
       
SLAC-PUB-6349
September 1993
(T/E)

A Unified Treatment of
Track Reconstruction and Particle Identification ∗

Richard Blankenbecler
Stanford Linear Accelerator Center

Stanford University, Stanford, California 94309

In this note, the deformable template or elastic arm approach to track reconstruction described
previously will be extended to include particle identification. The discussion will first develop the
mathematical and algorithmic structure of the pattern recognition problem using the methodology
and language of statistical mechanics and then sketch its implementation in an object oriented
programming language . This unified treatment will allow the user the freedom to organize the
analysis in a variety of ways, with intermediate results available and documented.

I. INTRODUCTION

In this paper an extension of the elastic arms track reconstruction procedure given earlier [1] will be described that
allows the algorithm to be applied to non-geometric quantities, in this case, to particle-type identification. This work
was based on the work of Ohlsson, Peterson, and Yuille [2,3]. Another basic reference is the paper of Gyulassy and
Harlander, [4] A more extensive list of relevant work can be found in these references.

While the present formalism is clearly applicable to general geometries, for reasons of simplicity and clarity, a small
solid angle detector with NO magnetic field will serve as the “model” detector as in Ref. [1]. Certain correlations of
measurements and fit parameters are also ignored. These assumptions simply serve to ease the burden of description.

We shall start by discussing track reconstruction in an ideal detector, add particle identification and noise to the
system. The concept of “track” as used in ref [1] will be extended, subclassed in the parlance of object oriented
programming (OOP), to include particle identification (ID) data. Among this additional information will be an array
of probabilities that this track is of a given particle type or given particle type sequence, to be defined later. The
meaningfulness of these probabilities depends upon the additional measurement information used in the fitting. The
problem of ambiguities, or mirror charges, will be mentioned but the reader is referred to our treatment in ref [1] for
a more complete description.

II. DETECTOR HAMILTONIAN

The deformable template or elastic arm approach to this problem starts by defining a cost function that is minimized
when the assumed parametrized tracks fit the given hits. The same approach will be used to treat the problem of
particle identification. To this end, and following the spirit of earlier references in which a statistical mechanical
language was adopted, we first introduce a Hamiltonian function H for a perfect detector. This name change is to
eliminate possible confusion between the theoretical simulation Hamiltonian or “cost” function and a true energy with
all the accompanying connotations. The Hamiltonian is linear in the energy, or cost, of each track t ,

Htrack←hit =
∑
h

∑
t

AthMth , (1)

where Mth is a suitably chosen geometric measure of the “miss” such as the distance of closest approach divided by
the hit resolution (or the square of this ratio). Ath is an assignment, or binary decision unit, such that Ath = 1 if hit
h is associated with track t and is zero otherwise. The A’s will be generalized and allowed to become fractional in the
next section. Recall that each Mth depends upon the parameters of the track. The minimization of the Hamiltonian
will eventually determine the track parameters.

∗Work supported by Department of Energy contract DE–AC03–76SF00515.

1



        

The inclusion of noise is straightforward. The Hamiltonian is modified so that there is a penalty if a hit is not
assigned to any of the tracks. One now writes

Htrack←hit =
∑
h

∑
t

AthMth + ν

(
1−

∑
t

Ath

)2
 . (2)

Thus the cost of classifying a hit as noise is ν .
Particle Identification: This problem consists of properly assigning a particular track to a definite particle type (or at
least give probabilities of such assignments) based upon available discrimination data. The Hamiltonian is extended
to include terms that not only assign hits to tracks (and thus depend upon the track parameters) but also to include
terms that assign tracks to particle types. The new miss distance is not a geometric quantity, but a suitable miss in
“discriminate space.” The total Hamiltonian is then written as

Htotal = Htrack←hit + Hpid←track , (3)

where the second term is

Hpid←track =
∑
t

∑
p

AptMpt + ρ

(
1−

∑
p

Apt

)2
 . (4)

The assignment variable Apt assigns the track t to the particle type p . The parameter ρ is the cost incurred when a
track cannot be assigned to any listed particle type. What is the miss distance Mpt precisely? It is a function of all
the additional experimental information that distinguishes between particle types. For example, it depends upon the
differential energy loss, pulse heights along the track, Cherenkov measurements, penetration, etc., The detail structure
of Mpt is, of course, detector dependent. It may be written in the general form

