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Abstract

The upper bound on the number of relativistic species present
at nucleosynthesis has been used to constrain particles with electric
charge εe (10−8 < ε < 1). We correct the bound previously calculated
for milli-charged particles that interact with a shadow photon. We also
discuss the additional constraints from the properties of red giants and
of Supernova 1987A.
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A problem of continuing interest in elementary particle physics is the pos-
sible existence of particles with an electric charge very small compared to
the electron charge. We will refer to such particles as ‘milli-charged’ and
will denote the small charge as ε · e. Traditionally, these particles have been
considered as new ingredients added to the standard model, reflecting the
mystery of the electric charge quantization observed in Nature. In this con-
text, many authors have pointed out astrophysical constraints on the mass
and charge of milli-charged particles[1]–[7]. In addition, a very persuasive
argument against the existence of such particles is the fact that they would
be forbidden in models with a grand unification.

However, in 1986, Holdom[8] showed that, by adding a second, unob-
served, photon (the ‘paraphoton’ or ‘shadow photon’), one could construct
grand unified models which contained milli-charged particles in a natural way.
Holdom’s scheme for milli-charged particles is genuinely persuasive, and has
stimulated new experimental tests [9]. It also requires a rethinking of the
astrophysical constraints on milli-charged particles[6, 10, 11]. In this paper,
we will improve on previous treatments of these constraints, correcting an
error in a previously claimed nucleosynthesis bound and discussing possible
additional bounds from stars and from Supernova 1987A.

Our conclusions are presented in Fig. 1. This figure is based on Fig. 2 of
ref. [6]. It includes the limits from direct accelerator experiments [12], the
Lamb shift, Ω < 1, and other sources derived in ref. [6], and the supernova
bound from [5], and adds the new limits from nucleosynthesis and and from
helium-burning stars described below.

Holdom showed that particles with small electric charge would appear
naturally in grand unified models if the model contained two unbroken U(1)
symmetries. Conventional grand unification leads to one unbroken U(1) sym-
metry; at low energies, this is the gauge symmetry of electromagnetism.
Holdom suggested that it could easily contain another unbroken U(1) which
lives completely outside the standard model gauge group. At the most funda-
mental level, the model would contain as light fermions ordinary quarks and
leptons, which are neutral under the shadow U(1), and new shadow fermions
which are neutral under the ordinary U(1). However, any small mixing of
the two U(1) gauge bosons, even if it is induced by loop diagrams involving
particles at the grand unification scale, will cause observable milli-charges
with ε proportional to the mixing angle. A natural size of this mixing angle
is α/π ∼ 10−3. In the resulting field space, the original U(1) directions are
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not orthogonal by the amount ε. We will define the conventional photon
(γ) to be that linear combination of the two gauge bosons which couples
to ordinary quarks and leptons, and define the paraphoton (γ′) to be the
orthogonal combination of gauge fields. Then the conventional photon has
couplings of size ε to shadow matter, but the shadow photon has zero cou-
pling to conventional matter. The opposite convention is also possible, by
taking a different choice of basis in the field space, but it is less convenient.
The value of the basic U(1) charge could well be different between the ordi-
nary and shadow U(1)’s (α′ could differ from α), but, for simplicity, we will
ignore this distinction below.

One of the strongest constraints on models of milli-charged particles both
with and without a paraphoton is the bound from primordial nucleosynthe-
sis. If the mass of the milli-charged particle is sufficiently small, this particle
will provide extra light degrees of freedom at the era of nucleosynthesis and
will thus contradict the limit usually quoted as the bound on the number of
light neutrinos. The principal uncertainty in this bound comes from the esti-
mation of the primordial mass fraction Yp of 4He. In a recent paper, Walker,
Steigman, Schramm, Olive, and Kang [13] have argued for the relation

Nν = 2.00± 0.15 + 83.3(Yp − 0.228). (1)

and for the value Yp = 0.23 ± 0.01. However, the standard error given
here should be used with care in citing confidence limits, since it is mainly
systematic. We believe it is correct, in citing limits on new particles, to
consider a scenario with Nν = 4.2 as acceptable, and we will argue below in
this spirit. A much stronger conclusion would follow if we took the error on
Yp literally as the width of a Gaussian distribution and claimed Nν < 3.3
(95 % confidence); we will also discuss the bound in this case below.

