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ABSTRACT

We present a thorough analysis of the direct semiexclusive production

in quantum chromodynamics (QCD) of single, highly isolated mesons from

electron-positron or two-photon initial states. Corrections of higher order and of

subleading twist are considered, and potential divergences in the naive calculation

are contained. Monte Carlo methods are used to relate the QCD calculations to

experimentally measurable quantities. We �nd that the study of semiexclusive

production is the most sensitive experimental probe of the structure of mesons in

the valence (q�q) state at energies s >� 10 GeV.
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1. Introduction

1.1 Qualitative

To study Quantum Chromodynamics (QCD) in the real world is to study

hadrons. The con�nement of color, and the complicated structure of color-singlet

hadronic states, presents the greatest obstacle to the study both of QCD itself

and of other physics at hadron colliders, which will be masked by QCD e�ects.

Similarly, the study of weak processes such as b ! s is complicated by the

dependence on meson wavefunctions of the observed hadronic rates. Thus it is

essential to gain the greatest possible understanding of the structure of hadrons in

preparation for future experiments.

The study of hadronic properties through exclusive processes [1] is by now

an established industry. Grozin and Baier [2] and more recently Hyer [3] have

proposed an alternative process, dubbed semiexclusive production, whose analysis

holds promise of illuminating the structure of mesons with greater precision than

is achievable with exclusive reactions.

Exclusive processes, in which the �nal state is completely speci�ed, are

inevitably suppressed by powers of Q2 at high energies, where Q is the momentum

scale apposite to the hard process under consideration [1]. The degree of this

suppression in the amplitude can be shown to be (�=Q)ns , where � � �QCD is a

typical hadronic momentum scale and ns = npartons � nhadrons is the number of

`spectators' to the hard scattering, which must emerge collinear to the hadrons

they constitute [4]. For example, the proton form factor falls like Q�4, so that the

associated cross sections are proportional to Q�10.
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In semiexclusive reactions, we specify the properties of one directly produced

meson and demand a high degree of isolation (e.g., isolation in a hemisphere in

the center-of-momentum frame, or by a large rapidity gap) in order to eliminate

inclusive backgrounds. Since we do not specify the content of the recoil system,

we pay the minimum possible penalty in the cross section: there is only a single

spectator quark. Thus semiexclusive meson production, which will be the focus of

this paper [5], occurs with cross sections proportional to Q�4 (compared to total

event cross sections of order Q�2). For example, consider the current data sample

of the CLEO detector at CESR, about 2 fb�1. This represents about 107 events

of all types. The semiexclusive production cross sections are about 2{3 fb for each

meson, so several such events are expected even in the current data sample. On

the other hand, the cross section for exclusive �+�� production is on the order of

1 fb, and that for p�p production is about 10�2 fb.

The less drastic suppression of semiexclusive cross sections with increasing

energy allows us to study these processes at higher energies than the study of

exclusive processes can reach, putting us in a region where the perturbation

expansion is more reliable, and higher-twist terms more thoroughly suppressed.

Semiexclusive processes have a further advantage in the study of hadronic

structure; the fraction z of the beam energy carried by the isolated meson can

be measured, and the di�erential cross-section d�=dz reconstructed. The shape of

this cross section depends on the distribution amplitude of the isolated meson; thus

extraction of valence distribution amplitudes with high precision should become

feasible. This is in contrast to the situation in purely exclusive scattering in which

the angular distribution is trivial (as is the case for form factors) or is insensitive

to the distribution amplitude [6,7] .
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These advantages are partially, but not entirely, neutralized by the added

complications due to the hadronization of the recoil system, which introduces

nonperturbative physics into the computation of experimental results. Much of

this work focuses on the extraction of viable results which take into account the

behavior of the hadronizing system.

1.2 Quantitative

Our computational scheme is that of Lepage and Brodsky [1]. The amplitude

for any process in which a `hard' scale Q can be identi�ed is written as a

convolution of a hard-scattering subprocess amplitude, calculable in perturbative

QCD (pQCD), with one or more process-independent nonperturbative light-cone

hadron wavefunctions:

M =

i

dx d2k? THi(x; k?;Q) i(x; k?;Q); (1:1)

where TH is a pQCD amplitude for the hard scattering of free partons,  i is the

projection of the wavefunction onto the ith Fock state, and Q is the `separation

scale' above which processes are deemed hard; processes with momentum transfer

smaller than Q are absorbed into the wavefunction.

To leading twist, we may ignore the dependence of TH on k? � �� Q. Then,

de�ning [8]

�(x;Q) �

Q

d2k?  (x; k?;Q); (1:2)

we obtain the simpler form (valid up to terms of O(�2=Q2) where � <� 1 GeV is a

typical hadronic momentum scale)

M = dx TH(x;Q)�(x;Q): (1:3)
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Figure 1. Feynman diagrams contributing to the semiexclusive process e+e� ! HX.

Here we show only the hadronic event topology; a sum over all possible attachments

of the incoming � is assumed. All external particles are outgoing; arrows indicate

fermion ow.

Another crucial simpli�cation results from the neglect of all terms of higher

twist: the amplitude thus calculated depends only on the projection of the

wavefunction onto the Fock state of smallest particle number and with no orbital

angular momentum, the `valence' Fock state [1]. Thus the tremendous complexity

of the hadronic structure is reduced to the single valence distribution amplitude �.

Gupta [9] has shown that the factorization theorems from exclusive processes are

also valid in the semiexclusive case, so that the distribution amplitudes extracted

from the study of semiexclusive processes are indeed universal.

Figure 1 shows the Feynman diagrams contributing at tree level to the simplest

semiexclusive process, e+e� ! K�X (of course, any light meson may be produced

by the same mechanism). In this work, we will systematically explore the properties

of the resulting system, obtaining a set of reliable predictions of experimentally

measurable quantities.

This paper is organized as follows: Section 2 computes the tree-level amplitudes

at leading twist for the processes of interest and comments on their structure.
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Section 3 is devoted to next-to-leading twist corrections to these results, arising

from the inclusion of quark and meson mass terms, intrinsic transverse momenta,

and higher Fock states. Section 4 explores the e�ects of Sudakov suppression and

the running of the QCD coupling �s. Section 5 describes the e�ects of other

higher-order pQCD processes on our results. Section 6 explores the collinear

divergence of the naive tree-level amplitude which arises when one quark is created

nearly parallel to the produced meson; a more accurate, convergent form is used

for this region, and the e�ect on measurements away from the collinear region

is explored. Section 7 uses standard Monte Carlo methods to study the relation

between the isolation of the directly produced meson in the partonic system and

the experimentally measured isolation from hadrons produced in fragmentation.

Finally, Section 8 presents our results, extracts experimentally accessible quantities,

and discusses the prospects for constraining hadronic distribution amplitudes.

2. Tree-level amplitudes

In this chapter, we calculate the tree-level amplitudes for the semiexclusive

process e+e� ! HX, where H is some meson. The amplitudes take their simplest

form in the center-of-momentum frame if we de�ne [3]

the hadron momentum fraction

z �
EH + j~pH j

s
;

the antiquark and quark (respectively) back-momenta (light-cone

momenta in the frame antiparallel to ~pH)

yi s � Ei �
~li � ~pH
j~pH j

;
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with y1 + y2 = 1�m2
H=zQ

2;

the beam scattering angles � and �, where � is the e�-to-H

polar angle, and � is the angle between the H-q-�q plane

and the plane containing the beam and H [10]; and

s � sin(�=2) and c � cos(�=2):

In these terms, the unpolarized di�erential cross section is

d� =
1

1024�4
z�zdz dy1 d


1

2
spins

jMj2; (2:1)

where we have introduced the notation �z � 1�z; recall thatM, for a process with

three �nal-state particles, has dimensions of mass�1.

For leading-twist calculations, we use the helicity formalism of Ref. [11]; the

spinors and polarization vectors are tabulated in Appendix A. We do not need to

compute the interference e�ects between di�erent quark helicity amplitudes, even

if the resulting hadron helicities are identical, because our neglect of resonance

e�ects in the recoil system is tantamount to treating the recoil quarks as observable

particles. Thus pseudoscalar states j+�i�j�+i and longitudinally polarized vector

states j+�i+ j�+i will yield identical hard-scattering amplitudes.

This assumption means that our results will be valid only in the region in which

duality holds; we expect that it will be very accurate when the invariant mass �zQ2

of the hadronizing recoil system is larger than about (2 GeV)2 [12]. This will

provide an upper limit on the values of z at which our computed cross sections

are reliable; however, at Q � 10 GeV the restriction is almost unnoticeable due to

the factor of �z in Eq. (2.1), which ensures that the di�erential cross section d�=dz

vanishes as z ! 1.
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2.1 Distribution amplitudes

To leading twist, the hadron wavefunction enters only through the valence-state

distribution amplitude of Eq. (1.2). In eqs. (1.2) and (1.3), we will let x denote

the light-cone momentum fraction carried by the heavier parton, be it quark or

antiquark. Thus we expect hxi � 0:5.

While the asymptotic behavior of the distribution as Q2 ! 1 is simple and

well understood, the approach to asymptopia is very slow [1]. One interesting

approach to extraction of distribution amplitudes at moderate Q2 is the sum-rule

approach [13-16] . This method relates moments of the distribution, of the form

1

0

(x� �x)n�(x)dx;

to the observed spectrum of hadron masses. It has so far yielded predictions in

good agreement with experiment ; one of our aims is to provide a more precise test

of its accuracy.

Since the distribution amplitude must vanish like x�x at each endpoint, it is

customary to expand it as a series of Gegenbauer polynomials [18], which are

orthogonal under the measure with weight x�x:

�(x) =
fh

2
x�x

1

i=0

aiPi(x); where

1

0

x�xPi(x)Pj(x)dx = �ij ; (2:2)

and fh is the hadron decay constant, which can be measured experimentally in

semileptonic decay.

A major advantage of this expansion is that the Gegenbauer polynomials

are the eigenfunctions of the one-loop evolution equation for the meson valence

8



distribution amplitude [1]. Thus the running of the coe�cients ai is simple and

easily calculable. We will take advantage of this fact in our analysis of semiexclusive

production in Z decays (Section 2.7). Our normalization ensures that a0, which

does not run with increasing Q2 for scalar or longitudinally polarized mesons [1],

is equal to 1.

The �rst few Gegenbauer polynomials are [19]

P0 = 6

P1 = 30(x� �x)

P2 = 2 21(1� 5x�x)

P3 = 6 5(x� �x)(1� 7x�x)

P4 = 330(42x2�x2 � 14x�x+ 1)

P5 = 546(x� �x)(66x2�x2 � 18x�x+ 1) : : :

(2:3)

To proceed from the moments derived from QCD sum rules to de�nite models

of the distribution amplitude, we �t the required moments with a sum over the �rst

few Gegenbauer polynomials. In general, it is far simpler to test the resulting model

than to extract the moments from experiment; however, the resulting confrontation

with theory is somewhat oblique. We will discuss the problem of addressing the

sum-rule predictions more directly in Section 8.5.
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We will �nd it useful to de�ne the integrals [3]

A(z) �

1

0

�(x)

�x(1� zx)
dx; �A(z) �

1

0

�(x)

x(1� z�x)
dx;

B � A(0) =
�(x)

�x
dx; �B � �A(0);

C(z) �

1

0

�(x)

x�x(1� zx)
dx; �C(z) �

1

0

�(x)

x�x(1� z�x)
dx;

and D � C(0) = �C(0) =

1

0

�(x)

x�x
;

(2:4)

which control the behavior of the cross section. These quantities are related by

C(z) = zA(z) +D; �C(z) = z �A(z) +D; and D = B + �B:

Note that A and C are logarithmically divergent as z ! 1; however, we �nd that

their contributions to cross sections are always suppressed by one or more powers

of 1 � z, so that we obtain consistently �nite results. The Dirac form factors of

mesons are determined solely by B and �B: e.g., F 1
K� / jqsB

2
K � qu �B

2
K j.

The foremost goal, when measuring the semiexclusive cross section, is the

precise extraction of the functions A(z) and �A(z), from which the distribution

amplitude �(x) may be reconstructed. In terms of the Gegenbauer coe�cients of

Eq. (2.2), these integrals can be written
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A(z) = �
fH

2

1

i=0

FINITE
aiPi(z

�1) ln(1� z)

z2
;

�A(z) = �
fH

2

1

i=0

FINITE
(�1)iaiPi(z

�1) ln(1� z)

z2
;

B =
fH

2

1

i=0

ai
2i+ 3

(i+ 1)(i+ 2)
;

�B =
fH

2

1

i=0

(�1)iai
2i+ 3

(i+ 1)(i+ 2)
;

C(z) = �
fH

2

1

i=0

FINITE
aiPi(z

�1) ln(1� z)

z
;

�C(z) = �
fH

2

1

i=0

FINITE
(�1)iaiPi(z

�1) ln(1� z)

z
; and

D =
fH

2

1

i=0

�
1 + (�1)i

�
ai

2i+ 3

(i+ 1)(i+ 2)
:

Here we de�ne FINITE[f(x)] to be the �nite part of the Laurent expansion of f

in x (or, equivalently, the residue after x ! 0 divergences have been removed by

minimal subtraction); for instance,

FINITE
� ln(1� x)

x3
= FINITE x�2 +

x�1

2
+
1

3
+
x

4
+ � � � =

1

3
+
x

4
+ � � �

=
� ln(1� x)� x� x2=2

x3
:

2.2 Modeling the distribution amplitude

To obtain concrete predictions for production cross sections, we must have a

speci�c model of the distribution amplitude. The simplest `model' is simply the

known asymptotic form [1]:

�(x) = fH 3 x�x: (2:5)
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Table 1

Distribution Coe�cients Integrals

a0 a1 a2 a3 B �B

Asymptotic 1.0 0 0 0 0:87fh

ZZC K 1.0 0.24 0.64 0.13 1:43fK 0:99fK

ZZC � 1.0 0 1.07 0 1:44f�

ZZC �L 1.0 0 0.27 0 1:01f�

ZZC �T 1.0 0 -0.27 0 0:72f�

ZZC K�
L 1.0 0 0.11 0 0:93fK�

ZZC � 1.0 0 -0.05 0 0:84f�

Toy K 1.0 0.45 0 0 1:16fK 0:58fK

`stealth' K 1.0 0.34 0.64 0 1:43fK 0:99fK

However, there is good reason to believe that the distribution amplitudes at

moderate Q2 are very di�erent: predictions of exclusive cross sections based on this

distribution, for example, systematically predict values far below the experimental

results [13].

