$

and using Eq. (3) we obtain

$$
\begin{equation*}
A_{\tau}=0.413(22) \tag{19}
\end{equation*}
$$

Equation (19) agrees with Braaten's result. Our result for $\alpha_{s}\left(M_{\tau}\right)$ is somewhat different from Braaten's

$$
\begin{equation*}
\alpha_{s}\left(M_{\tau}\right)=0.319(17) \tag{20}
\end{equation*}
$$

Note, however, that the error in Eq. (18) is much smaller than the error in Eq. (20). Actually, due to an interpolating error Braaten's result should be

$$
\begin{equation*}
\alpha_{s}\left(M_{\tau}\right)=0.324(17) . \tag{21}
\end{equation*}
$$

We can now obtain $\Lambda^{(3)}$ from the running of α_{s},

$$
\begin{equation*}
\alpha_{s}(\mu)=\frac{2 \pi}{\beta_{0} L}\left\{1-\frac{\beta_{1} \ln 2 L}{2 \beta_{0}^{2} L}+\frac{1}{4 L^{2} \beta_{0}^{4}}\left[\beta_{1}^{2} \ln 22 L-\beta_{1}^{2} \ln 2 L+\beta_{2} \beta_{0}-\beta_{1}^{2}\right]\right\} \tag{22}
\end{equation*}
$$

where $\beta_{0}, \beta_{1}, \beta_{2}$ are the coefficients of the QCD β function

$$
\begin{align*}
& \beta_{0}=11-\frac{2 N_{f}}{3} \\
& \beta_{1}=102-\frac{38 N_{f}}{3} \tag{23}\\
& \beta_{2}=\frac{2857}{2}-\frac{5033}{18} N_{f}+\frac{325}{54} N_{f}^{2} .
\end{align*}
$$

$L=\ln \mu / \Lambda$ and N_{f} is the number of fermions (quarks). For $N_{f}=3$ we obtain from Eqs. (18), (22) and (23)

$$
\begin{equation*}
\Lambda^{(3)}=352(17) M e V \tag{24}
\end{equation*}
$$

We use the $\overline{\mathrm{MS}}$ scheme throughout this paper.
\because In order to ensure continuity of α_{s} as N_{f} changes, we have derived the following relationships:

$$
\begin{align*}
& \Lambda^{(6)}=\Lambda^{(5)}\left(\frac{\Lambda^{(5)}}{m_{t}}\right)^{2 / 21}\left[\ell n\left(\frac{m_{t}^{2}}{\Lambda^{(5)^{2}}}\right)\right]^{-321 / 3381}\left(\frac{23}{21}\right)^{13 / 49} \\
& \Lambda^{(5)}=\Lambda^{(6)}\left(\frac{m_{t}}{\Lambda^{(6)}}\right)^{2 / 23}\left[\ell n\left(\frac{m_{t}^{2}}{\Lambda^{(6)^{2}}}\right)\right]^{321 / 3703}\left(\frac{21}{23}\right)^{174 / 529} \\
& \Lambda^{(5)}=\Lambda^{(4)}\left(\frac{\Lambda^{(4)}}{m_{b}}\right)^{2 / 23}\left[\ell n\left(\frac{m_{b}^{2}}{\Lambda^{(4)^{2}}}\right)\right]^{-963 / 13225}\left(\frac{25}{23}\right)^{174 / 529} \\
& \Lambda^{(4)}=\Lambda^{(5)}\left(\frac{m_{b}}{\Lambda^{(5)}}\right)^{2 / 25}\left[\ell n\left(\frac{m_{b}^{2}}{\Lambda^{(5)^{2}}}\right)\right]^{963 / 14375}\left(\frac{23}{25}\right)^{231 / 625} \tag{25}\\
& \Lambda^{(4)}=\Lambda^{(3)}\left(\frac{\Lambda^{(3)}}{m_{c}}\right)^{2 / 25}\left[\ell n\left(\frac{m_{c}^{2}}{\Lambda^{(3)^{2}}}\right)\right]^{-107 / 1875}\left(\frac{27}{25}\right)^{231 / 625} \\
& \Lambda^{(3)}=\Lambda^{(4)}\left(\frac{m_{c}}{\Lambda^{(4)}}\right)^{2 / 27}\left[\ell n\left(\frac{m_{c}^{2}}{\Lambda^{(4)^{2}}}\right)\right]^{107 / 2025}\left(\frac{25}{27}\right)^{32 / 81} \\
& \Lambda^{(3)}=\Lambda^{(2)}\left(\frac{\Lambda^{(2)}}{m_{s}}\right)^{2 / 27}\left[\ell n\left(\frac{m_{s}^{2}}{\Lambda^{(2)^{2}}}\right)\right]^{-107 / 2349}\left(\frac{29}{27}\right)^{32 / 81} \\
& \Lambda^{(2)}=\Lambda^{(3)}\left(\frac{m_{s}}{\Lambda^{(3)}}\right)^{2 / 29}\left[\ell n\left(\frac{m_{s}^{2}}{\Lambda^{(3)^{2}}}\right)\right]^{107 / 2523}\left(\frac{27}{29}\right)^{345 / 841}
\end{align*}
$$