A milli-charged fermion with a small mass counts as two neutrinos, to
be added to the three light neutrinos of the standard model. Thus, milli-
charged particles with mε

<∼ 1 MeV can be ruled out (for ε >∼ 10−8). This
bound applies to models both with and without a paraphoton. However, it
was incorrectly claimed in [6] that the nucleosynthesis bound in the model
with a paraphoton was much stronger, ruling out m <∼ 200 MeV. Since this
is a region of parameter space in which a direct experiment test of the model
is possible[9], we should correct this conclusion.

The upper bound on the number of light neutrinos at nucleosynthesis is,
more correctly, a bound on the energy density at this epoch. Since the para-
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photon is necessarily massless, it always contributes to this energy density. A
paraphoton in thermal equilibrium with ordinary photons has a contribution
equal to 8/7 of a neutrino, and so is excluded only by the strongest claimed
bounds on Nν . However, the authors of [6] argued that the contribution of
the paraphoton was considerably larger. They assumed that, if milli-charged
particles were heavier than 1 MeV, these particles would annihilate before the
era of nucleosynthesis and transfer their entropy to the paraphotons. This
would raise the paraphoton temperature with respect to the photon temper-
ature and increase the paraphoton energy density. They concluded that the
milli-charged particles had to annihilate before the QCD phase transition,
where substantial entropy production increases the temperature of ordinary
photons.

However, this is unneccessary. We will now show that the paraphotons
remain in thermal equilibrium with the photons as the milli-charged particles
annihilate, so that Tγ′ will never be significantly larger than Tγ.

Photons can turn into paraphotons by Compton scattering from a milli-
charge (or anti-millicharge) to produce a paraphoton. For a given photon,
the rate of this process is given by Γ(εγ → εγ′) ' nεσ(εγ → εγ′), which we
can estimate for mε < T by

Γ(εγ → εγ′) ' 4
(

mεT

2π

)3/2

e−m/T · 8πε2α2

3m2
ε

, (2)

where we have used the low-energy limit of the Compton cross section and
assumed that α′ = α. The rate for converting a paraphoton to a photon
is identical. To estimate quantitatively the temperature at which the milli-
charges have transferred their entropy to the paraphotons, we define Tε(mε)
to be the the temperature at which the equilibrium density of milli-charges
has fallen to 1/10 the number density of a relativistic species:

(
mεTε

2π

)3/2

e−mε/Tε =
1

10
· 7ζ(3)

8π2
T 3

ε . (3)

Then the paraphotons will equilibrate this entropy with ordinary photons if
the rate Γ(εγ → εγ′), evaluated at Tε, is large compared to the expansion
rate of the universe at Tε:

Γ(εγ → εγ′) > H(Tε) '
1.7

√
geff(Tε)T

2
ε

mpl
(4)
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where H is the Hubble expansion rate, mpl is the Plank mass and geff(T ) is
the total effective number of relativistic degrees of freedom. The inequality
(3) is satisfied for ε > 10−8.

Thus, for ε > 10−8, nucleosynthesis gives a lower limit to the milli-charge
mass of 1 MeV, as before. This revised nucleosynthesis bound is plotted in
Fig. 1.

If we accept the strong nucleosynthesis bound of ref. [13], and neglect
the possibility of a heavy (unstable?) tau neutrino [15, 16], the bound on
the milli-charge mass becomes much stronger. If one cannot have more that
3.3 effective neutrinos at the era of nucleosynthesis, the paraphotons cannot
be in thermal equilibrium with the ordinary photons; rather, they must be
cooler in such a way that

8

7
T 4

γ′ = .3T 4
γ . (5)

The photons must therefore be heated by annihilations after the paraphotons
decouple. This implies [6] that the photons and paraphotons must be out of
equilibrium at the temperature of the QCD phase transition, Tc ≈ 200 MeV.
The dominant equilibration process is still Compton scattering, and so we
can use the estimates above, with Tε replaced by Tc, to find the limit

mε > 7 + .4 ln ε GeV . (6)

We plot this bound as a dotted line in figure 1. We emphasize to the reader
that the difference between this limit and the qualitatively weaker limit above
corresponds to a 1 σ shift in the 4He abundance constraint.

Previous discussions of the astrophysical bounds on milli-charged particles
made use of physical arguments which were independent of the existence of
the paraphoton. In particular, when ε is small, milli-charges made in the
center of a helium-burning star (or of Supernova 1987A) can escape freely,
adding substantially to the cooling rate. This leads to a bound for small
masses and ε < 10−7. However, in models with a paraphoton, there is another
physical picture which leads to constraints at larger values of ε.