The distribution amplitudes predicted from QCD sum rules are in substantially

better agreement with present experimental results [14{17]. Table 1 presents the

coe�cients of the Gegenbauer polynomials in the models we use. We also present

the coe�cients for two toy models, which we will use for purposes of comparison to

test the power of the analysis. The �rst of these models is the simple toy model [3]

�K(x) = 2 3fKx
2�x;

which we will use for strange mesons; the second is a `stealth' model, with the

coe�cients a1 and a2 chosen such that the integrals BK and �BK match those from

12



0 0.2 0.4 0.6 0.8 1.0
x 7554A211–93

0

0.2

0.4

0.6
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φ K
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) /
f K

Figure 2. Models of the distribution amplitude �K . The curve marked `QCD sum

rules' is the model of Ref. [15]; the symmetric curve shows the asymptotic large-Q

limit. The toy and `stealth' models are described in the text.

the ZZC sum-rule model. The stealth model necessarily bears a strong resemblance

to the sum-rule model, as shown in Fig. 2. The resemblance of the transforms A(z)

and �A(z) is even more extreme; in fact, A(z) and �A(z) di�er by no more than 6%

over the range z < 0:95, and these di�erences are strongly anticorrelated, as shown

in Fig. 3. Thus the stealth wavefunction serves to illustrate the range of variation

in the distribution which can be concealed in semiexclusive production. Of course,

the ZZC and stealth distributions yield precisely the same Dirac form factor as

well.

Figure 4 shows the model wavefunctions obtained by a �t to the sum-rule

moment predictions for the � and � mesons [14,15]. The symmetry of these

wavefunctions under x ! �x implies A(z) = �A(z). A striking prediction of the

sum rules is that �� is strongly peaked near the endpoints, giving it the bimodal

structure shown; in contrast, ��T is strongly peaked at x = 1=2 and drops o�

sharply near the endpoints. Thus it is predicted that the transform A�(z) will be

much greater than A�(z), and the cross section correspondingly larger.
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z
0.4 0.80

z

QCD sum rules
Toy model
Symmetric
Stealth model 

A
(z

)

A
(z

)

(a) (b)

Figure 3. The transforms AK(z) and �AK(z) corresponding to the distribution

amplitudes shown in Fig. 2. Note the extremely close resemblance between the

`stealth' model and the sum-rule model prediction.

0 0.2 0.4 0.6 0.8 1.0
x 7554A711–93

0

0.2

0.4

0.6

φ h
(x

) /
f h

0.8

ZZC π
ZZC ρ

L

Symmetric
ZZC ρ

T

Figure 4. Sum-rule distribution amplitudes for the � and � mesons [14,16].

2.3 Evolution of the distribution amplitude

The sum-rule models are obtained at a momentum transfer Q2
0 ' 1:5 GeV2;

since the processes in which we are interested probe the distribution amplitude at

somewhat larger Q2, we must take the evolution of the distribution into account.

Since the Gegenbauer polynomials are eigenfunctions of the evolution equation,

this is easily accomplished by the substitution [1]
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an(Q
2) = an(Q

2
0)

ln(Q2=�2)

ln(Q2
0=�

2)

�n
; where n �

CF

�

�
1+4

n+1

k=2

1

k
�

2����0

(n+ 1)(n+ 2)

�
;

CF = 4=3 is the color factor, � = 11� 2=3nf is the one-loop QCD beta function,

� and �0 are the quark and antiquark helicities within the pion, and ��0 � ��0.

For pseudoscalar or longitudinally polarized mesons, ����0 = 1, and the �rst few

anomalous dimensions n are

0 = 0; 1 =
8CF

3�
; 2 =

25CF

6�
; and 3 =

157CF

30�
;

for transversely polarized vector mesons, ����0 = 0, and

0 =
CF

�
; 1 =

3CF

�
; 2 =

13CF

3�
; and 3 =

16CF

3�
:

It is noteworthy that the quark mass terms do not enter into the evolution

potential [1,20]. Thus heavy-quark mesons evolve in the same way as light mesons.

We expect that at low momentum transfer the heavy quark will carry a large

momentum fraction, so that 1 � hxi � 1; thus it is worth while to consider the

evolution of hxi with Q2. We �nd that in terms of the parameter

� � ln ln
Q2

�2
;

the heavy-quark momentum fraction obeys the evolution equation

d

d�
hxi = �

�
1 +

����0

3

�CF

�
+O(1� hxi);

independent of the shape of the distribution amplitude. Thus we derive the

approximate relation for heavy-light pseudoscalar mesons



x;Q2

�
'


x;Q2

0

�
�

4CF

3�

�
ln ln

Q2

�2
� ln ln

Q2
0

�2

�
:
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Figure 5. The distribution amplitudes of Fig. 2, evolved to Q = mZ .

For Q2
0 = 1:5 GeV2 and



x;Q2

0

�
= 0:95, this implies



x;Q2 = (10 GeV)2

�
� 0:79

and


x;Q2 = m2

Z

�
� 0:70. Clearly the O(1�hxi) corrections begin to be important

before this stage; nonetheless, we see that the evolution of the distribution

amplitude will quickly smooth any sharp peaks. Since a substantial cross section

for semiexclusive production at very high energies, e.g. in Z decays, depends on

a strongly peaked distribution amplitude [3], consideration of the evolution of the

distribution amplitude greatly decreases both the expected cross sections and the

e�cacy with which we will be able to discriminate among models; see Fig. 5. We

will return to this point in Sections 8.3 and 8.4.

2.4 Mesons with flavor

In the production of mesons with a nonzero avor quantum number (including

isospin), only the four Feynman diagrams of Fig. 1 contribute. We will specialize

to the case H = K� or H = K��, for the sake of de�niteness; of course, our

results are equally valid for all light avored mesons. In addition, we will omit an

overall factor of e2g2s=Q
2 = 16�2��s=s, which is understood to be included in all

the amplitudes we will present.
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For pseudoscalar mesons or longitudinally polarized vector mesons (i.e., for

anti-aligned quark spins) the hard-scattering amplitude is given in [3]:

T
(+)
H = CF

(
y2�xqu � y1xqs

zx�x y1y2

��
se�i� �

�zy2

y1
c
��
c�

�zy1

y2
se�i�

��

+
1

x

y2

y1
se�i�qu

�
c�

�zy2

y1

se�i�

1� z�x

�

�
1

�x

y1

y2
cqs

�
se�i� �

�zy1

y2

c

1� zx

�)
;

(2:6)

with the color factor CF = 4=3. The superscript (+) refers to the case in

which the incoming electron and outgoing s quark share the same helicity; it is a

simple matter to show that the opposite-helicity amplitude can be obtained by the

substitution c $ s (see Appendix A).

The corresponding amplitude for transversely polarized vector meson

production is

T
(+)
H = c2 �z

�
qs

�x(1� zx)y2
�

qu

x(1� z�x)y1

�
: (2:7)

As noted in Ref. [3], these amplitudes do not vanish even in the limits qu ! qs

and x ! �x, unless we also impose y1 ! y2. The hard virtual photon probes the

structure of the meson at the parton level.

The factor �z in Eq. (2.7) is also noteworthy; it leads to the vanishing of the

amplitude in the exclusive limit, as required by hadron helicity conservation [21].

It must be noted that the light-cone wavefunctions of vector mesons depend

on the polarization; thus the total unpolarized cross-section for vector meson

production will sum contributions from two distinct distribution amplitudes.

However, the simple 1 + cos2 � angular distribution of the cross section for

production in transverse polarization states should aid in disentangling the two
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processes. Also, the decays of vector mesons are to some extent self-analyzing; the

polarization of, e.g., a � meson can be estimated from the angular distribution of

its decay products. Thus at given z, the observed distribution at leading twist

of semiexclusive events, integrated over d�, should be an incoherent sum of three

simple distributions (longitudinal with shape sin2 �, and longitudinal or transverse

with shape 1 + cos2 �). Unfortunately, the cross section is dominated by the

term proportional to (1 + cos2 �), which mixes both transverse and longitudinal

contributions with further contamination from backgrounds (which will have the

1+cos2 � distribution common to inclusive processes). We will discuss the potential

to extract the other components of the cross section; however, extremely large event

samples seem necessary for such extraction.

2.5 Mesons without flavor

Some mesons, such as the � or �0, have no nonzero avor quantum numbers

(excepting isospin). Thus they might be formed by diagrams like that of Fig. 6,

recoiling against a gg system. Note that only pseudoscalar mesons can receive such

a contribution at leading twist, as the quark and antiquark spins are anti-aligned.

For de�niteness, we will consider h = �. In computing the amplitude for

production of �gg, we must sum over quark helicities and avors (since in this case

the helicities are no longer observable). We choose to absorb this factor in the

hard-scattering amplitude; that is, we present the amplitude

1

2
TH(e

+e� ! q+�q�gg)� TH(e
+e� ! q��q+gg) ;
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Figure 6. Additional Feynman diagrams which must be considered in the case of

avorless pseudoscalar mesons. As in Fig. 1, a sum over attachments of the incoming

� is implicit.

but call it TH since we will obtain the full amplitude by convolving it with the

distribution amplitude, as always. The result is

TH(e
�
+e

+
� ! �g"g") = CF qis

2 2�z

yminymax

�
1

x(1� z�x)
�

1

�x(1� zx)

�
; (2:8)

TH(e
�
+e

+
� ! �g"g#) =

CF qi

zx�x

�z

2y"y#

�
c2y# � s2e2i�y"

�� 1

1� zx
�

1

1� z�x

�
;(2:9)

TH(e
�
+e

+
� ! �g#g#) = CF qic

2 2�z

yminymax

�
�

1

x(1� z�x)
+

1

�x(1� zx)

�
: (2:10)

In this case, the color factor is CF = 2=3, not 4=3. In Eq. (2.9), we have

used the notation y";# instead of y1;2 to refer to the two gluon momenta, since the

labels 1 and 2 are arbitrary; in Eqs. (2.8) and (2.10), we de�ne ymin = minfyig

and ymax = maxfyig.

The amplitudes for negative-helicity electrons (positive-helicity positrons) are

obtained, as always, by the substitution s $ c (Appendix A). However, in either

case, the amplitudes of Eqs. (2.8){(2.10) are antisymmetric under x $ �x. The

wavefunction must be symmetric; thus the full amplitude, obtained by convolving
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Figure 7. Feynman diagrams contributing to production of a meson in a gg Fock

state. Again, a sum over attachments of the � is implicit.

� with TH , vanishes. We need not treat such mesons any di�erently than we would

avored states.

2.6 Mesons with gg Fock states

Scalar mesons, with spin-parity 0+, have no q�q valence Fock state but can mix

with a gg state. The lightest and best measured such meson is the f0(975), which

we now consider.

Production in the gg Fock state recoiling against a qi�qi system, shown in Fig. 7,

proceeds with the hard-scattering amplitude

TH = �CF
qi

2zx�xy1y2
�zy2(1�zx

2)c2+2 y1y2(zx�x+�z)scei�+ �zy1(1�z�x
2)s2e2i� ;

(2:11)

again, the color factor CF = 2=3.

In Eq. (2.11) the quark spins are considered observables, and the quark and

antiquark are distinguishable, in contrast to Eq. (2.9) in which we sum over spin

states in the amplitude, leading to destructive interference in the large-z limit and
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to antisymmetry under x $ �x. This should emphasize the importance of studying

semiexclusive processes only in the domain in which the assumption of duality is

accurate; in the exclusive limit z ! 1, the processes corresponding to Eqs. (2.9)

and (2.11) become identical, and both amplitudes vanish.

The result of Eq. (2.11) shows that the amplitude for scalar meson production

in a gg Fock state depends on the distribution amplitude through the quantity

fh!gg � 2 3

1

0

�h!gg(x)dx; (2:12)

where the constant factor is analogous to that of Eq. (2.2), and through the

integrals Bgg, �Bgg, and Dgg, as de�ned in Eq. (2.4), where the subscript gg reminds

us that the distribution amplitude in question is �h!gg. However, the distribution

amplitude must be symmetric under x $ �x, so we have Bgg = �Bgg = Dgg=2.

The lack of valence q�q Fock states of 0+ mesons is a boon to our analysis;

any observation of f0(975) production at leading twist is an unambiguous signal of

formation in the gg Fock state. The f0(975) decays primarily to ��, which should

provide a clear experimental signal if it can be distinguished from �(770)! ��.