These relations differ from those of Marciano [6] by approximately 3\%. From Eqs. (25) we obtain

$$
\begin{align*}
& \Lambda^{(4)}=304(16) \mathrm{MeV} \tag{26}\\
& \Lambda^{(5)}=216(13) \mathrm{MeV} \tag{27}\\
& \Lambda^{(6)}=92(6) \mathrm{MeV} \tag{28}
\end{align*}
$$

From Eqs. (22) and (27) we obtain

$$
\begin{equation*}
\alpha_{s}\left(M_{Z}\right)=0.1186(11) \tag{29}
\end{equation*}
$$

whose error is less than 1% ! This is consistent with the experimental value from LEP [7] and the latest value from SLD [8]

$$
\alpha_{s}\left(M_{Z}\right)= \begin{cases}0.120(7) & \text { LEP } \tag{30}\\ 0.118 \pm 0.002(\text { stat }) \pm 0.003(\text { sys }) \pm 0.010(t h) & \text { SLD }\end{cases}
$$

It is clear that a more accurate experimental value is needed. For $\alpha_{s}(34 \mathrm{GeV})$ our result is

$$
\begin{equation*}
\alpha_{s}(34 G e V)=0.1396(16) \tag{31}
\end{equation*}
$$

From the experimental value for $R=3 \Sigma Q_{f}^{2} r$,

$$
\begin{equation*}
r=1.049(7) \tag{32}
\end{equation*}
$$

one obtains [9]

$$
\begin{equation*}
\alpha_{s}(34 G e V)=0.149(21) \tag{33}
\end{equation*}
$$

in agreement with Eq. (31). These results along with α_{s} evaluated at $5 \mathrm{GeV}, 10$ $\mathrm{GeV}, 17.3 \mathrm{GeV}, 80.6 \mathrm{GeV}$ and 180 GeV are shown in Table I. It can be seen that all these results are consistent with experiment.

For $N_{f}=5$ we have

$$
\begin{equation*}
f_{F}^{(0)}=\left(\frac{\alpha_{s}}{\pi}\right)+4.444\left(\frac{\alpha_{s}}{\pi}\right)^{2}+13.13\left(\frac{\alpha_{s}}{\pi}\right)^{3}+\left(d_{4}^{(5)}-7.929\right)\left(\frac{\alpha_{s}}{\pi}\right)^{4} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\because f_{B}^{(0)}=\left(\frac{\alpha_{s}}{\pi}\right)+3.485\left(\frac{\alpha_{s}}{\pi}\right)^{2}+1.575\left(\frac{\alpha_{s}}{\pi}\right)^{3}+\left(d_{4}^{(5)}-93.14\right)\left(\frac{\alpha_{s}}{\pi}\right)^{4} \tag{35}
\end{equation*}
$$

We have neglected the term proportional to $\left(\Sigma Q_{i}\right)^{2}$ as it should be very small.

From Eq. (34) for $f_{F}^{(0)}$ we obtain $d_{4}^{(5)}=35.2$ and from R_{τ} we get $d_{4}^{(5)}=41.8$. From Eq. (35) for $f_{B}^{(0)}$ we get $d_{4}^{(5)}=77.8$ and from the series directly $d_{4}^{(5)}=6.47$.

We shall be conservative and take as our value

$$
d_{4}^{(5)}=40 \begin{gather*}
+54 \tag{36}\\
-40
\end{gather*} .
$$

The R ratio [11] in the $\overline{\mathrm{MS}}$ scheme for $N_{f}=5$ is

$$
\begin{align*}
R=3 \Sigma Q_{f}^{2} & {\left[1+\left(\frac{\alpha_{s}}{\pi}\right)+1.411\left(\frac{\alpha_{s}}{\pi}\right)^{2}-12.77\left(\frac{\alpha_{s}}{\pi}\right)^{3}\right.} \\
& \left.-\frac{1.240\left(\Sigma Q_{f}\right)^{2}}{3 \Sigma Q_{f}^{2}}\left(\frac{\alpha_{s}}{\pi}\right)^{3}+R_{4}\left(\frac{\alpha_{s}}{\pi}\right)^{4}\right]=3 \Sigma Q_{f}^{2} r \tag{37}
\end{align*}
$$

where [12]

$$
\begin{equation*}
R_{4}=d_{4}^{(5)}-89.3 \tag{38}
\end{equation*}
$$

and so

$$
R_{4}=-49 \begin{align*}
& +54 \tag{39}\\
& -40
\end{align*}
$$

Again we neglect the term proportional to $\left(\Sigma Q_{f}\right)^{2}, q$, since for the case of interest $q=1 / 33$ and this term should be negligible.

