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ABSTRACT

Multi-bunch transfer functions are principal ingredients in understanding both the behavior
of high-current storage rings w we~ m control of their instabilities. The me~urement of transfer
functions on a bunch-by-bunch bmis is particdarly important in the design of active feedback
systems. Tradition methods of network analysis that work well in the single bunch cwe
become difficult to implement for many bunches. We have developed a method for obtaining
empirical estimates of the multi-bunch longitudinrd transfer functions from the tim~domain
measurements of the bunches’ phme oscillations. This method involves recording the response
of the bunch of interest to a white-noise excitation. The transfer function can then be computed
M the ratio of the fwt Fourier transforms (FFTs) of the response and excitation sequences,

. averaged over severrd excitations. The calculation is performed off-line on bunch-ph- data
and is well-suited to the multi-bunch c-e. A description of this method and an analysis of its
performance is presented with results obtained using the longitudinal quick prototype feedback
system developed at SLAC.

I. INTRODUCTION

Many fundamental methods of system analysis and control theory rely on frequency domain
representations of the system of interest. Often the design of control systems is b~d on transfer
function memurements of system elements, in which the complex frequency response of a system
is me=ured from two accessible ports of the system. The design of feedback control systems
for accelerators presents many opportunities to apply these principles. A simple system, such
as the longitudinal motion of a singl~bunch in a storage ring, can be directly mewured in the
frequency domain using laboratory instruments such as a network analyzer that excites the beam
through a driving port (such w an rf cavity), and observes the motion of the beam through a
mewurement port (such as a position-monitor electrode). However, for a multi-bunch system,
tradition tw~port network analysis techniques cannot be applied if one desires to measure
transfer functions of individud bunches, or cross-coupling functions in which the excitation is
applied to bunch i but the response is detected from bunch j. Such measurements are extremely
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FIG. 1. Block diagram of output error model: a system with impulse responm h(n) is excited by an
input u(n). The measurements y(n) consist of the system output z(n), corrupted by white noise v(n).

useful in the characterization of coupling strengths between bunches and in the determination
of the closed-loop frequency response of the complete feedback system.

Many new accelerator and synchrotron fight facilities propose to control multi-bunch
instabilities through the use of bunch-by-bunch feedback systems [1,2]. Such systems calculate
correction signals for a bunch from p-t mewurements of only that bunch. The longitudinal
quick prototype developed at SLAC se a component of the PEP-II W D program uses digital
signal-processing microprocessors (DSPS) to implement a multi-bunch feedb~ system [3,4,5].
One feature of this implementation is the incorporation of general-purpose, signal-processing
computers with avtilable internal memory buffers. With such a processing architecture it is
possible to record bunch oscillation data = well as store bunch-excitation sequences in the
processor memory. This flexibility allows analysis of tim~domain records of the beam motion,
and allows the application of arbitrary excitation patterns to selected bunches. The record and
excitation processes can be performed while the feedback system is operational or turned off,
and allow multi-bunch transfer functions to be me=ured with the use of off-line Fourier analysis
techniques.

II.MEASUREMENT FORMALISM

Suppose we want to analyze a discrete-time system with transfer function (frequency response)
~(e~”) and impulse response h(n) , n = 1,2,... , The Discrete-Time Fourier Transform (DTFT)
of h(n) is H(ejw ), where the DTFT of a discretetime sequence x(n) is defined m

n=—m

-.

Note that since the DTFT is a function of e~”, it is periodic with period 2m.
Our problem can be stated = follows: given a finite number of input and output samples

u(n) and y(n), we would like to estimate the frequency response ~(e~w ) of the system. Let the
sequence z(n) denote the response of the system to the input sequence u(n). Let y(n) denote
our measurements that we =sume are corrupted by additive zer~mean white noise v(n). Then
we have the following (output error) model [6]:

z(n) = [h* u](n)

y(n) = z(n)+ v(n).

This is shown in Fig. 1. The following theorem from Ljung ([6] p. 25, p. 147) provides an answer
to our problem:

Theorem 1 Let y(n) and u(n) be related by:

g(n) = [h* u](n)+ v(n) (1)
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where * denotes convolution. Suppose that the input u(n) is unknown for n <0 but is bounded.
firthemom let u(n) be periodic with petiod N. Define the N-pint discrete foutier tmnsfom
(DFT) of a finite sequence {x(n)}#-l as

N– 1

XN(k) ~ ~ x(n)e-i~~ ;k = 0,..., N– 1.
n=o

Then if UN(k), YN(k) and V~(k) denote the N-point DFTs of u(n), ~(n) and v(n), respectively,
then we have

YN(k) = H(e~~) UN(k) + VN(k). (2) -

Thus we can obtain an estimate of H(e~W)at the

fi(ej~) A ‘N(k)
UN(k)

N points w = ~,k =0,1,..., N– 1 via

(3)

=H(e~~)+w .
U~(k)

(4)

Since the noise was assumed to be zer~mean and the input u(n) is known, then by linearity
of expectation, the expected value of the error term VN(k)/UN (k) is zero, so fi(ej ~ ) is an

unbiased estimator of H(e~ ~ ). This means that this error can be reduced by averaging several
independent estimates of ~(e~ ~ ). fi(e~ ~ ) is called the empirical transfer function estimate
(ETFE) of H(ej*).