We can also compute the amplitude for creation of transversely polarized 2+

mesons in the gg Fock state by requiring that the gluon spins be aligned. The

amplitude for this process is

TH
(++) = �CF qi

�z

z2x�x

1

y1y2
(c y2 + sei� �zy1)(c �zy1 � sei� y2) (2:13)

when the gluons have the same helicity as the electron and the outgoing antiquark;

the other amplitudes are obtained by y1 $ y2 and s $ c. The lightest such
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meson is the f2(1270); again, its signature is decay to ��. The most important

backgrounds in this case come from the f0(1400) and �(1450), both of which can

also decay to two pions. Also, the suppression of higher-twist terms is less severe

at larger mass, so that contamination from q�q states with L = S = 1 must be

considered. We will touch upon this point again in Section 3.3.

Semiexclusive production cross sections for 2++ mesons, like those for 1��

mesons, sum contributions from the transverse and longitudinal polarization states.

Thus the quantities fh!g"g# , Dgg=L, and Dgg=T , where the subscripts L and

T denote transverse and longitudinal polarization states, will contribute to the

measured cross section for f2(1270) production. We will display our predictions in

Section 8.1.

2.7 Z0 decays

The channel e+e� ! Z0 ! HX can also contribute to semiexclusive

production. Although the suppression by �2=Q2 is far more severe at the Z peak

than at the energies we have so far considered, we can still obtain detectable

cross-sections.

Bjorken et al. [22,23] have pointed out that the requirement of a rapidity gap

is a natural and e�ective way to identify processes involving production of color

singlets. That is, we may require that the candidate directly-produced meson be

isolated in rapidity (or pseudorapidity) with respect to its own axis by some gap

�Y . Indeed, the condition of isolation in a hemisphere can be thought of as a

special case of the rapidity gap, where �Y = ln(2zE=mH) is a function of z.
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For light mesons, e.g. H = K, isolation in a hemisphere is equivalent to

�Y = 6 + ln z. This is unnecessarily drastic; values of �Y ' 4 should be more

than adequate to screen out backgrounds from the hadronization process [24].

Following Ref. [23], we write the weak charge of a fermion as

Qf �

 
QfL

QfR

!
; (2:14)

containing both the right- and left-handed couplings to the Z. Then the amplitudes

for semiexclusive production in Z decays can be obtained from those derived in

the last two sections by the simple substitution qf ! Qf , with the understanding

that the dot product Qf1 � Qf2 is to replace the sum over spins qf1qf2 in the

unpolarized cross-section.

We will later see that while the cross sections are much smaller at this energy,

the experimental separation of interesting higher-twist physics is somewhat easier.

Thus we can hope to observe semiexclusive Z0 decays.

2.8 Crossing

It should be noted that semiexclusive production e+e� ! HX is the crossed

process corresponding to deep inelastic scattering (DIS) e�H ! e�X. Thus we

expect the cross-sections calculated here to bear some relation to the structure

functions of DIS.

Indeed, carrying out the crossing operation and evaluating the variables q2

and x governing DIS, we �nd q2 = �Q2, x = z�1. Thus semiexclusive production

can be said to measure the continuation of the structure function to the region

x > 1. Indeed, the quantity [A(z)]2 of Eq. (2.4) for z > 1 shows some properties
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of a structure function, with a leading-twist pole contribution at x = z�1; the

resemblance would be more pronounced had we not implemented the simpli�cation

of Eq. (1.2).

As we shall see in Section 6, this pole corresponds to the collinear singularity

at yi = 0 in semiexclusive production. Part of our task will be to separate the

interesting but higher-twist central region where yi is not small from contamination

due to the collinear pole.

3. Higher-twist corrections

So far, we have been concerned with the leading-twist behavior of semiexclusive

amplitudes. In obtaining our results so far, we have made several simplifying

assumptions:

� We have neglected all quark masses, which give rise to corrections of

order m2=Q2 to the helicity amplitudes we have calculated and introduce

helicity-ip amplitudes at order m=Q [21].

� We have neglected the mass of the meson H as well as that of the hadronizing

quarks in de�ning our kinematic variables; a more careful de�nition will

change our results by terms on the order of m2
H=Q

2.

� We have assumed that the quark constituents are perfectly collinear with

the hadron comprising them; if we relax this assumption to allow quark

transverse momenta k?, we will obtain a correction of order k2?=Q
2 [25]. In

addition, we have entirely neglected the e�ects of Sudakov suppression [26]

on the amplitude.

� Finally, we have considered only the valence Fock state of the meson, and

ignored the possibility of mixing with qqg states. The corrections resulting
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from a correct treatment of such states, while still suppressed by �2=Q2, have

the potential to be numerically large because of the contribution they receive

from the endpoints of the distribution amplitude, when one of the constituent

partons is very soft.

Let us deal with these corrections, one at a time.

3.1 Quark and meson mass effects

Terms of order m=Q in the amplitude involve helicity ips; thus they will

contribute only at order m2=Q2 to the cross section, as will interference terms

between leading-twist amplitudes and O(m2=Q2) corrections. We can only hope

to distinguish contributions of subleading twist if they show some signature

distinguishing them from the leading-twist cross section, which the interference

terms will not have. Thus we do not consider such terms, but instead choose to

restrict our discussion to the computation of the leading helicity-ip amplitudes.

We account for quark mass terms to �rst order in m=Q in internal lines by

computing all single Higgs insertions on the internal quark line. The e�ect of mass

insertions on external lines is to alter the quark spinor by the substitution (see

Appendix A)

u�(p)! u�(p) +
m

E + j~pj
u(�!�)(p) +O(m2); (3:1)

u(�!�) considered as a two-component spinor is numerically identical to u�, but

corresponds to opposite helicity (i.e., u(�!�) = 0u�, while v(�!�) = �0v�).

Since we are interested in obtaining quantities with experimental signatures

distinct from those of leading-twist semiexclusive production, we must consider the

production of transversely polarized vector mesons with an angular distribution

other than the (1 + cos2 �) distribution obtained from Eq. (2.7).
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As an example, we consider the amplitude for e+e� ! D�
"�c+u�. Naively

calculating with the substitution of Eq. (3.1) yields a divergent expression from the

region x! 0, in which the quantity m=xzQ becomes large. In this limit, of course,

the �rst-order expansion in m is invalid. We choose to contain the divergence

by keeping terms of order m2 in the gluon denominator (xp + l1)
2, which yields

uniformly �nite expressions.

We are interested in the part of the above amplitude which is proportional to

scei�. This is (omitting the usual factor of e2g2s=Q
2)

�
mc

Q

�z

zx

�
2

z�x

y1

y2
qc +

z + 2�zy2

xy1 + �zy2m2
c=z

2x
qu

�
: (3:2)

The expression in brackets is not numerically large, especially when one

considers that the wavefunction is likely concentrated at fairly large x. In fact, it is

generally smaller than the amplitude of Eq. (2.7), even before the m=Q suppression

is taken into account. Thus the higher-twist contribution to the cross section from

quark mass terms will be not more than m2
q
=Q2: 3% for D mesons at the �4s, and

less than 0.5% for B mesons at the Z0 peak. Since such terms must be disentangled

from both the (1 + cos2 �) distribution of most semiexclusive events and the sin2 �

component of the distribution of longitudinally polarized mesons, it seems that

their experimental measurement is out of the question.

Corrections to the denominators in the expression of the amplitude contribute

only at O(m2=Q2), and may generally be neglected. However, we must consider

their e�ect on the endpoint behavior in z and y.

The former is fairly simple. The upper bound zmax on z is determined by our

assumption of duality; if the mass of the hadronizing system, �zQ, is too small,

26



that assumption fails, and our predictions are vulnerable to large corrections from

poorly understood resonance physics. For light-quark systems, we require �zQ > 2

GeV [27]. For systems containing a single heavy quark, we should then require

�zQ > mq + 2 GeV, decreasing the upper limit zmax.

The kinematic limit on the back momentum y1 of the heavy (anti)quark is

then y1 > m2
q
=�zQ2. The prima facie e�ect of this limit is simply to excise a region

of the cross section. However, more careful consideration shows that the interplay

between mq and y1 also a�ects the experimental acceptance; we will return to this

point in Section 7.4.

3.2 Non-valence Fock states

This is the greatest technical challenge we must face. The di�culty arises from

the fact that the regulation of infrared divergences in inclusive processes relies on

the cancellation between graphs like those of Figs. 8(a) and (b); however, when

we demand that the collinear �nal-state particles form a meson, we risk spoiling

this cancellation.

In the consideration of exclusive production in the valence state, the incomplete

cancellation of infrared divergences leads to the `Sudakov suppression' of exclusive

production [7,26,28]. The Sudakov form factor for exclusive production of a

bare colored particle vanishes in the absence of an infrared cuto�. However, in

production of color-singlet states the transverse size of the hadron itself provides

a natural infrared cuto�, rendering the Sudakov form factor �nite.

Our aim, then, is to compute the contribution from q�qg Fock states,

which correspond to infrared-divergent hard-scattering amplitudes, in a manner

consistent with the existing treatment of Sudakov e�ects. To this end, we consider
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Figure 8. Diagrams which cancel to provide infrared-�nite predictions for inclusive

amplitudes. (a) shows a higher-order correction to the process of Fig. 1; (b)

shows a diagram whose collinear divergence cancels against that of (a). In

exclusive production, we must consider the diagrams of (a) and (c) to obtain

the Sudakov-corrected amplitude for color-singlet production. The factorization

prescription, meanwhile, tells us that (b) and (d) are to be excluded from the

hard-scattering calculation (but see Fig. 9(b)).

the prescription of Ref. [1] for the calculation of exclusive amplitudes. In the

graphs of Figs. 8(b) and (d), let k? denote the gluon's transverse momentum with

respect to the hadron direction of motion. If k2? is smaller than the factorization

scale Q2, we are required to absorb these (possibly nonperturbative) terms into the

bound-state dynamics, rather than compute them in pQCD. Conversely, if k2? >

Q2, the gluon is no longer su�ciently collinear to be included in the distribution

amplitude de�ned in Eq. (1.2). Thus we should consistently drop contributions

from all such diagrams. One might worry that the remaining sum of diagrams will

lack gauge invariance; however, we have veri�ed by explicit computation that the

diagrams thus discarded become gauge-invariant in the collinear limit.
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Figure 9 shows the Feynman diagrams we must evaluate to compute the

amplitude for production in the one-gluon Fock state. These diagrams possess

no collinear divergences, and their calculation is straightforward. We obtain the

hard-scattering amplitude

T
(+)
H =

c2

z y1y2

qsy1

�x1x2(1� zx1)y2
�

quy2

x1�x2(1� zx2)y1
�

� C1(�z + zx3) + C3(�z + 2zx3)

+ C2sce
i� �z

qs

x2(1� z�x2)y2
�

qu

x1(1� z�x1)y1

(3:3)

for production of pseudoscalar or of longitudinally polarized vector mesons. The

color factors C1 = �1=3 3, C2 = 8=3 3, and C3 = i 3 correspond to the

diagrams of Figs. 9(a), (b), and (c), respectively.

Like the helicity-violating amplitudes of the previous section, the amplitudes

for production in a non-valence state can best be measured in regions where

leading-twist production is forbidden. Thus we again consider the production of

transversely polarized vector mesons. The full hard-scattering amplitude is quite

awkward; however, since we are interested in production with a sin2 � angular

distribution, we present only the part proportional to sin �:

~T
(+)
H =

e2g3s
Q3

�z

(
�

C1qu

x1(1� z�x1)

y2

y1
+

C3qs

z�x1x2

1

y1
�
z + y1

zy2
+

1

1� zx1

+
2C2

z2

�
qs

x2y2

1

x3�x3
�
y1

�x1
�
qu

x3

1� zx3

x1�x3
+

y2

�x2y1

�)
:

(3:4)

Again, no numerically large coe�cients appear. While the gluon is expected

to carry less average momentum than the quarks, the distribution amplitude is

suppressed by x23 as x3 ! 0, because a very soft gluon cannot couple to a singlet q�q
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(b)
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(a)

(c)
Figure 9. The Feynman diagram topologies which must be included in the amplitude

for production of a meson in a q�qg Fock state. In (a) and (c), a sum over all possible

attachments of the � is implicit. In (b), however, only the speci�c attachment

shown should be used; the rest are considered in Figs. 8(b) and (d).

state. Thus


x�13

�
is not extremely large. Also, in this case the suppression factor

is �=Q, where � <� 0:5 GeV does not depend on quark masses; thus higher-twist

contribution to the cross section will probably be invisibly small. To proceed

further, we need information about the distribution amplitude �h!q�qg; this is the

subject of the next section.

30



3.3 Non-valence distribution amplitudes

In order to estimate the size of the contribution to the semiexclusive cross

section from the higher-twist terms of the preceding section, we must have some

model of the meson distribution amplitudes for the non-valence states in question.

One approach to this problem is undertaken by Zhitnitski�i et al. [29], who

extend the sum-rule approach of Refs. [13{15] to wavefunctions of nonleading twist.

They propose model distribution amplitudes for the q�qg states of the � and �:

we are interested in the distribution �V3� of transversely polarized � mesons [30].