Now using our result from

$$
\begin{equation*}
\alpha_{s}(34 G e V)=0.1396(16) \tag{40}
\end{equation*}
$$

we.obtain

$$
\begin{equation*}
r=1.0459(5) \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
R=3.8350(18) \tag{42}
\end{equation*}
$$

These results are accurate at the 0.05% level!
For 31.6 GeV we obtain

$$
\begin{equation*}
\alpha_{s}(31.6 G e V)=0.1415(16) \tag{43}
\end{equation*}
$$

and, hence,

$$
\begin{equation*}
r(31.6 \mathrm{GeV})=1.0465(6) \tag{44}
\end{equation*}
$$

This should be compared to the experimental result [14]

$$
\begin{equation*}
r(31.6 \mathrm{GeV})=1.0527(50) \tag{45}
\end{equation*}
$$

In conclusion, we have shown how one can use our Padé Approximant Prediction (PAP) Method to estimate R_{τ} at the five-loop level of PQCD. This estimate has then been used to obtain more accurate predictions for $\alpha_{s}(\mu)$ for various values of μ. The agreement with experiment is excellent!

We have also used our result for $\alpha_{s}(34 \mathrm{GeV})$ to obtain the R ratio accurate to 0.05%. It should be emphasized that once we have fixed $\alpha_{s}\left(M_{\tau}\right)$ all the results in this paper are determined and have been obtained with no adjustable parameters. Now we need to improve the accuracy of the experimental values!

Acknowledgements

[^1]Richard Blankenbecler, Bill Marciano, and Helen Quinn for helpful discussions. This work was supported by the U.S. Department of Energy under grant numbers DE-FG05-84ER40215 and DE-AC03-76SF00515.

REFERENCES

[1] E. Braaten, Phys. Rev. Lett. 71, 1316 (1993). We wish to thank Eric Braaten for sharing his results for $f_{F}^{(0)}$ and $f_{B}^{(0)}$, for general N_{f}, with us.
[2] M. A. Samuel, G. Li and E. Steinfelds, Phys. Rev. D48, 869 (1993); M. A. Samuel, G. Li and E. Steinfelds, "On Estimating Perturbative Coefficients in Quantum Field Theory, Condensed Matter Theory and Statistical Physics," Oklahoma State University Research Note 278, August (1993); M. A. Samuel, G. Li and E. Steinfelds, "Estimating Perturbative Coefficients in Quantum Field Theory Using Padé Approximants," Oklahoma State University Research Note 273, October (1992); M. A. Samuel and G. Li, "Estimating Perturbative Coefficients in High Energy Physics and Condensed Matter Theory," Oklahoma State University Research Note 275, December (1992).
[3] M. Davier, Proceedings of the Second Workshop on Tau Lepton Physics, The Ohio State University, Columbus, Ohio, September 8-11, (1992) pg. 514, edited by K. K. Gan, World Scientific (1993).
[4] W. Trischuk, Proceedings of the Second Workshop on Tau Lepton Physics, The Ohio State University, Columbus, Ohio, September 8-11, (1992) pg. 59,
\because edited by K. K. Gan, World Scientific (1993); W. J. Marciano, Proceedings of the DPF92 Meeting, Fermilab, November (1992).
[5] M. A. Samuel, "The Tau Lepton and Tests of the Standard Model," Fermilab-Pub 92/201-T (1992), Modern Physics Letts. A (1993).
[6] W. J. Marciano, Phys. Rev. D29, 580 (1984).
[7] H. Wachsmuth, "Determining the Strong Coupling Constant from $e^{+} e^{-}$ Collisions at LEP," CERN-PPE/91-145, unpublished (1991).
[8] K. Abe et al., (SLD Collaboration) Phys. Rev. Lett 71, 2528 (1993).
[9] M. A. Samuel and L. Surguladze, Modern Physics Letters A7, 781 (1992).
[10] T. Akesson et al, Zeit. fur Phys. C32, 317 (1986).
[11] L. R. Surguladze and M. A. Samuel, Phys. Rev. Lett. 66, 560 (1991); S. G. Gorishny, A. L. Kataev and S. A. Larin, Phys. Lett. B259, 144 (1991).
[12] M. R. Pennington and G. G. Ross, Phys. Lett. B102, 167 (1981).
[13] J. Alitti et al, Phys. Lett. B263, 563 (1991).
[14] R. Marshall, Z. Phys. C43, 595 (1989).

TABLE I

Experimental and Predicted Values for $\alpha_{s}(\mu)$

	Theoretical	Experimental
$\mu(\mathrm{GeV})$	Values for $\alpha_{s}(\mu)$	Values for $\alpha_{s}(\mu)$
1.7769	$0.3233(89)$	input
17.3	$0.1591(20)$	$0.18(5)$ Ref. 10
31.6	$0.1415(16)$	$0.160(16)$ Ref. 14
34.0	$0.1396(16)$	$0.148(22)$ Ref. 9
80.6	$0.1209(11)$	$0.123(25)$ Ref. 13
91.173	$0.1186(11)$	$0.120(7)$ Ref. 7
-		$0.118 \pm 0.002(\mathrm{stat})$
180.0		$\pm 0.003($ sys $) \pm 0.010(\mathrm{th})$
		Ref. 8

[^0]: \star Work supported by the Department of Energy, contract DE-AC03-76SF00515.

[^1]: \because One of us (MAS) would like to thank the theory group at SLAC for its kind hospitality. He would also like to thank Eric Braaten, Stan Brodsky, David Atwood,