The new bound arises when we consider the radiation of paraphotons
from the star. It is not difficult to see that this radiation can be substantial:
Under circumstances that we will specify below, the core of a star can con-
tain milli-charges and paraphotons in thermal equilibrium with the ordinary
matter. The cross section for paraphoton-millicharge scattering is the full
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Compton cross section, without a factor ε2. Thus, the mean free path for
paraphotons will be much shorter than the size of the stellar core. However,
in outer regions of the star, the temperature drops, the density of milli-
charges decreases, and the star becomes transparent to paraphotons. Thus,
the star will have a photosphere for paraphotons and will radiate from this
‘paraphotosphere’ approximately like a black body. For milli-charged masses
greater than 100 eV, the paraphoton mean free path in the outer regions
of the star will be longer than that of the photon, so the the ‘paraphoto-
sphere’ will occur at a smaller radius, and thus a higher temperature, than
the sphere from which ordinary photons are radiated [17]. Thus, the stellar
luminosity in paraphotons should be greater than the stellar luminosity in
ordinary photons. However, the sun is too young to have been losing energy
at twice the photon luminosity, and the observed lifetimes of helium-burning
stars also disfavour such a large addition to the energy production [18]. We
get a better bound from the hotter star, but a more dependable one from
the sun. We will therefore outline the calculation for a helium-burning star,
but quote the bound also for the analogous argument applied to the sun.

Since milli-charges are produced from ordinary matter by the pair pro-
duction process e−N → e−Nεε̄, there is no difficulty in creating a thermal
population of milli-charges. The weak link in the argument is the bottle-
neck in converting ordinary photons to paraphotons if the thermal density of
milli-charges is small. We can make a rough estimate of this rate by assuming
that paraphotons are only created in a helium core of radius Rc ∼ 109 cm in
thermal equilibrium at the temperature Tc ∼ 10 keV. The production rate
of paraphotons in the sphere by Compton scattering εγ → εγ′ is given by

4πR3
c

3
nγnεσεγ→εγ′ ∼ αα′ε2R3

cT
4
c

√
Tc

mε
e−mε/Tc . (7)

If we require that this be less than Lγ/Ts, where Lγ is the luminosity of the
sphere in ordinary photons, and Ts is the surface temperature, we find the
limit

mε
>∼ .4 + .02 ln ε MeV (He) (8)

for helium-burning stars, and

mε
>∼ 40 + 2 ln ε keV (sun) (9)
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from the sun. We have plotted (8) as a thin line in Fig. 1. Our new bound is
obviously very rough, but fortunately, it is unimportant, because it applies
only to a region of parameter space already ruled out by nucleosynthesis.

A similar argument could in principle give a stronger bound from the
properties of Supernova 1987A. However, the proto-neutron star cools by
emitting neutrinos, not photons. If ε is sufficiently large that the milli-
charged particles do not escape from the core, the paraphoton mean free
path is shorter than that of the neutrinos, so the ‘paraphotosphere’ would
be at a larger radius (and lower temperature) than the ‘neutrinosphere’,
and the paraphoton luminosity would be lower than that of neutrinos. Thus,
SN1987A gives no additional constraint in models with a paraphoton beyond
the limit found in ref. [5] in the model without a γ′.

In this paper, we have presented new evaluations of the bounds on milli-
charged particles in models with a paraphoton, as advocated by Holdom. Our
main conclusion is that, with a conservative estimate of the nucleosynthesis
constraint, there is no astrophysical restriction on the existence of milli-
charges with mε > 1 MeV and ε < 10−2. We look forward to new direct
experiments which will explore this interesting region.

We are grateful to John Jaros, Morris Swartz, and Willy Langenfeld for
encouraging us to think about these issues, and also to Fernando Atrio-
Barandela, Lance Dixon, Pierre Salati and Martin White for informative
discussions.
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Figure 1: Regions of mass-charge space ruled out for milli-charged particles 
in the model with a paraphoton. The bounds arise from the following con- 

- straints: l-accelerator experiments; 2-the Lamb shift; 3-nucleosynthesis; 
4--R < 1; 5-plasmon decay in red giants; 6-plasmon decay in white dwarfs; 
‘I-dark matter searches; S-Supernova 1987A; 9--y’ emission by red giants. 
The bounds 1,2 and 4-7 are from reference 6, 8 is from reference 5, and 3 and 
9 are from this paper. 