The sum-rule model distribution is

2520f3�x1x2x
2
3(x1 � x2)(7� 15x3); (3:5)

where f3� ' 3:5 � 10�3 GeV2; thus, when convolving the hard-scattering amplitude

and distribution amplitude, we must replace

1

�x2x3
! �14f3�;

1

�x1x2
! 28f3�; and

1

x2x3�x3
! 35f3� ' 0:12 GeV2:

(3:6)

Thus the extreme smallness of f3�=Q more than counterbalances the numerical

enhancement from the factors of xi in the denominator.

Comparison of Eqs. (3.2) and (3.4){(3.6) suggests that, in light mesons, quark

mass e�ects are more important than e�ects from non-valence Fock states for

mq
>� 700 MeV. Of course, this is an extremely rough estimate. However, for our

purposes it is su�cient to demonstrate that production in non-valence Fock states

does not provide a measurable signal.
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3.4 Orbital angular momentum

We can compute the corrections of order �=Q resulting from our neglect of Fock

states with nonzero orbital angular momentum by including a small transverse

momentum ��? in the spinors u�(p) of Appendix A. Speci�cally, we wish to

consider the contribution from hard scatterings like e+e� ! s� �d�X ! K�
LX.

The wavefunction must carry a unit of orbital angular momentum, in order to

o�set the di�erence in the spin states of the meson and of its quark constituents.

Thus the moment of �x+ i�y, and with it all such terms in the amplitude, vanishes,

while �x � i�y may be replaced with some typical transverse momentum �.

For example, the term of order �=Q and proportional to sin � in the amplitude

for semiexclusive production of longitudinally polarized K� mesons is

sce�i� �z
xqs

�x(1� zx)y2
�

�xqd
x(1� z�x)y1

: (3:7)

Neglecting the factor �=Q, this is numerically smaller than the corresponding

term in Eq. (3.2); thus the error which its neglect introduces into our calculations

is negligible, while the chance of measuring its contribution separately is remote.

4. Transverse momentum, Sudakov

e�ects, and the running coupling

So far, we have neglected the running of the strong coupling constant �s. While

this is technically a correction at next-to-leading logarithmic order, it assumes
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great importance in exclusive reactions because of the divergence of the one-loop

running coupling

�s(Q
2) �

4�

� ln(Q2=�2
QCD)

as Q2 ! �2.

It is our belief that too much has been made of this divergence, which

stems from an extrapolation using the lowest-order (one-loop) QCD � function

into precisely that region in which the lowest-order approximation is invalid.

Nonetheless, in the absence of a better form, one would be obliged to use this

coupling. The recent work of Mattingly and Stevenson [31] suggests that there is,

indeed, a better form; we shall return to this point in Section 5.1.

The soft divergence of �s a�ects the computation of exclusive amplitudes even

at large momentum transfer, because the gluon virtuality can still be small near

the endpoints x ! 0, x ! 1. In a proper higher-order treatment, we would use

a scale-setting procedure, such as BLM [32], to �x the argument of the running

coupling �s through the entire process. However, this is not satisfactory for our

purposes for two reasons.

The �rst and most concrete is that the scale can only be set to given order in

�s when the perturbative coe�cients have been obtained to one higher order. Thus

no scale-setting is possible when only a tree-level amplitude has been computed,

as is the case here.

The second objection is more fundamental: since the momentum transfer

through the internal gluon depends on the hadron's distribution amplitude, a single

scale cannot consistently be set for all possible distributions. Instead, the model

wavefunction enters into the scale, resulting in a formula of redoubled complexity.
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This is a true physical e�ect, not an artifact of the procedure; for example, a

wavefunction which is very strongly suppressed at the endpoints will certainly yield

a larger mean value of q2 than will one which is concentrated there.

Thus we must allow the argument of �s to depend on the momentum fraction x

in the hard-scattering process. At �rst glance, this seems to threaten the �niteness

of our results. However, the work of Sudakov and of Mueller [26] demonstrates

that exclusive amplitudes remain �nite.

Heuristically, the picture is as follows: the coupling can only grow large when

the gluon propagates for a large distance (of order ��1QCD) in transverse position

space. In this case, the constituents of the �nal-state hadron are widely separated

and have a large color dipole moment. Thus the probability that they will

emit �nal-state radiation, in which case the process is ipso facto not exclusive,

approaches 1.

Mueller [26] derived the quantitative e�ects of this Sudakov suppression

to leading logarithmic order, and Botts and Sterman [28] extended them to

next-to-leading order (in lnQ). We do not wish to use the entire machinery thus

derived, but instead will take the low road, absorbing the leading e�ects of Sudakov

suppression into an e�ective coupling constant �e� .

To incorporate Sudakov suppression into the calculation of exclusive

amplitudes, we must undo the simpli�cation of Eq. (1.3). However, we use the

wavefunction and propagator not in momentum space, but in the hybrid space of

longitudinal momentum and transverse position:

�s(q
2)

q2
!

1

�
d2b K0(bjqj)�s(q

2); (4:1)
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where K0 is a modi�ed Bessel function. The form of Eq. (1.2) is regained if we

assume that the wavefunction is independent of b (i.e., that it is proportional to

�2(k?)). Here and in the following, we assume that q is a purely longitudinal

momentum (otherwise see Ref. [7]).

When q2 is small the proper argument of �s is not q
2, but rather maxfq2; b�2g:

the coupling cannot grow large if the gluon propagates over only a short

distance [33].

The form of the Sudakov suppression given by Botts and Sterman [28] vanishes

as jbj ! ��1 su�ciently rapidly to contain the divergence of �s in the same limit.

For q2 > �2, the e�ect of Sudakov suppression is expressed by the substitution

K0(bjqj)�s(q
2)b db!

��1

0

e�S(b;q)K0(bjqj)�s
�
maxfq2; b�2g

�
b db; (4:2)

where S(b; q) diverges as b ! ��1. The contribution from the region b > ��1 in

Eq. (4.1) is in any case suppressed by e�q
2=�2

, so the main e�ect for substantial

q2 is the correction to �s for very small b (which contributes at O(1= ln q2) to the

amplitude).

For small q2, the problem is much thornier; the quantitative behavior of the

Sudakov suppression comes into play. We take advantage of the fact that the

factor �s(b
�2) which enters into the tree-level amplitude as computed by Eq. (4.1)

is precisely the same as the coupling �s which controls �nal-state radiation and

leads to the Sudakov suppression, and use in place of Eq. (4.2) the ansatz

��1

min
b0�b

K0(b
0jqj)�s

�
maxfq2; b0�2g

�
b db �

�e�(q
2)

q2
: (4:3)
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That is, we postulate that the physical amplitude for exclusive processes does not

increase with b and use that assumption to derive a �nite form for the e�ective

gluon propagator. In fact, since K0(x) diverges only logarithmically as x! 0, this

formula yields

�e�(q
2) �

q2

2�2

4�

� ln(�2=q2)
as q2 ! 0;

the �nite size of hadrons means that the amplitude for exclusive production

increases more slowly than 1=q2 for small q2.

This procedure requires some justi�cation. Our reasoning is that the exclusive

production amplitude should not increase with increasing transverse size, as

demonstrated in the observation of color transparency [34]. At large q2, where

the Sudakov suppression is well understood, our method reproduces the results of

Refs. [26,28] to leading order in ln q2. Thus we are willing to accept its predictions

in the comparatively poorly understood region of small q2, where the results of

Ref. [28] are themselves subject to substantial parametric uncertainties [35].

Finally, this method o�ers striking ease of computation. Equation (4.3) can be

integrated numerically to obtain the values of �e� at all q2. The result is shown in

Fig. 10. The only parameter involved in the determination of �e� is �QCD itself.

Unfortunately, this parameter is not yet well determined; current experimental

results give

�
(3)

MS
= 318+58�51 MeV:

The resulting uncertainty in our cross sections is 15%, which is numerically equal to

the uncertainty in �s(Q = 3 GeV): that is, the �-dependence of the cross section

does not reect a sensitivity to soft physics, but an imprecision in the size of the

QCD coupling at moderate momentum transfer.
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Figure 10. The e�ective coupling constant �e� as a function of the gluon

virtuality q2.

It must be emphasized that the e�ective coupling �e� has no applicability

outside the domain of exclusive or semiexclusive reactions, since its �niteness

results from the �nite transverse size of hadrons. It could be argued that we

have underestimated �e� by ignoring the possibility that the �nal-state radiation

might be absorbed into the hadron, thus preserving the exclusivity of the reaction;

however, such an e�ect involves the intrinsically soft process of long-distance

hadronization, and the events resulting from it will share the characteristics of soft

events, rather than of the hard direct processes in which we are interested. Thus

we regard such a contribution not as an additional component of the signal, but as

a part of the background which should be amenable to calculation with standard

Monte Carlo techniques. Also note that the vanishing of the e�ective coupling,

which seems strongly counter-intuitive, is in fact simply a restatement of the fact

that the e�ective propagator diverges less slowly than 1=q2 for small q: clearly, the

same result is obtained in methods using intrinsic transverse momentum smearing

or an arti�cial gluon mass.
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The latter technique is commonly used in the computation of spacelike

scattering amplitudes, since an e�ective gluon mass regulates the divergence

of the propagator [36]. This is intended to model the physical e�ects of

the intrinsic transverse momenta within the hadron, which serve to eliminate

collinear divergences. We could extend the same approach to the timelike process

under consideration, though an imaginary gluon mass would be required. A

more accurate treatment could be achieved by inserting a term representing the

transverse distribution of the wavefunction [7],

 x(k?) �
 (x; k?)

�(x)
;

into the integration of Eq. (4.1), again obtaining an e�ective coupling which will

vanish as q2 ln q2 at small longitudinal momentum transfer.

In practice, however, hadronic amplitudes are insensitive to the transverse

wavefunction. This is especially true when the Sudakov suppression, which forces

the hadron to be formed at small impact parameter, is also considered [7]. Thus

we do not expect intrinsic transverse momenta to have a great e�ect on our results.

In order to test the sensitivity of our results to our assumptions about the

e�ective coupling, we also computed the cross sections with the e�ective coupling

�s =
4�

� ln (Q2 +m2
g)=�

2
; (4:4)

where mg = 1:2 � was chosen to match the value

lim
q2!0

�s(q
2) = 0:82
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obtained by Mattingly and Stevenson [31,37]. The predicted cross sections at

s ' 10 GeV di�ered by less than 10%, illustrating the relative insensitivity of

semiexclusive production to the niceties of soft physics.

5. Higher-order corrections

Before we can have faith in the results we have derived thus far, we must know

whether they will be overwhelmed by O(�s) corrections. We begin by classifying

all such corrections.

The �rst-order corrections to the production mechanism of Fig. 1 are obtained

by attaching an additional gluon line to the hadronic topology. Some of the ways

in which it may be attached are familiar and have already been dealt with in other

contexts.

For example, the higher-order corrections of Fig. 11(b) are precisely analogous

to those which modify the total cross section �tot(e
+e� ! hadrons), since they

are completely internal to the color-singlet recoil system. Thus we can, with no

calculation whatsoever, be assured that their entire e�ect is to increase the total

measured cross-section by a factor (1 + �s(�zQ
2)=�) [38].

Similarly, the diagrams of Fig. 11(c) are the same as those which contribute to

the study of purely exclusive processes. When the internal gluon momentum q is

small compared to the momentum scale Q of the hard process, it may be considered

internal to the meson and treated as a correction to the wavefunction.

This brief catalog leaves only two cases uncovered. First, di�erentiation

between diagrams like that of Figs. 11(b) and (c) is not perfectly well-de�ned, and

there will be cases where q � Q. However, the resulting corrections are suppressed
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Figure 11. Some diagrams which will yield O(�s) corrections to the amplitude. (a)

is simply a vertex correction. (b) is familiar, when q2 � Q2, from the analysis of

inclusive production. (c), with q2 � Q2, is `factorizable' { internal to the meson {

and will have the same e�ect here as in exclusive processes.

by log(Q2=�2) relative to those in which one of the gluon momenta is soft, and we

may safely ignore them in this work.

Second, there are unfactorized soft contributions like that shown in Fig. 12.

As described in Ref. [28], these give rise to the Sudakov suppression of exclusive

amplitudes; the same suppression applies in the semiexclusive case, and we

considered its e�ects in Section 4.
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Figure 12. Non-factorizable soft contributions to the hard-scattering amplitude TH ,

which lead to Sudakov suppression.

5.1 The infrared-stable coupling

In a recent paper [31], Mattingly and Stevenson show that the third-order

corrections to Re+e� [39] lead, through the use of perturbation theory optimized

with the PMS scale-setting method [40], to a form of the coupling which approaches

a constant limit as q2 ! 0. A �t to experimental data on Re+e� yields a limiting

value �s(q
2 ! 0) ' 0:82.

Thus we may choose to adopt a more conservative approach than that described

in Section 4, and merely use the coupling of Ref. [31] throughout our numerical

calculation [37]. In actuality, neither approach is perfectly satisfactory. The

suppression of the e�ective coupling due to the �nite size of hadrons is a physical

e�ect, which the naive insertion of �s into exclusive amplitudes ignores; but the

form of Ref. [28] for the Sudakov suppression is partly predicated on the low-q2

divergence of the coupling, and is now subject at least to quantitative revisions

which are outside the scope of this paper.
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In practice, the use of �e� has the virtue that it naturally incorporates Sudakov

e�ects which serve to contain the collinear (small-yi) divergence that appears in

the tree-level amplitudes of Eqs. (2.6) and (2.7), and to improve the numerical

behavior near the endpoints. The physics of this apparent divergence and the

means by which the correct endpoint behavior may be computed are the subjects

of the next chapter.