Mpt = Mpt [dEdx] + Mpt [pulseheight] + ... (5)

The miss functions are functions of the difference between the measured and the expected values of a discriminate for
a particle of type p divided by the resolution of the measurement. It is then natural to write for each discriminate d ,

Mpt [d] = wd ∗
∑
m

(d(measured) − d(expected for p) )
2
/(res)2 , (6)

where wd is the relative weight of this discriminate is the sum in Eq. 5 and the sum is over measurements along the
track. For example, for differential energy loss measurements, d = dE

dx , Similarly, one may also choose the pulse
height from hit h as a discriminate and restrict the sum to include only those hits owned by track t .

III. SIMULATED ANNEALING

Our mathematical problem is to find the global minimum of the Hamiltonian assuming that the number of tracks,
etc., and estimates for their parameters are known. An efficient method for treating this problem is simulated
annealing; the first step is to introduce a Boltzmann distribution for the assignment variables and the track parameters

P [AH , AT ; T ] =
1

Z
e−βH[AH ,AT ;T ] , (7)

where AH (= {Ath} ) is the set of assignment variables assigning hits to tracks, AT (= {Apt} ) assigns tracks to
particle type, and T (= {Tt} ) is the collection of parameters of all the tracks, where Tt is the set of parameters
belonging to the track t. β is the inverse temperature which is introduced to pace the approach to the final fit.
Finally, the partition function is normalized by summing over all allowed values of AH , AT and T

Now let us compute the marginal probability that describes the distribution of track parameters for a uniform
distribution of assignments AH and AT :

P [T ] =
∑
Ath

∑
Apt

P [Ath, Apt; T ] ≡ 1

Z
e−βHeff [T ] , (8)

2



     

where an effective Hamiltonian has been defined that will prove convenient. If the distribution of assignments is not
uniform, these prior probabilities enter as weights of the various terms in equation 8. It can be shown that for ideal
data, the final fit parameters do not depend upon these weights.

The evaluation of the sums over the allowed values of AH and AT is straightforward. Assuming that the discrim-
inate functions do not depend upon the AH , the marginal probability is then

P [T ] =
1

Z

∏
h

Dtr (h)
∏
t

Did (t) , (9)

where Dtr (h) =

{
e−βν +

∑
t

e−βMth

}
(10)

and Did (t) =

{
e−βρ +

∑
p

e−βMpt

}
. (11)

The effective Hamiltonian is then

Heff [T ] = − 1

β

{∑
h

logDtr (h) +
∑
t

logDid (t)

}
(12)

=
∑
h

Heff [h, T ] +
∑
t

Heff [t, T ] . (13)

Finally, note that each track t may have several parameters.
Minimization: We are looking for the most probable configurations, i.e. the number of tracks, their parameter values
and the values of the assignment variables that minimize the cost in the limit of low “temperatures.” In this limit of
large β , the wrong assignment configurations, i.e. those with a finite miss distance Mth , are exponentially suppressed
in the marginal probability. Hence in order to find the best fit to the hit data, we choose to minimize the effective
cost function Heff [T ] .

To avoid being trapped in a local minima, the solutions for the track parameters are computed and followed for a
range of increasing values of β . Using the gradient descent method, at each stage in this iteration the parameters of
each track t are changed by

δ
−→
T t = −η −→5TtHeff [T ] (14)

= −η
∑
h

−→5TtHeff [h, T ]− η −→5TtHeff [t, T ] . (15)

The scalar parameter η is used to control the rate of approach to the minimum. The two terms in can have different
η values. If T is a mixture of linear, angular, etc., variables, a tensor η is required as was discussed in ref [3].
Interpretation: An explicit enumeration of the derivatives in leads to a simple physical interpretation of this formu-
lation. Introducing the effective assignment probabilities as in [1] leads to a simplification of the formulas. Note that
these quantities have all the requisite properties of probabilities; whether or not they are actual physical probabilities
depends upon the choices made for the miss functions, etc.