In prwtice, this technique of obtaining transfer function estimates using a known periodic
. excitation has proven very useful because it gives a very quick estimate of the entire spectrum

in one p- (sampled at the frequency intervals 1/N times the sampling frequency). In noisy
situations, the theorem above shows that repeated averaging can be used to reduce the noise.

For example, consider a single-bunch beam in a machine such as ALS that h= a longitudinal
oscillation frequency of about 10 kHz. If the longitudinal motion is sampled at 50 kHz, then
applying eight sequences of a 1024point whitenoise excitation to the system takes about 200 ms.
The computations required to calculate the ETFE from the input and output sequences can
be performed on an IBM PC in a matter of seconds. Furthermore, the availabihty of the
timedomain sequences makes it possible to use parametric estimation techniques to obtain the
actual coefficients of the frequency response. Having an analytic expression for the frequency
response is very important from the control systems point of view, = the model of the system
determines -what transfer- finction to use in the feedback.

III.EMPIRICAL TRANsFER FuNcTIoN ESTIMATES vIA KNowN EXCITATION

In this section we illustrate the effects of the choice of the input excitation on the ETFE via
a realistic computer simulation. This computer simulation allows us to plot the signals at dl
points in our system, even inside the digitd parts.

Consider analyzing the system shown in Fig. 2 using the method above. The figure shows the
discrete transfer function of a one-bunch beam with a synchrotron frequency of 10 kHz, sampled
at 50 kHz as in the example above. The instrument uses &bit A/D and D/A converters with a
range of +2.5 V. The output is corrupted by white noise of 20-mV rms.

A. Empirical Transfer ~nction Estimates via White Noise Excitation

We choose u(n) to be a periodic white-noise sequence with period N = 1024. White noise is
a tradition choice for u(n) since it provides a broadband excitation for the unknown system.
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FIG. 2. Frequency reponse of a single bunch with a 10 Khz synchrotron frequency.

Four periods of u(n) are applied to the system and four 1024-point output sequences y(n) are
recorded. The DFTs are computed off line using the FFT algorithm. The transfer function
is then computed as the average of the four independent ~(e~ ~ ) estimates from ewh output
sequence.

Figure 3 shows the time history and the power spectrums of the quantized 1024-point
whit~noise input of 0.12 V rms and the digitized output. Since the system response is large
at resonance we can only drive the system with a few counts from the output D/A before the
input A/D converter saturates, Also, note that the input spectrum is almost flat, while the
dc-t~peak ~ange of our output is 60 dB. Thus, the experiment clearly has not made the best
use of our input and output dynamic ranges. Nevertheless, it was still possible to compute a
fairly yeasonabl~looking ETFE using four averages (see Fig. 4).

B. Empirical ~ansfer ~nction Estimates via Shaped Excitation

Despite its crude appearance, Fig. 4 contains valuable information about the system. We
will now outline an iterative procedure that exploits the information contained in this ETFE
in a direct way and uses it to construct a spectrally shaped input-excitation sequence. Such
a spectrally shaped excitation uses information available about the test system to distribute
the dynamic range requirements more evenly between the input and output of the measuring
instrument [7]. In essence, one should drive the system hard at frequencies where it has httle
response, and be gentle in frequency ranges where the system responds strongly. Alternatively,
if the system pwameters are well known one can create the shaped excitation directly from
knowledge of the system-transfer functions.

Given an initial whitenoise ETFE, the custom input, UC,is obtained as follows [7]:
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1. Form the lower hdf of the custom input FFT from the ETFE =

WI (ej2~n/N –) – (~lR(ej2~~/N)l)-1 ej~” n = 0,1,...,,2,2,

where

@n=
{

uniform(O, 2T) n = 1,2, ..., N/2 – 1
rand{–1, 1} n = O,N/2

2.. Form the upper half of the input DFT from the lower hdf via complex conjugation

U2(e~2~~/N) = Ul(#2”(N-n)iN)* n = N/2+1, ....N – 1
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FIG. 3. Time sequences of the excitation (3a), the system response (3b), the associated excitation power

spectrum (3c), and the response power spectrum (3d).
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FIG. 4. Empirical transfer function estimate (ETFE) of the system of Fig. 2, computed from time

sequences 3a and 3b via the ratio of their Fourier transforms and averaged over four excitations.