6. The small-y collinear divergence

The tree-level amplitudes of Eqs. (2.6){(2.11) diverge for yi ! 0, as the internal

gluon approaches its mass shell. This apparent divergence is in fact controlled by

several corrections which become important in this limit. We will discuss some of

them, in order of importance.

6.1 Wavefunction vs. distribution amplitude

The factorization of Eq. (1.2), which assumes that TH depends only weakly on

the internal momenta k?, is clearly invalid when the momentum transfer yiQ
2 of the

exchanged gluon becomes comparable to a typical hadronic momentum scale �2.

At this point, we must undo the factorization used in Eq. (1.3), and instead

consider diagrams like those shown in Fig. 13. In this region, the diagram of

Fig. 13(b) is suppressed by a factor of yi relative to that of Fig. 13(a) and may

safely be neglected. The amplitude may then be evaluated in terms of the quark

fragmentation amplitude  q!hQ. To leading order in yi, we obtain

M(+) = e2qiCF c
2 q!hQ(z; j?); where j2? = z2�zyiQ

2;

the color factor CF = 3, and qi is the QED charge of the quark q.
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Figure 13. The diagrams contributing to the semiexclusive production amplitude at

small y1. (a) shows the leading-twist part (in physical gauges), (b) a higher-twist

part.

Thus

ycrit

0

dy1 jM
(+)j2 = 3e4q2i c

4

zQ
p
�zycrit

0

d2j?
�z2�zQ2

j (z; j?)j
2

=
768�4�2q2i
z2�zQ2

c4~gh=q(z; zQ �zycrit);

(6:1)

where

Q0

d2k?
16�3

j (x; k?)j
2 � ~gh=q(x;Q0) � Gh=q(x;Q0);

here Gh=q(x) is the fragmentation function for �nding a meson h inside the quark

q at momentum transfer Q0. The full fragmentation amplitude G di�ers from ~g in

that G includes a sum over all Fock states, while ~g receives a contribution only from

the exclusive `decay' q ! hQ. At large z, however, this di�erence should vanish; it

is expected that the valence Fock state dominates the structure and fragmentation

functions at large x.
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Combining Eqs. (6.1) and (2.1), we �nd that the total spin-averaged

contribution to the cross section from the region y < ycrit is

d� =
3��2q2i
8zQ2

~gh=q(z; zQ �zycrit)(1 + cos2 �)d cos � dz: (6:2)

We have integrated out the trivial �-dependence.

Several things about the contribution to the cross section given by Eq. (6.2)

are noteworthy. First, and most disturbing, it is leading-twist; the suppression

of the cross section is only Q�2. Thus we must take great care to separate

the higher-twist direct production in which we are interested from this `direct

fragmentation' contamination.

That this is possible at all is due to the nature of the hadronization process. At

high energies, where the extra Q�2 suppression of the semiexclusive signal is severe,

the jets inherit the parton momenta; thus the small-y region can be identi�ed and

discarded with great accuracy. In order to pass cuts designed to ensure that the

meson is produced with a high degree of isolation, the events described by Eq. (6.2)

must be transformed in the hadronization process into events in which no jet is

near the meson; the probability that this will occur is suppressed by Q�2 for large

Q. The leopard can change his spots, but it requires an intrinsically higher-twist

process. Thus the signal for semiexclusive production at moderate yi is in principle

measurable even at arbitrarily large Q2.

In fact, the signal from the collinear region which passes the event shape cuts

resembles a higher-order correction to the tree-level semiexclusive signal. To see

this, recall that a hard gluon must be exchanged between the quark and antiquark

in the recoil system, so that jets will not form near the meson. Adding this gluon

to the tree-level diagram of Fig. 1, we get the diagram of Fig. 11(c); the soft gluon
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which appears in near-collinear tree-level production corresponds to a soft gluon

internal to the meson in the more complete picture.

Two complications, however, prevent us from lightly discarding the collinear

region from consideration. First, many interactions can take place between the

near-collinear quark and meson, rather than the single gluon exchange which

appears in the perturbative computation. Second, the momentum transfer between

the outgoing quark and antiquark also need not be carried by a single gluon, since

we do not demand exclusivity and are unable to completely specify the �nal-state

momenta. As a result, such contributions lack a perturbatively calculable hard

scattering and must be treated by Monte Carlo techniques.

To estimate the contribution to the measured semiexclusive cross section, we

need to model the fragmentation function ~g. Since we are interested in the region

of large z, we will assume

~g(z) = G(z); (6:3)

this is a somewhat pessimistic but not inaccurate assumption. The structure

functions G(x) near x = 1 are expected to have the form

G(x;Q2) = C(1� x)2 +
D

Q2
;

where C is a dimensionless constant parametrizing the leading-twist behavior, and

D represents higher-twist terms [41]. The approximate forms

G�+=u(x) = G��=d(x) = 1:54(1�x)2 and G��=u(x) = G�+=d(x) = 0:54(1�x)2

�t the experimental observations [42] within statistical errors. We are not

interested in the higher-twist corrections, which share the Q�4 behavior of the
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semiexclusive signal and will make a negligible contribution to the signal after

experimental cuts.

Thus, summing over quark and antiquark avors and assuming SU(3)

symmetry, we obtain the estimate

d� = Ch
�2

Q2

�z2

z
dz (1 + cos2 �)d cos �; (6:4)

where Ch = 1:50 for � and K�, and Ch = 1:11 for K0 and �K0. This is not a small

e�ect, but rather comprises a substantial fraction of all events!

Since the backgrounds of this sort are so substantial and involve no

short-distance physics in the jet formation process, we expect that they will be

well simulated by Monte Carlo models. Thus we defer further analysis of this

region to Section 7, where we will examine hadronization e�ects. We will see that

a judicious combination of experimental cuts can reduce the contamination from

the endpoints to acceptable levels.

6.2 Multiple scatterings and ycrit

To accurately predict the rate of semiexclusive production, we must obtain a

good estimate of the value ycrit at which the factorization of Eq. (1.3) is no longer

reliable.

Let us consider the physical picture of direct pQCD production, shown

in Fig. 14. Semiexclusive production depends on the hadron's undergoing no

�nal-state interactions, and this can only proceed if the quark interacts with the

antiquark before scattering from the hadron.
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Figure 14. The physical picture of direct meson production at leading order.

Final-state interactions are more likely between particles which emerge in close

proximity.

Thus we parametrize the rates Ah and A�q for the quark to interact with the

hadron and antiquark, respectively. Neglecting for the moment the running of the

coupling strength, we obtain

Ah

A�q
=

�z2�2

z2y22Q
2

) ycrit '
�z

z

� �
Q

�
; (6:5)

the factor of �3=Q2 comes from comparison of the 1=r2 behavior of the

interactions between nonsinglet particles to their 1=r4 `tidal' interactions with

singlet particles [43]. As Q increases, the degree of collinearity of the meson

constituents increases, and ycrit must decrease. Including the running of the QCD

coupling would decrease this estimate somewhat, but since the energy of the qh

system grows as a power of Q, the behavior given in Eq. (6.5) will still hold.

The wavefunction of Fig. 13 takes into account all such multiple scatterings;

Gh=q(z) should be interpreted as the amplitude for the hard probe from the recoil

antiquark to �nd the quark in a qh state. Thus the prediction of Eq. (6.2) is

una�ected by multiple hard scatterings, as long as the assumption of Eq. (6.3)

holds.

For y > ycrit, the squared invariant mass of the qh system is at least zycritQ
2 '

�z�Q � �2, so that once multiple scattering occurs the probability of �nding the
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original qh system again in a qh state may be neglected. Thus we account for the

possibility of multiple scattering for y > ycrit by including a suppression factor

A�q

Ah + A�q
=
�
1 +

y2crit
y2

��1
: (6:6)

6.3 Other soft corrections

Other intrinsically soft processes will a�ect the behavior of the amplitude near

the collinear pole. For example, terms proportional to the intrinsic transverse

momenta will be less thoroughly suppressed, so that formation in Fock states with

Lz 6= 0 will proceed with probability �=ycritQ; however, this is still a small number,

scaling as Q�1=2. Since we will see that our experimental cuts e�ectively exclude

the small-y region, we do not consider this possibility further.

The �nite size of hadrons, as enforced by Sudakov suppression [7,26,28,44],

where the tendency of large color dipoles to emit �nal-state radiation suppresses

the e�ective wavefunction at large impact parameter b, has been dealt with in

Section 4. The conclusions reached there are certainly invalid at the collinear pole

itself, however, since the process by which the hadron is formed is itself soft. Indeed,

the result of Eq. (6.2) implicitly accounts for all soft corrections by absorbing them

into the measured fragmentation function. However, Sudakov e�ects should be

important for yi > ycrit; we will return to this point in the next section.
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6.4 Sensitivity to ycrit

Our focus will be on �nding experimental cuts which isolate the `good'

region y > ycrit from the dangerous region in which multiple scattering becomes

important. We must, however, be able to estimate the contribution from the

small-y endpoints, so that we may be sure that our predictions are trustworthy.

We have now dealt with the region y < ycrit unambiguously, and have found

that standard Monte Carlo techniques should represent it accurately. One di�culty

remains: the sensitivity of our results to ycrit. Clearly, in a correct treatment which

accounts properly for the contributions from all values of y, the precise value of ycrit

should be irrelevant. However, this is far from the case here|since the di�erential

cross section from Eq. (2.6) diverges like y�2i , we may see a power-law dependence

on y�1crit � Q=� in our results.

What physical mechanisms are important in this region? Since the transfer is of

order yiQ
2 � �Q, the process is still perturbative, but approaching the soft region.

This is precisely the domain in which Sudakov e�ects become important [44].

With the e�ective coupling program implemented in Section 4, we �nd that

the inclusion (albeit in a somewhat naive manner) of Sudakov e�ects naturally

regulates the small-x and small-y divergences of amplitudes like that of Eq. (2.6).

While we cannot trust the inherently perturbative mechanisms employed in this

derivation in the region y < ycrit, they should be reasonably accurate in the region

y > ycrit where the momentum transfer yiQ
2 is large enough to allow a perturbation

expansion. Thus in this region the e�ective-coupling method is insensitive to

parametric variations [45]. One feature of this e�ective coupling is its q2 ln q2

behavior at small q2. Since the gluon virtuality vanishes in the limit yi ! 0 with

which we are concerned, use of the e�ective coupling replaces the 1=y divergences of
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Eqs. (2.6){(2.13) with integrable ln y divergences. However, the numerical behavior

at the endpoints is still unfriendly, and depends on the value of �QCD. We will

depend on stringent experimental cuts to eliminate the dependence on endpoint

behavior, and thus on our treatment of soft physics, of the observed cross sections

after integration over y.

7. Hadronization e�ects

In Refs. [2] and [3], it was assumed that the width of the (angular or rapidity)

gap by which the directly produced meson was isolated would be unchanged by the

hadronization process; i.e., that the products of hadronization will �ll the region

of phase space spanned by the free partons, but not spill out of it. We shall see

that this naive assumption is highly misleading.

Since we are concerned with the intrinsically soft process of hadronization,

we may use a phenomenological model of such processes, the Lund Monte Carlo

generator [46].

Most of our attention will be devoted to two cases: Q ' 10 GeV, where B

factories may operate in the near future, and Q = mZ . In the former case we

will enforce the condition of isolation by requiring either an angular gap (in the

center-of-momentum frame) or a rapidity gap [23] between the candidate directly

produced meson and the other products of hadronization; in the latter, we will use

isolation in rapidity space exclusively.
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7.1 Isolation cuts

The �rst order of business is to demand a high degree of isolation of the

candidate directly produced meson in order to reject backgrounds from inclusive

processes. In each case, we used the LUND Monte Carlo generator to model the

development of the recoil system. As explained previously, since the hard physics

does not inuence the hadronization process, we expect such a simulation to be

very accurate. We studied the hadronization of u�u systems with the initial state

momenta given by the kinematics of Section 2.

Most of the systems we are interested in are asymmetric systems such as u�s;

however, since the dynamics of hadronization are avor independent, we con�dently

expect that the errors thus introduced are negligible for light (uds) systems. We

will return to the issue of heavy quarks later.

Given the kinematic variables z and y1, we can de�ne cumulative acceptance

functions:

� Pang(�; z; y1) is the fraction of events at given z and y1 in which the directly

produced meson is isolated by a cone of opening half-angle � in the event

center-of-momentum frame;

� Ppz(pcut; z; y1) is the fraction of events in which no particle except the directly

produced meson has pz > pcut [47]; and

� Prap(Ymax; z; y1) is the fraction of events in which no particle has rapidity

greater than Ymax along the ẑ-axis [23,48].

The regions of momentum space excluded by these cuts are shown in Fig. 15.

Intuitively, one can see the advantage of the rapidity gap: it is not greatly a�ected

by either soft physics in the same hemisphere or hard physics at large angles.
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Figure 15. The regions of momentum space excluded by the isolation cuts we

consider. The numerical values shown are those used for Q = 10:58 GeV and (a)

z = 0:7, (b) z = 0:95. In each case, the isolation cut is given by the requirement that

the phase space above the line be empty except for the candidate directly produced

meson itself. It must be emphasized that the stringency of the cuts is not a matter

of taste, but is chosen to maximize the �gure of merit U of Eq. (7.1).