One introduces the “thermalized” assignment probability of hit h to track t as

< Ath > =
e−βMth

Dtr (h)
, (16)

and the probability of assigning hit h to noise as

< noise(h) > =
e−βν

Dtr (h)
, (17)

with
∑
t < Ath > + < noise(h) > = 1 . This simply states that a hit must be assigned either to one of the tracks

or to noise. In addition, the probability that track t is of particle type p is defined as

< Apt > =
e−βMpt

Did (t)
, (18)

3



      

while the probability ufo(t) that track t cannot be assigned to any particle type is

< ufo(t) > =
e−βρ

Did (t)
, (19)

with
∑
p < Apt > + < ufo(t) > = 1 . This simply states that a track must be assigned either to a listed particle

type or declared unknown.
The gradient descent equations can now be written as

δ
−→
T t = −η

∑
h

< Ath >
−→5TtMth − η

∑
p

< Apt >
−→5TtMpt . (20)

Thus it is seen that hits with large values of the assignment probabilities < Ath > and particle types with large
values of < Apt > dominate the determination of the parameters of track t .
Ambiguities: As discussed in ref [1], when ambiguities are present, one introduces the quantities

< a+
th > =

e−βM
+
th

e−βM
+
th + e−βM

−
th

and < a−th > = 1 − < a+
th > (21)

and

< Ath > =
1

2Dtr (h)

(
e−βM

+
th + e−βM

−
th

)
, (22)

where M±th are the miss distances of the track from the two possible hit locations and a±th are their respective
assignment probabilities, with obvious changes in Eq.??.

IV. CLASS ORGANIZATION

Now we turn to a general overview of the classes, i.e., the type of objects, that will be introduced to carry out this
fitting procedure and useful classifications that will be needed. One specific example of this classes is given in the
next section.
Hits: This class is to contain the experimental information to be used in the analysis. The Hit class may also have
to contain certain parameters used in the fitting procedure that characterize the particular hit only. These should be
added by subclassing, but for expediency I have chosen not to do so below.
Group: This is the abstract class that is used as a foundation for the mathematical, or rather physical, constructs
such as Track, DeltaRay, Vee, Kink, and others (such as jets, showers, etc.) that the user may add. This foundation
class provides an outline that the user must use when adding a new class so that it is guaranteed to operate within
the scheme.
Subclasses of Group: Each member of this set of classes, such as Track, Helix, Kink, etc., contain the proper number
of parameters to define itself and also contains the auxiliary quantities and methods for fitting itself to the hits.
These classes can contain data structures which are themselves members of the class; for example a Kink class object
contains pointers to Track objects and its methods will utilize the fact that each Track object already has its version
of the method defined. Among the parameters of this set of classes is an array of particle identification probabilities.
ParticleID and ParticleChain: The particle identification list contains standard particle types, such as γ , e , µ , π ,
... The particleChain is used in the Kink and Vee classes to label a pair of associated Tracks, such as π&π , π&µ ,
π& e , µ& e , etc., in order to fit decay in flight, multiple scattering, neutral decays into a charged pair, .... In order to
proceed with the particleID step, one must of course provide detector response information such as what a particular
measured discriminate is expected to be for a particle of a listed type. This of course suggests introducing a detector
response class to provide such information upon request.

V. IMPLEMENTATION IN OOP

In this section, an implementation of the elastic arms approach to track reconstruction will be described using
OOP; C++ will be used for definiteness, but the important point is the use of classes and polymorphism to simplify
the task of program design and implementation. The Hit class is defined as:

4



    

class Hit {
public:

Hit( );
~Hit( );

/* Public utility print & set/get methods go here.*/
private:
int label;
float z, h, dh, pulseHeight;
float hcos,resolution;
float (*hSag) (..);
float Heff, Dtr;
float noise, N;
BOOL owned;
int owner;
}

where the meaning of label and z are clear.
The height of the hit is h, dh is the ambiguity distance and pulseHeight is itself. One could also include pulseShape

variables if needed. The instance variable hcos is the cosine of the wire angle in the detector planes, such that h=x
for hcos=1, and h=y for hcos=0; resolution is also obvious. The function pointer *hSag(..) corrects h for any sag in
the wire and its arguments are the transverse coordinates of the track. Each wire plane will have its own sag function
so this pointer is set at initialization of the data. All the following variables change during the fitting process; Heff is
the value of the quantity Heff [h, T ] given in [?], and Dtr is the value of Dtr (h) . The owned and owner variables
allow one to track the assignment of this hit to a group object. The abstract Group class is defined by the header file:

class Group {
public:

Group( );
virtual ~Group( );
virtual void setLabelGroup(int ,enum groupType );
virtual void initialize(void) { };
virtual void calcMiss(void) = 0;
virtual void calcAssign(void) = 0;
virtual void varyParams(void) = 0;

/* Many public utility print & set/get methods go here.*/
protected:
int label;
enum groupType grp;
static Hit **hit;
static int numHits;
static float beta, lambda, eta;
float zmin, zmax;
float missp[MAXHITS], missm[MAXHITS];
float AH[MAXHITS], ap[MAXHITS], am[MAXHITS];
float miss[MAXPARTICLETYPES];
float AP[MAXPARTICLETYPES];
float Heff, Did;
float ufo, N;
}

where label is for bookkeeping convenience, and the enum variable groupType is { group, track, deltaRay, vee, kink,
etc., } . By way of review, the static variables are used by all the members of the class Group (and its subclasses)
during the fitting process. All members of the Group class physically extend over a finite extent from zmin to zmax;
hits outside this range are given a miss distance of infinity. Each group object needs to know its miss distance from
every hit position [5]; missp is the miss from (h+dh), and missm from (h-dh), the two possible hit positions. The array
AH[h] is the assignment probability of hit h to this object, and the arrays ap[ ] and am[ ] are the relative probabilities
for the hit positions (h ± dh). The new instance variables are miss[p], the miss distance from the particle type p, and
the assignment variable AP . The quantity AP[p] is the probability that this group object is of the pth listed particle
type. Heff is the value of the quantity Heff [t, T ] for this track t and Did is the value of Did (t) . The probability

5



     

that this track cannot be classified is ufo, and finally N is the number of hits that this particular group object fits
(owns).

The realizable subclasses of Group, such as Track, DeltaRay, Kink, etc., are defined and discussed in ref [1], as are
the necessary Controller and Classifier classes. They need no further discussion here.

VI. CONCLUSIONS

The deformable template method has a very interesting mathematical structure with a clear physical interpretation.
One of its most useful concepts are the neuron-type variables, denoted here by Ath and Apt , that “assign” a hit to
a track and a track to a particular particle type, respectively. They can be interpreted respectively as the probability
(as assigned by the procedure and its inputs) that hit h belongs to track t and that the track t belongs to particle
type p.

Note that after the detector properties are set, only the track class has parameters that can be varied. Thus one
might question whether or not the second term in Eq.?? has an effect on the final results. Consider a situation in
which an alignment of hits is well fit geometrically as a straight track. It could also be equally well fit as a (straight)
kink; if, however, the particle in question decayed forward in flight with no additional tracks, the kink class can
provide a better fit by assigning a particle chain to the kink instance.

The important point here is that the template need not be purely geometric; it can also be extended to include
particle type. One other useful feature of this algorithm is that it lends itself to encoding using object oriented
programming techniques in a very natural way. The use of a object oriented programming language simplifies pro-
gramming and its physical interpretation as discussed in [1]. Finally, the algorithm can be extended in obvious ways
to a variety of pattern recognition and identification problems.

ACKNOWLEDGEMENTS

Many valuable conversations with Carsten Peterson and Mattias Ohlsson of Lund University are gratefully acknowl-
edged as well as very helpful discussions with George Irwin of SLAC.

[1] Deformable Templates—Revisited and Extended—with an OOP Implementation, SLAC–PUB–6190, May 1993, submitted
to Computer Physics Communications.

[2] M. Ohlsson, C. Peterson, A. Yuille, “Track Finding with Deformable Templates—The Elastic Arms Approach,” Computer
Physics Communications 71, 77 (1992).

[3] M. Ohlsson, “Extensions and Explorations of the Elastic Arms Algorithm,” Lund University Preprint LU-TP-92-28. To be
published in Computer Physics Communications.

[4] For example, M. Gyulassy and H. Harlander, “Elastic Tracking and Neural Network Algorithms for Complex Pattern
Recognition,” Computer Physics Communications 66, 31 (1991).

[5] It is not necessary to compute all of these distances. If one coordinate difference exceeds a set value, then the miss distance
is assigned the value infinity.

6