3. Form the overall input FFT UC(e~2mnjN)as the concatenation of U1and U2.

4. Obtain the custom input u.(n) by taking the inverse FFT of Uc(e~2mniN).

The sequence u.(n) can now be used as the periodic excitation sequence and the ETFE can
be computed from this m before. Since this input sequence does not have much power at the
frequencies of high response in the test system, we can scale this input to a larger rms value
of 0.6 V rms, without saturating the instrument A/D. Figure 5 shows the time history and the
power spectrums of the quantized 1024-point custom input and the digitized system response.
The finer resolution at the input reduces the error due to quantization while the signd-t~noise
ratio at the output is maintained, since the excursions are roughly the same m before. The
resulting ETFE (four times averaged) is shown in Fig. 6. Note the improved resolution at the
notch. at high frequencies. This improvement is expected since we incre~d the relative power
of the- input at those frequencies.

IV.IMPLEMENTATION AND RESULTS

The essential system features needed to compute the estimated trmsfer functions are: a means
of generating the excitation functions, applying the excitation functions to selected bunches,
and recording the system response. Figure 7 shows a block diagram of the signal-processing
components of the longitudinal quick prototype [2,4]. The excitation functions u(n) are
computed off line (using a high-level language such w Matlab [8]) and transferred to DSP
memory with the control programs via the JTAG control link. An external trigger can begin the
time-domain excitation or the excitation can start under program control. The system-response
records are stored in the DSP general-purpose memory. After a record is recorded, the DSP
development system is used to transfer the time records for off-line analysis.
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FIG. 5. Time sequenc~ of the shaped excitation (5a), the system response (5b), the associated excitation
power spectrum (5c), and the r-ponae power spectrum (5d). The shaped excitation shara the system
dynamic range between excitation and rwponse signak.- ..
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FIG. 6. ETFE obtained using shaped excitation sequences 5(a) and 5(b), and averaged over four
excitations. The measurement dynamic range now spans 60 dB.
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FIG. 7. Block diagram of the digital signal-proc~ing functions of the longitudinal quick prototype.
- General-purpose DSP ~icrop~oc=ors are used to provide time excitation functions and to record the system
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FIG. 8. Laboratory ETFE measurementof a singlebunch transfer function (second-order active filter)
obtained using the quick prototyp~faedback system and a white noise (random) excitation sequence.
Four responses are averaged. Note that the dynamic range of the transfer function is Emited to roughly

.40 dB.

As the DSP memories are 16 kbytes long, it is possible to use excitation sequence lengths of
1024 to 4096 samples. For the ALS operating conditions (revolution frequency of 1.5 MHz) and
a downsampling fwtor of 24 a 1024point record allows frequency resolution of roughly 50 Hz
per computed spectral bin. The software process that excites the beam can run in wnjuction
with the feedback control program by adding the excitation signal to the computed output signrd
for bunches under study. Similarly, the control program must save the time record of selected
bunch samples ~ it computes correction signals. These functions add an execution penalty
to the softwme overhead in the DSP when these diagnostic program modes are loaded that is
roughly 20 percent of the nominal filter-execution time per bunch.

We impl~m.ented the techniques above with the prototype DSP feedbxk system. Figure 8
shows a transfer function obtained using the prototype system and the ETFE method using
a whltenoise excitation. For this me~urement a 1024-point time record wsa used, with four
excitations averaged. This me~urement is of an analog computer that mimim the behavior of
a single bunch (an active filter that models the second-order, low-pros properties of the stored
bunch) with nominal ALS parameters. (Actual ALS beam me~urements are not possible until
the completion of the instdation of the longitudinal kicker and power amplifier in fall 1993.)

The estimated transfer function reveals the limited dynamic range of the feedbwk system
input and output stages, which are implemented with &bit A/D and D/A components. This
limit restricts the excitation and time-record dynamic range to a maximum of 48 dB if the signals
are exactly matched to the converter’s operating ranges. We see that the transfer function
measurement in Fig. 8 becomes noisy for frequencies that are roughly 40 dB below the peak
response m we would expect. Averaging more excitation/response data sets cannot improve on
the signd-t~noise ratio when the signals fdl below the quantization limit.

Figure 9 shows a measurement of the transfer function of the same bunch simulator, but using
a shaped excitation computed from the ETFE of Fig. 8. The reduced power of the excitation
sequence in the region of the centrrd resonance peak allows improvement of the dynamic range
of the ETFE memurement as expected.
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FIG. 9. Laboratory ETFE mesaurementof a singlebunch transfer function obtained using the quick
prototype and a spectrally shaped excitation sequence. The excitation function was computed from the
measured system response in Fig. 8. Four excitations are averaged. The measurement dynamic range

. now.exceeds 60 dB and noise in the ETFE is reduced from that seen in Fig. 8.

V. SUMMARY

The tim~domain processing scheme used in a bunch-by-bunch feedback processing system has
been shown to be capable of meuuring transfer functions through the use of Fourier analysis
methods. These transfer function measurements may be made on systems for which tw~port
tradition network methods cannot be apphed, and directly allow the coupling between bunches
in an wcelerator to be measured.
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