We obtained numerical values for P (x; z; y1) with the Monte Carlo generator,

typically in runs of 20,000 events. We then optimized the cut with the �gure of

merit

U �

1
0 P (x; z; y1)dy1

P (x; z; y1 = 0)
: (7:1)

This method of optimization is chosen to reect the fact that the dominant source

of background noise is the direct fragmentation contribution of Eq. (6.2). Truly

inclusive events are comparatively easy to exclude, especially given the severity of

the cuts which maximize U .

Maximizing this �gure of merit for each choice of z, we �nd that the resulting

�(z) are well described by

cot � =
0:370� 0:438z

1� z
: (7:2)
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Note that the angular isolation is still extreme even at moderate z; for example,

we demand that a meson with z = 0:5 be isolated by 73�. The stringent cuts are

necessary mainly to reduce the background from direct fragmentation, Eq. (6.2).

We also optimized the cuts pcut and ymax at each value of z; the results of this

optimization agreed well with the �ts

pcut = (0:70� 0:79z) GeV (7:3)

and

Ymax =
0:463� 0:541z

1� z
: (7:4)

It is interesting to note that the point at which the angular cuto� is equivalent to

the requirement of isolation in a hemisphere (z = 0:845) is nearly identical to the

corresponding point for the rapidity cut (z = 0:856). We will make us of this fact

shortly.

The acceptance curves with Ymax de�ned by Eq. (7.4) and those with � given

by Eq. (7.2) are shown in Fig. 16. For moderate z, the rapidity cut is clearly

superior to the angular isolation requirement; for large z, however, the rapidity cut

is too restrictive, suppressing the signal as well as the small-y noise.

A little thought shows the reason for this. When z < 0:85, the situation is

as depicted in Fig. 15(a); the rapidity cut is insensitive to very soft physics. For

z > 0:85, however, the cuts are as shown in Fig. 15(b); now the rapidity cut forces

every particle to have some substantial momentum in the �ẑ direction. Thus the

rapidity cut is more likely to reject semiexclusive events due to soft physics in the

hadronization process, and the angular cut is superior.

53



100

10–1

10–2

(a)

0 0.4 0.8 0 0.4 0.8
y1

P
 (

z,
y 1)

(b)z = 0.86

0.50

0.62

0.74

3-94 7554A23

Figure 16. The acceptance P (z; y1) with (a) the rapidity cut de�ned in Eq. (7.4)

and (b) the angular cut of Eq. (7.2).

With this reasoning, we choose to implement a hybrid cut. For z < 0:85, we

impose a rapidity cut with

Ymax = 0:551
0:85� z

1� z
; (7:5)

for z > 0:85 we use an angular cut with

x

1� x2
= �0:429

z � 0:85

1� z
: (7:6)

This yields the cleanest event sample over the full range of z.

This represents a step towards cleaning up the semiexclusive signal. However,

our numerical results (Fig. 17) show that the cuts given so far cannot by themselves

adequately restrict the contamination from the small-y region. For this, a further

cut is necessary.
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Figure 17. Contours of constant acceptance in the zy1-plane for Q = 10:577 GeV,

with the cuts (a) cos � < 0:172 and (b) cos � < 0, corresponding to 80� and

90� isolation respectively. Dotted lines show the acceptance cuts used in Ref. [3],

which are valid in the large-Q2 limit but at this energy drastically overestimate the

acceptance at moderate z.

7.2 Event shape cuts

As described in Section 6.2, events from the small-y region carry their own

signature|the jets tend to be aligned with the hadron momentum, which we de�ne

to lie along the ẑ-axis. This allows the isolation cut to preferentially exclude those

events to some extent. However, we can improve the discrimination by going

directly to the heart of the matter and examining the shape of the hadronizing

system.

We �rst impose a minimum cut on the thrust

T � max
n̂

�
i jpi � n̂j

i jpij

�
> Tmin:

Events with low T are somewhat amorphous, and thus carry little information

about their original orientation.

55



0.2

0.1

0

(a)

P(
z,

y 1)

0 0.5 1.0

(b)

0 0.5 1.0

z = 0.86
0.74
0.62
0.50

10–1

10–2

10–3

y1 y1 7554A162-94

Figure 18. The acceptance P (z; y1) with the combination of event shape and

isolation cuts of Eqs. (7.7) and (7.8): (a) is linear, (b) a semilog plot.

We could attempt to impose a condition on the angle between the thrust axis

and ẑ; however, it turns out to be more e�cacious to restrict the `z-component' of

thrust [49]:

Tz �
i jpi � ẑj

i jpij
< Tmax;z:

We again optimized the cuts Tmin and Tmax;z through numerical evaluation of

the �gure of merit U . In the end, we found it best to choose the isolation cut

Ymax = 0:88� z; (7:7)

and to use the event shape cuts

Tmin = 0:90�
0:036

1� z
and Tmax;z = 0:34: (7:8)

To eliminate low-multiplicity inclusive backgrounds, we also required that the recoil

system contain at least six particles. The resulting acceptance P (z; y1) is shown

in Figs. 18 and 19. The rejection of small y is now nearly perfect; as a result, we

will be able to isolate a clean semiexclusive signal from the region of moderate y.

56



0

0.4

0.8

y1

0.5 0.7 0.9
z

15%

7

3

1

7554A132-94

Figure 19. Contours of equal acceptance in the zy1-plane, with cuts from Eqs. (7.7)

and (7.8).

7.3 Acceptances at the Z peak

In precisely the same manner as above, we can de�ne, optimize, and compute

acceptances P (z; y1) at Q = mZ . In this case, we replace Eqs. (7.7) and (7.8) with

the requirements

Ymax = 1:6� 1:4z; Tmin = 0:90�
0:004

1� z
; and Tmax;z = 0:57� 0:23z: (7:9)

Figure 20 shows the results of these constraints. The acceptances are

substantially larger in the central region, and much better suppressed at the

endpoints in yi, than the acceptances at Q = m�. This serves to o�set the

increased predominance of the leading-twist collinear contribution, as described

in Section 6.1.

57



0.4
3–94

0.80
0

y1

P
(z

,y
1)

(a)

0.4

0.2

(b)

10–2

10–1

10–3

0.90.70.5

y1

7554A19

0.6

0.8

1.0

z

1%

50

30

10 0

50 75

10

0.86

z=0.50

0.68

Figure 20. The acceptance P (z; y1) at Q = mZ , with the cuts of Eq. (7.9): (a) is a

semilog plot, (b) a contour plot.

7.4 Quark mass effects

To examine the interesting cases of semiexclusive D production at the �

resonance and B production at the Z0 pole, we must allow for nonzero quark

masses, and the concomitant energetic weak decays, in the computation of the

acceptance P (z; y1). This does not involve any conceptual changes to the approach

we have described; in particular, Monte Carlo simulation of the hadronizing system

should still provide physically reliable results.

Figure 21 shows the results of this analysis. Note that the restriction on the

mass of the hadronizing system leads to a much more severe constraint on z;

otherwise, the results are qualitatively similar to those of Section 7.2.

Similarly, we must account for the B mass and weak decay channels in

analyzing the acceptance for B production at the Z peak. Figure 22 shows the

results of this analysis; again, the e�ects of the quark mass are not very large.

At moderate z, the b quark is heavy compared to the scale of hadronization

but light enough that its weak decay products are collimated in the direction of its
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Figure 22. The acceptance P (z; y1) for semiexclusive production of B mesons at the

Z0 peak. Here y1 = yb is the back momentum of the �b quark in the hadronizing

system.

motion. This is an ideal situation, as is reected in the wide and high plateaus of

P (z; y1) shown in Fig. 22. At large z, when the mass of the hadronizing system is

not much larger than mb, this situation deteriorates rapidly. However, at z � 0:95

the recoil system still has a mass of more than 20 GeV, so that the endpoint region

can be excluded with great accuracy. Thus the rates which we will predict for
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semiexclusive B production are extremely insensitive to physics at any scale softer

than minf�z; zyih�xigm
2
z.

8. Results

We can now combine the results of the previous sections to obtain predictions

for observable cross-sections at realistic energies.

We �rst perform the convolution of hard-scattering amplitudes and distribution

amplitudes; using Eqs. (2.6) and (2.7) and the de�nitions of Eq. (2.4), we obtain

after some rearrangement [3]

M(+) = CF
16�2��s

zQ2

"
2sce�i�

�
qu �B

y2

y1
� qsB

y1

y2

�

+ �zs2e�2i�
�
qsB � qu

�
�B + z �A(z)

�y2
y1

�

� �zc2
�
qu �B � qs

�
B + zA(z)

�y1
y2

�#
(8:1)

for K� or longitudinally polarized K�, and

M(+) = CF
16�2��s

Q2
c2�z

qsA(z)

y2
�
qu �A(z)

y1
(8:2)

for transversely polarized K� mesons. Again, the same result holds for any light

avored meson.

The argument of �s depends on the diagram; in general, we can use the

substitutions

qs�s ! qs�s(�xzy2Q
2) and

qu�s ! qu�s(xzy1Q
2):

We will not exhibit the explicit dependence of �s on the momentum transfer in

the equations which follow. However, the �nal results we present are obtained by
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a numerical integration procedure which takes into account the running of �s for

each model wavefunction and for each value of z and yi.

Squaring the amplitude and summing over polarizations, we obtain the

di�erential cross section

d� =
4

9�2
�2�2s
Q4

�z

z
dz dy1 d cos � d�

�

(
�z

2
(1 + cos2 �)

�
qsB � qu

�
�B + z �A(z)

�y2
y1

2
+ qu �B � qs

�
B + zA(z)

�y1
y2

2
�

+ 2 sin2 � qsB
y1

y2
� qu �B

y2

y1

2

� 4 �z cos � sin � cos�

qsB
y1

y2
� qu �B

y2

y1
qs
B + y1zA(z)

y2
� qu

�B + y2z �A(z)

y1

+ �z sin2 � cos 2�

�
qsB

y1

y2
� qu �B

y2

y1

2
� z2quqsA(z) �A(z)

+ z qsB
y1

y2
� qu �B

y2

y1
qsA(z)

y1

y2
� qu �A(z)

y2

y1

�)

(8:3)

for helicity-zero, and

d� =
4

9�

�2�2s
Q4

z�z2dz
qsA(z)

y2
�
qu �A(z)

y1

2
dy1 (1 + cos2 �)d cos � (8:4)

for helicity-1 mesons; in the latter case, we have integrated out the trivial

�-dependence.

To make use of the portion of the cross section proportional to (1+ cos2 �), we

must be able to discern it above the direct fragmentation contribution of Eq. (6.4).

We must caution the reader that the results of [3] are entirely misleading at this
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juncture. The neglect of hadronization in the naive treatment of [3] led to the

conclusion that, as z ! 1, the endpoints y ! 0; 1 would become experimentally

accessible. As a result, the 1=y behavior of the cross section of Eq. (8.3) was

claimed to lead to a substantial signal at large z.

In practice, the reverse holds. As z grows, the small-y growth of the cross

section is curtailed not by an experimental cut but through the multiple-scattering

process described in Section 5. Meanwhile, the energy in the hadronizing system

decreases, so that our ability to isolate the region where y is not small is lost. To

prevent unacceptable contamination of the signal, we must impose the harsh cut

of Eq. (7.8); as a result, the cross-section for large z is controlled by the �z factor

in Eq. (2.1), and almost no signal can be measured in the region z > 0:9.

Numerically, it happens that the signal is actually cleaner at small z. This is

because the signal of Eq. (8.3) grows more slowly as y ! 0 than the background;

thus the ability to reject events with small y is paramount. Since the hadronizing

system is more energetic at smaller z, the event shape cuts we use are more e�ective,

and we obtain the best results by integrating over the region 0:5 < z < zmax. We

should choose the upper bound zmax on z to maximize the ratio S= N , where

S is the signal of Eq. (8.3) and N the noise from Eq. (6.2) [50]. Examination of

the numerical results (using the symmetric wavefunction, so that our cuts will not

depend on a model wavefunction) shows that the ratio S= N is maximized if we

use the upper bound zmax = 0:8.

To estimate the reliability of our perturbative methods, it is useful to examine

the di�erential cross section d�=dzdy1, as in Fig. 23. For moderate values of z,

the hadronizing system is su�ciently energetic to allow excellent rejection of the

endpoint region; as z increases, the cross section d�=dz comes to be dominated
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Figure 23. The di�erential cross section d�=dzdy1 at
p
s = 10 GeV for several

values of z, for (a) the ZZC model of the K� and (b) the asymptotic model of the

K0 (or �0). As z increases, the cross section comes to be dominated by endpoint

contributions, for which perturbative predictions are untrustworthy.

by small momentum transfers q2 = zyminQ
2. This problem is more severe for

neutral mesons with symmetric wavefunctions, as shown in Fig. 23(b), where the

amplitude in the central region is suppressed by cancellations between couplings to

the two separate quarks. (Naturally, the Dirac form factors of these mesons vanish

altogether.)

Table 2 shows the total cross sections expected for semiexclusive production,

based on the model wavefunctions of Table 1. What else can we learn from the

cross section of Eq. (8.3)? We �rst consider the term proportional to sin2 �:

16

9�

�2�2s
Q4

�z

z
dz qsB

y1

y2
� qu �B

y2

y1

2
dy1 sin2 �d cos �: (8:5)

Since this term depends on the distribution amplitude only through the constant

B, it will grow more slowly than d�sx at large z. Also, the y-dependence is less

pronounced, so that the integral over y1 will not gain large contributions from

terms like y�21 .

As a result, this contribution to the total cross section is numerically small,

amounting to no more than 30% of the total semiexclusive contribution. Since
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Table 2

Distribution Cross Section �sx (fb)

Meson Amplitude Charged Neutral Ratio

K ZZC 1.46 0.40 3.6

Toy 0.55 0.23 2.4

asymptotic 0.62 0.10 5.9

� ZZC 1.56 0.88 1.8

asymptotic 0.36 0.15 2.4

�
L

ZZC 0.87 0.20 4.3

�
T

ZZC 0.34 0.09 3.9

K�
L

ZZC 0.89 0.19 4.8

� ZZC 0.42 0.09 4.8

the angular distribution of background events is not precisely 1+cos2 � due to

hadronization e�ects, a clean separation of this term seems unfeasible.

The existence of an energetic meson introduces a preferred axis into the

computation, so that there is no reason to expect the backgrounds to have trivial

�-dependence. Since the sign of cos� cannot be determined without successfully

tagging the primary quark avors in the two recoil jets, we are left with only the

part of Eq. (8.3) proportional to cos 2�, which is numerically much smaller than

the dominant 1+cos2 � term. Thus isolation of the �-dependent terms in the cross

section appears impossible.
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8.1 Glueball production

From the amplitude of Eq. (2.11), we obtain the unpolarized di�erential cross

section for semiexclusive production of 0+ mesons:

d� =
��2�2sq

2
i

24Q4

�z

z
dz dy1 d cos � d�

(
4

y1y2
2�zBgg +

zfgg

2 3

2
sin2 �

+ �z
� 1

y21
+

1

y22

�
(2� z)Bgg +

fgg

2 3

2
(1 + cos2 �)

)
;

where we have integrated over d�. Here q2i is the QED coupling of the recoil quark,

which should be summed over all quark avors. However, we should not make the

substitution 3 q2i ! Re+e�(�zQ
2), since production of a gg state recoiling against

a resonance is suppressed by �nal-state interactions (see Section 2.5). Instead,

we consider only the light quarks u, d, and s; our events shape cuts will strongly

suppress the signal from events like e+e� ! f0c�c, where the thrust of the recoil

system is unlikely to be large.

The gluons are produced collinearly, and are nominally on shell (up to

corrections of order the meson mass). We use the �xed coupling �s = 0:4, reecting

our belief that the small size of the meson will limit the growth of the running

coupling.

To estimate the semiexclusive cross section, we �rst use the asymptotic

wavefunction �gg(x) = 3fggx�x. Then Bgg = fgg 3=2, and the semiexclusive

cross section scales as f2gg. With the cuts of Eqs. (7.7) and (7.8), we obtain an

observed integrated cross section of 71f2gg fbGeV
�2.

Figure 24 shows the resulting di�erential cross section d�=dz. It falls o�

rapidly with increasing z, reecting the fact that glueball production is forbidden
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Figure 24. The di�erential cross section d�=dz for semiexclusive production of gg

states at the �4s with Jz = 0 (solid line) and Jz = 2 (dashed line). We have used

the ansatz that the gluon distribution is proportional to x�x, normalized to fgg = 100

MeV. The latter is probably somewhat optimistic.

at leading twist in the exclusive limit. The behavior of d�=dz is well approximated

by exp(�7z) for scalar or longitudinally polarized states and by exp(�10:5z) for

transversely polarized states.

The angular distribution arising from our ansatz for the two-gluon distribution

amplitude is also noteworthy. The observed distrbution, after implementation of

our acceptance cuts, is very closely approximated by

d�sx

d cos �
/ 1� 0:19 cos2 �

over the entire region 0:5 < z < 0:8. This seems to be a numerical peculiarity of the

asymptotic distribution amplitude; using instead the `double-humped' distribution

amplitude

�(x) / x�x(x� �x)2

predicts an angular distribution which varies from 1 � 0:20 cos2 � at z = 0:5

to 1 � 0:08 cos2 � at z = 0:8, as well as increasing the total cross section to

160 f2gg fb GeV�2.
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Note that fgg will not be larger than about 100 MeV, so these cross sections

are commensurate with our predictions for q�q mesons. However, they have the

advantage of being peaked at smaller values of z, where the hadronizing system is

more energetic and pQCD predictions less subject to soft corrections. The primary

theoretical drawback is the �2s dependence of the cross section, which introduces

substantial uncertainty into the predicted normalization of the semiexclusive cross

section.

We can similarly compute the total cross section for production of 2+

mesons. With the additional assumption that �gg=L = �gg=T , we obtain after all

experimental cuts the result d�sx = 103f2ggfb= GeV
�2, again using the asymptotic

form of the distribution.

8.2 Direct photon production

Using the kinematics of Section 2, we can easily compute the amplitude for

direct-photon production. The result is

M(++) =
CF e

3qeqi

z

�
c y2 + sei� �zy1

�2 qi

y1y2
+

qe

�zscei�

when the photon, electron, and antiquark share the same helicity; the results for

other helicities are obtained by s $ c and y1 $ y2. In this case the color factor

CF = 3.

The direct photon production cross section is much less well behaved at the

endpoints, since the mechanisms described in Section 6 do not a�ect its collinear

divergences. Thus our methods do not su�ce to accurately estimate the cross

section for direct photon production in these regions. To gain some feel for the
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comparative size of these cross sections, however, we may consider the ratio of

amplitudes away from the collinear region.

We must consider the possibility that -K0 or -�0 misidenti�cation could

represent a substantial background to the semiexclusive signal. We �nd that

at s = 10 GeV, direct photon cross sections are typically 20{50 times the

semiexclusive cross sections in which we are interested, so that  rejection must

be complete to less than 1% in order to allow clean extraction of the semiexclusive

signal. At these energies, semiexclusive events do not constitute a signi�cant

background to direct photon production; however, at lower energies where the Q�2

suppression is less drastic, they must be considered.

8.3 Z0 decays

The program implemented to search for semiexclusive events in Z decays is

similar to that above. The experimental cut changes in appearance but not in

substance, as described in Section 7.3.

The simple substitutions qi ! Qi, e ! g, and Q4 ! m2
Z�

2
Z enable us to

compute the cross sections at the Z peak without further ado. In this case, the

wide acceptance allowed by Eq. (7.9)means that the predictions of Ref. [3] were

overly pessimistic. On the other hand, the considerations of Section 2.3 show that

the D and B wavefunctions probed at Q = mZ will not be very strongly peaked,

so that the hard-scattering amplitudes themselves will not see the wavefunction

enhancement described in Ref. [3]. For light mesons, the consequences of evolution

are even more pronounced, and it will be impossible to extract information about

the distribution amplitude at such high energies.
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Table 3

Distribution Branching Ratio �sx (�10
�6)

Meson Amplitude Charged Neutral Ratio

K ZZC 1.53 0.76 2.0

Toy 0.98 0.49 2.0

asymptotic 0.91 0.41 2.2

� ZZC 1.16 0.32 3.7

asymptotic 0.56 0.14 4.1

�
L

ZZC 0.70 0.18 3.9

�
T

ZZC 0.44 0.11 4.0

K�
L

ZZC 1.00 0.46 2.2

� ZZC 1.26 0.39 3.2

We again follow the same program of computing the acceptance, then

integrating the cross section over dy1dz to obtain observable quantities. The

acceptance is shown in Fig. 20 and the resulting cross sections in Table 3.

8.4 Heavy-quark mesons

The analysis of semiexlusive reactions is particularly rewarding in the study

of heavy-quark mesons. This is largely due to the sensitivity of the production

cross section to the extent to which the distribution amplitude is peaked at large

momentum fraction x, which is closely related to the moment hxi of the distribution

amplitude. These moments have been the subject of substantial theoretical interest

[51,52] , but precise experimental determinations have so far been unavailable.

We wish to extract a relation between the moment hxi and the integrated

semiexclusive production cross section �sx. Both of these quantities depend on

69



some complicated distribution amplitude, which will introduce model-dependence

into the relationship. We estimate this dependence by using three simple models

for the distribution amplitudes of heavy-light mesons.

The �rst is the toy model of Ref. [3],

�(x) = fh 3
(1� x)(x� x0)

(1� x0)3
with x0 = 2 hxi � 1:

Because this distribution is symmetric about hxi and has no small-x `tail,' it is less

concentrated at very large x than we would expect for a realistic wavefunction,

and will thus lead to somewhat lower estimates of �sx.

The second model is simply

�(x) =
(n+ 1)(n+ 2)

2 3
fhx

n�x with n =
2

h1� xi
� 3:

This yields a distribution which is very strongly peaked at x near 1, and which

thus provides an estimate of of �sx for given hxi which may be unrealistically large.

However, it is more realistic than the toy distribution from Ref. [3] used above.

The �nal model wavefunction is derived from the wavefunction given in

Ref. [51], which is chosen to maximize hxi subject to the constraints of unitarity

and of the values of the decay constant and quark and meson masses. Integrating

the wavefunction described in Ref. [51] over all k?, we obtain the distribution

amplitude

�(x) =
3 3

2
fh(1� x) x(1 + 2x0) ln

� 1 + 2x

1 + 2x0

�
� 2x0(x� x0) (8:6)

with

hxi =
81

64

1 + 2x0

(1� x0)4
ln
� 3

1 + 2x0

�
�

(2 + x0)(13 + 40x0 � 38x20 + 12x30)

32(1� x0)3

'
3 + 2x0

5
� 0:0138(1� x0)

2 + � � �
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Under the assumption that the wavefunction  D!c�q is purely real and positive, the

methods of Ref. [51] can be used to obtain the upper bound hxi < 0:72, in contrast

to the estimate hxi = 0:79 of Ref. [15]. The unitarity-saturating wavefunction of

Eq. (8.6) is more strongly peaked toward x = 1 than the toy model, and is still

extremely asymmetric; thus it should not substantially underestimate the rate of

semiexclusive production when compared to realistic models. The three model

distribution amplitudes are shown in Fig. 25 for hxi = 0:72 and 0.84, which are

the unitarity bounds of Ref. [51] for the D and B mesons respectively.

With the acceptance functions described in Section 7.4, it is now a simple

matter to compute the cross sections for semiexclusive production at the �4s

resonance. The dependence of the total cross section on hxi is displayed in Fig. 26.

The error bars shown do not represent data, but serve to indicate the degree

of model dependence in the prediction. The uncertainty in hxi due to model

dependence is on the order of 0.03, which is roughly equal to the uncertainty

introduced by a 60% error in the measurement of �sx. Since both the charged

and neutral channels can be used in this measurement, the model dependence will

probably be the dominant source of error. If constraints on the limiting behavior

of �(x) as x! 1 can be obtained independently, they would serve to eliminate the

source of most of this model dependence.

At the Z0 peak, the prospects for probing D meson structure are exceedingly

dim, largely due to the erosion of nonperturbative wavefunction information during

the evolution to the large momentum scales in question. However, there is now

su�cient energy to produce B mesons in perturbative processes, and we can ask

the same questions about their distribution.
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Figure 25. Three models of the distribution amplitudes of the B and D mesons,

parametrized to yield hxci = 0:72 and hxbi = 0:84. We assume fB = fD = 190

MeV.
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Figure 26. The semiexclusive D production cross section at �4s energies as a

function of hxi, for the three models shown in Fig. 25. The error bars shown serve

to indicate the extent of model dependence. The upper curves describe charged D

production; the lower, neutral.

The apparent conict between QCD sum rules [15,53], which provide the

estimate hxi = 0:90, and unitarity constraints which suggest hxi < 0:84, exists

in this case as well. Though both of the above arguments are predicated on

small momentum transfer, it is still of interest to measure the moment hxbi in
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Figure 27. Semiexclusive branching ratios for B mesons produced in Z decay. In

(a), the upper curve sums contributions from B0, �B0, B+, and B� mesons while the

lower curve gives the branching fraction to Bs and �Bs mesons. The parameter hxi
need not be the same in the two cases. In (b), we have included the contributions

from the �rst excited states B�, summed over polarizations, so that hxi is not

precisely de�ned.

semiexclusive production at the Z, though one must bear in mind the remarks of

Section 2.3.

The expected cross sections for semiexclusive B production at the Z are shown

in Fig. 27. Again, the model dependence is substantial, leading to an uncertainty of

about 0.03 in the extraction of hxi. However, the branching fractions are su�ciently

large that at least an approximate measurement may be possible in the current LEP

experiments [54]. This measurement will provide crude but essential information

about the structure of the B meson.

Figure 28 shows the dependence on hxi of the ratio of semiexclusive neutral

to charged B production. Although this is a very di�cult measurement from an

experimental standpoint, its relative model-independence is striking.
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Figure 28. The ratio of neutral to charged B production as a function of hxi. In (a),

only the pseudoscalar B states are considered; in (b), we sum contributions from B

and B� production.

In examining Figs. 27 and 28, one must bear in mind that the moment hxi

being measured does not correspond directly to that computed in Refs. [15,51,53]

due to the e�ects of evolution. Also, the total cross sections shown in Fig. 27 are

proportional to f2B, which is itself subject to substantial uncertainty.

Note that the abcissa of Fig. 27 is hxi+ 0:24 ln(fB=190 MeV), to compensate

for the fB-dependence of the cross section. Since the cross section does not

rise precisely exponentially with hxi, this introduces some imprecision; however,

the resulting errors are negligible. Over the region of phenomenological interest,

150 < fB < 250 MeV and 0:6 < hxi < 0:8, they introduce an error of less than

0.005 into the measurement of hxi.

The average momentum fraction hzi is very mildly dependent on hxi:

d hzi =d hxi ' 0:1. Since it is unrealistic to expect that enough events can be

gathered to evaluate hzi with any precision, this does not provide us with an

independent determination of hxi.
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8.5 Extraction of moments of the distribution amplitude

To test the validity of the approach of Ref. [13], in which the moments

(x� �x)n�(x)dx of the distribution amplitude � are extracted from QCD sum

rules, we wish to obtain the same quantities directly from experiment. As we

have shown, the experimentally observable quantities are entirely determined by

the integrals A; �A;C, and �C of Eq. (2.4). Thus, to reconstruct the moments from

experiment without recourse to model calculations, we must be able to �t the

integrand (x� �x)n which enters into the computation of moments to a sum of the

integrands

1

�x(1� zx)
and

1

x(1� z�x)

which determine A(z) and �A(z).

Figure 29(a) shows the results of such an attempt. Here we have assumed

that A(z) and �A(z) may be measured in eight bins evenly spaced from z = 0:5

to z = 1, and that B and �B are known. We used MINUIT to minimize the

di�erence of the moment and �t integrands under the L2 metric with weight x�x [55].

Figure 29(a) shows the moment integrands and the best �ts to them: for example,

when attempting to reconstruct the 0th moment (the decay constant) from the

measured values of A and �A, we end up integrating not �(x), but �(x) multiplied

by the function shown as a solid line in Fig. 29(a). One could say that the line

represents the best available approximation to 1.

For n = 0 or 1, the �t is tolerably good. However, the �t for n = 2 is

unacceptable; this situation persists even if we increase the number of bins to 20

(Fig. 29(b)). Thus we are forced to conclude that only the �rst moment can be

measured model-independently with any accuracy in semiexclusive processes.
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Figure 29. Reconstruction of the integrands (x � �x)n, required for calculation of

moments of the distribution amplitude, from the integrands in the transforms A(z)

and �A(z). The �tted curves sum contributions from A(z) and �A(z) at (a) eight

points; (b) 20 points. Note that the scale of x is distorted to show the metric of

integration.

8.6 Conclusions

We have analyzed semiexclusive meson production in some detail, noting

the obstacles to unambiguous theoretical calculations and to clean experimental

results. The most di�cult remaining obstacle is the poorly understood behavior of

the recoil system during hadronization, which will make it di�cult to accurately

predict the rate of background events for a given choice of experimental cuts.

Some progress can be made by appealing to the expectation [22] that the

soft backgrounds should scale as expf�2�Y g, or equivalently as expf2Ymaxg.
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Since the semiexclusive events we wish to observe are intrinsically hard, the cross

section d�sx=dYmax should decrease less rapidly with decreasing Ymax than the soft

background rate; thus it should be possible to �t separate curves to the background

and signal rates. At the values of Ymax proposed here, we �nd that the behavior

of the semiexclusive signal is well approximated by expf1:6 Ymaxg.

The intrinsic hardness of any process producing a strongly isolated meson is

a double-edged sword. On the one hand, it places us in a region in which Monte

Carlo predictions of the expected background are extremely unreliable; however, it

also tells us that the scattering producing the meson is dominated by short-distance

physics. Thus we have good reason to believe that the mechanism we have

considered will account for the bulk of the observed cross section. We have obtained

several wavefunction-independent predictions, such as the Ymax dependence of the

observed signal, which can be used to test the consistency of this view.

Figure 30 shows the di�erential semiexclusive production cross section for K

mesons as a function of z, for our three models of the kaon distribution amplitude.

Besides the absolute normalization, which indicates the extent to which the

distribution is concentrated near the endpoints, there are two noteworthy features

of Fig. 30.

First, the ratio between charged and neutral production cross sections is a

sensitive test of the asymmetry �K . A symmetric distribution leads to e�cient

cancellation between the qs- and qd-dependent parts of the amplitude for K0

production, and hence to a very large predominance of charged kaons. The

extremely asymmetric toy distribution yields a comparatively small ratio. This

ratio is largely immune to e�ects from our treatment of soft physics, and provides
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Figure 30. The di�erential cross section d�sx=dz for semiexclusive K production,

for three models of �K . In each case, the upper line shows the rate for K�, the

lower for K0. The unevenness in the lines arises from statistical uctuations in our

Monte Carlo calculations of the acceptance P (z; y1) near the endpoints. It is more

pronounced for neutral than for charged production; see Fig. 23.

a sensitive test of models for �K . Predictions from each model distribution are

included in Table 2.

Second, contrary to the conclusions of Ref. [3], we �nd that the shape of the

cross section depends only weakly on the distribution amplitude chosen. Thus

comparison with the observed di�erential cross section will serve more to test the

validity of our picture of semiexclusive production than to place constraints on

models of the hadron. If we de�ne the expectation value hzi0:80:5 of z for all mesons

with 0:5 < z < 0:8, we obtain hzi0:80:5 = 0:66� 0:67 for all three distributions under

consideration.

Finally, we have noted that the rate of semiexclusive production provides a

sensitive measurement of the �rst moment hxi of the distribution amplitudes of

heavy-light mesons. This will provide welcome experimental input to a �eld where

comparisons between theory and experiment are often elusive.
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We conclude that at integrated luminosities between 10 and 100 fb�1, the

analysis of semiexclusive production has limited but signi�cant applicability to the

study of mesonic structure. If still larger event samples can be obtained, several

new avenues of exploration will open within the same framework. Most of these

have been touched upon here. For example, discrimination between the asymptotic

and ZZC models of �K through a precise measurement of hzi0:80:5 would require a

clean sample of a few hundred semiexclusive events, as would a model-independent

reconstruction of the �rst moment of the distribution amplitude or a precise

measurement of the angular dependence of d�=d!.
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APPENDIX A: Computation of Hard-scattering Amplitudes

Section 2 de�nes our frame of reference; for de�niteness, we will let l1 and l2

refer to the momenta of the outgoing quark and antiquark of the recoil system,

respectively.

The method of Ref. [11] takes advantage of the fact that in the chiral

representation of the Dirac algebra, each of the matrices � has block-diagonal

entries of zero. Thus we can work with e�ective two-component matrices 
�
+ =

(1; ~�)� and 
�
� = (1;�~�)�, and corresponding two-element spinors satisfying

6p�u�(p) = 0 and u�(p)u �(p) =6p�(p).
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Spinor amplitudes are constructed like ordinary four-component amplitudes,

with the simplifying rules 
�
�

�
� � 0 and 

�
�u�(p) � 0 serving to enforce helicity

conservation along fermion lines. Since u+(p) is the correct spinor for a fermion

with positive helicity, or an antifermion with negative helicity, this method serves

admirably for the construction of individual helicity amplitudes.

The algebra is greatly simpli�ed by the Fierz relation

g��(
�
�)

i
j(

�
�)

k
l = �il�

k
j ;

so that all internal Lorentz indices may be e�ortlessly contracted. Subscripts may

be ipped by use of the relation

u �(p)
�
� � � �u�(q) = ~u � (q) � � � ��~u�(p);

where ~u� � i�2u��. It is convenient, though not necessary, to de�ne spinors to

satisfy the additional relationship ~u� = �u�.

As in Section 2, we de�ne E � Ebeam, s � sin(�=2), and c � cos(�=2). With

these de�nitions, the explicit momenta are:

k = E(1; 2sc cos�; 2sc sin�; c2 � s2) for the incoming electron or photon;

k0 = E(1;�2sc cos�;�2sc sin�; s2 � c2) for the incoming positron or photon;

p = E(z; 0; 0; z) for the directly produced meson;

l1 = E(y1 + �zy2; 2 �zy1y2; 0; �zy2 � y1) for the outgoing quark; and

l2 = E(y2 + �zy1;�2 �zy1y2; 0; �zy1 � y2) for the outgoing antiquark.
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The corresponding matrices and spinors are:

6k+ = 2E

 
c2 sce�i�

scei� s2

!
;

6k� = 2E

 
s2 �sce�i�

�scei� c2

!
;

6k0+ = 2E

 
s2 �sce�i�

�scei� c2

!
;

6k0� = 2E

 
s2 sce�i�

scei� s2

!
;

6p+ = 2E

 
z 0

0 0

!
;

6p� = 2E

 
0 0

0 z

!
;

6l1+ = 2E

 
�zy2 �zy1y2

�zy1y2 y1

!
;

6l1� = 2E

 
y1 � �zy1y2

� �zy1y2 �zy2

!
;

6l2+ = 2E

 
�zy1 � �zy1y2

� �zy1y2 y2

!
;

6l2� = 2E

 
y2 �zy1y2

�zy1y2 �zy1

!
;

u+(k) = 2E

 
c

sei�

!
;

u�(k) = 2E

 
�sei�

c

!
;

u+(k
0) = 2E

 
se�i�

�c

!
;

u�(k
0) = 2E

 
c

se�i�

!
;

u+(p) = 2E

 
z

0

!
;

u�(p) = 2E

 
0

z

!
;

u+(l1) = 2E

 
�zy2

y1

!
;

u�(l1) = 2E

 
� y1

�zy2

!
;

u+(l2) = 2E

 
�zy1

� y1

!
;

u�(l2) = 2E

 
y2

�zy1

!
:

One useful fact is that amplitudes for negative-helicity electrons, which

contain a factor u �(k0)
�
+u�(k) = ~u+(k)

�
�~u+(k

0), can be changed into their

positive-helicity counterparts by the substitutions se�i� ! c and c ! sei�.

Alternatively, we can multiply the amplitudes with positive e� helicity by a

phase factor e�2i�, so that the positive-helicity amplitudes are obtained from their

negative-helicity counterparts by the substitution c $ s.
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The hard-scattering amplitudes for the e+e� annihilation processes considered

in this paper are given in the text for positive-helicity electrons; we do not present

the results for negative-helicity electrons, which can be derived trivially by applying

the above observation.

APPENDIX B: Photon-photon collisions

For the calculation of two-photon amplitudes, we must also �nd a

representation of the polarization vectors. This is most easily accomplished in

axial gauge with reference vector parallel to p�, so that

6�(k; ") =
jk+i hp+j+ jp�i hk�j

hk�jp+i
; and

6�(k; #) =
jp+i hk+j+ jk�i hp�j

hp�jk+i
:

The amplitudes for these processes are generally quite complicated. However, for

"" ! K��s�u+, the amplitude factors to

TH =
1

sc

z

x

y1

y2

�
qs y1

�u�(l1)u+(k)
�

qu y2

�u�(l2)u+(k)

��
qs y1

�u�(l1)u+(k0)
�

qu y2

�u�(l2)u+(k0)

�
;

(B:1)

the amplitude for ## is obtained by the replacements x! �x, TH ! T �H , y1 $ y2.

We are unable to obtain such a simpli�cation for the case in which the

photons have opposite helicity. The hard-scattering amplitude for semiexclusive

K production from a "# initial state is
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TH =
q2s
zy2

"
se�i�z y1

�
(1� zx)c y2 + se�i� �zy1

�
x�x(1� zx)

+
z(c �zy2 + se�i� y1)(c

2 � y1)

x(c �zy2 + sei� y1)
�
z y1y2(c �zy2 + se�i� y1)

�x(c y2 � se�i� �zy1)

#

+
zquqs(y2 � s2)2�

z�x(y2 � s2)� jc y2 � sei� �zy1j2
�
(c �zy2 + sei� y1)(c y2 + sei� �zy1)

+
quqs

zx(y1 � s2)� jc y1 � sei� �zy2j2

"
z2y1y2

(c �zy1 � sei� y2)(c y1 � sei� �zy2)

+
z y1y2(c �zy2 + se�i� y1)

�x(c y1 � sei� �zy2)
�
z y1y2(c y2 + se�i� �zy1)

x(c �zy1 � sei� y2)

�
(c y2 + se�i� �zy1)(c �zy2 + se�i� y1)

x�x

#

+
q2u
zy1

"
cz y2

�
c �zy2 + (1� z�x)se�i� y1

�
x�x(1� z�x)

+
z(c �zy2 + se�i� y1)(s

2 � y2)

�x(c y2 + sei� �zy1)
�
z y1y2c y2 + se�i� �zy1)

xc �zy1 � sei� y2)

#
:

We also consider the semiexclusive production of vector mesons. The amplitude

for "" ! K�
" �s�u� is

TH =
1

sc

�z y1y2

x�x

�
qs y1

�u�(l1)u+(k)
�

qu y2

�u�(l2)u+(k)

��
qs y1

�u�(l1)u+(k0)
�

qu y2

�u�(l2)u+(k0)

�
:

The corresponding amplitude for ## vanishes.

Again, we are unable to �nd a simple form for the case of opposite photon

helicities. The semiexclusive hard-scattering amplitude for "# ! K�
" �s�u� is

extremely awkward, and to present it here would serve no purpose.

In the same-helicity case, however, note that the x-dependence of TH is

subsumed into an overall constant [56]; the interplay between the internal

momentum fraction x and the kinematic observables yi and z, which is the
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major motivation for studying semiexclusive processes, is absent. As a result, the

semiexclusive cross section is no more valuable than the form factor in studying

the meson wavefunction; we can predict only an absolute normalization, which

experience teaches us is the least reliable and least valuable type of prediction.

Since the normalization also su�ers from additional uncertainties arising from the

case ~li k ~k, where pQCD is less important than vector-meson dominance, we

must conclude that two-photon semiexclusive processes promise no insight into

the structure of hadrons.
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