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ABSTRACT 

We show that the high energy limit of quark-quark, or gluon-gluon, elastic scattering 
is calculable in terms of the BFKL pomeron when -t >> A&,. Surprisingly, this 
on-shell amplitudes does not have infrared divergences in the high energy limit. 

1. Introduction 

The high energy parton-parton elastic scattering through an exchange of 
Balitsky-Fadin-Kuraev-Lipatov (BFKL)le4 p omeron is a very interesting process5. 
First, it is the QCD background to the Higgs hunting by looking for events where a 
gap is produced in the central rapidity region 617. As pomeron is colorless, exchange 
of pomeron between partons also leads to a final state which, at the parton level 

contains two jets with a rapidity gap between them81g. Second, BFKL pomeron 
plays an important role in small 2: physics. It leads to the rapid rise in the parton 
density. At extermely small values of z the corrections to the BFKL pomeron 
become important and lead to the idea of partonic saturationlO over small spatial 
regions in the target and beam, hot spots11-14. 

In this talk, I will study the process in the kinematic region i > -t > A&, 
with i the center of mass energy squared of the partons and t the invariant mo- 
mentum transfer squared. i is taken to be large but not too large so that unitarity 
still holds and multiple pomeron exchange can be neglected. In order to separate 
the soft physics, the momentum transfer should be taken to be much larger than 
A& so that the diffusion14 in transverse momentum of the BFKL equation still 
remains in the perturbative region and so PQCD and thus BFKL pomeron can be 
applied. Therefore, a complete calculation can be done for parton-parton scattering 
including all normalization factors, though the normalization is not expected to be 
reliable until higher correction are carried out. 

At first sight it is a little surprising that one can calculate high energy, on- 
shell, quark-quark scattering without encountering infrared divergences. Indeed, 
there are infrared divergences in on-shell quark-quark scattering amplitudes, how- 
ever these infrared divergences disappear, at least for the color singlet exchange, 
where the high energy limit is taken. This is a general phenomenon in that solutions 
to the BFKL equation are less infrared singular, by a full power of transverse mo- 
mentum, than would be guessed from pertubative theory. This follows form the fact 
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that the anomalous dimension ^/n = l/2 when n = (up, where (up = 1 + 41n2CAcr(--t)/r 
is the trajectory of the pomeron, while ^/n = 0 in free field theory. 

2. BFKL Pomeron 

We first consider the elastic scattering of two colorless particles through an 
exchange of BFKL pomeron. The amplitude of this process can be written as 

with q: = -t and 

(1) 

(2) 

where @i are the impact factors of the colorless objects. By color current conserva- 
tion, one can obtain 

(3) 

and similar equations hold for ~2. The partial wave amplitude f,(kl, IC;, qI), which 
represents the propagation of a BFKL pomeron in transverse momentum plane, in 

- .the leading logarithmic approximation, satisfies the following integral equation 
- 

The delta function reproduces the lowest order diagram and the kernel X: is confor- 
mal invariant in the impact parameter representation. However, the source term 
(delta function) is not invariant under conformal transformation. Lipatov3>4 mod- 
ifies the source term to make it conformal invariant so that the integral equation 
can be solved by the eigenfunctions of the conformal group. The modification is at 
Ll = LI - ql = 0 which does not change the ampltiudes of colorless objects in view of 
equation (3). Th e k ernel is infared safe but the source term is infared divergent, as 
expected, before the modification. Lipatov’s modification renders the source term 
infared safe. Thus, we should expect the solution to be free of infared divergences. 
According to Lipatov314, the solutions are 

.__ with 
‘7 . 

(6) 



. 
where ~,“iY(p 1 ) are the conformal eigenfunctions and W(V, n), the eigenvalues, are the 
pomeron trajectories. The leading trajectory corresponds to n = 0. 

w(v,n) = FRe[$(l) - 1c, (v +iv 1, ) (7) 

with II, the standard logarithmic derivative of the Gamma function. 

3. Parton-parton elastic scattering 

For explicitness, we consider elastic quark-quark scattering with pomeron 
exchange in the t channel. The formula for the cross section is 

4 
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(N,” - 1)” d2kld2k:fq’(kl,kLy) , (8) 

where y = ln(i/ - t) is the rapidity interval between the partons. fqA (/cl, IE~, y) is 
related to fw(IcA, kl, ql) by a Mellin transformation: 

fq*(k*,k;,y) = ~~~~ ~exp[wylf,(kl,k;,gl). 

In the lowest order, 

(10) 

which is the source term in equation (4). A s s h own in the previous section, Lipatov 
does not actually evaluate the Feynman diagrams but rather a conformally invariant 
scattering amplitude equivalent to the Feynman graphs for colorless external part- 
cles. Since our external particles are not colorless we must modify the expressions 
(5) and (6). W e s a h 11 h s ow how to carry out that modification after examining the 
Lipatov’s result. According to equations (5) and (9), 

I d2kld2k;fqL(kl,k;,y) = (11) 

As Eii”(pl) is finite when pl + 0, by equation (6), &(O,O) = 0. Thus it leads to 
the conclusion that &/dt = 0, however, as mentioned earlier fql does not actually 
refer to any set of Feynman diagrams. Our task now is to determine exactly what 
amplitude does give the leading logarithms for Feynman diagrams. 

Taking the leading trajectory, we may rewrite 

(12) 
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and W(V) = w(u,O). Clearly, I,(kl,ql) has b2(k,) and b2(kI - ql) terms as given by 
(13). But 62(kl) terms do not arise from Feynman graphs. By assumming that, (1) 
Feynman amplitude is an analytic function of kl and kl - qI, (2) Lipatov’s solution 
can be applied to color object when kl # 0 and k I- q1 # 0, one need to remove the 
delta functions in our application. If we define IL(kl,ql) as in (13) but with the 
replacement 

then IL(kl, qI) is analytic in 1: and (k1-q1)2. Thus, the f’ corresponding to Feynman 
diagrams is as in (12) but 1, replaced by 1:. It is now straightforward to show that 

J d2kld2k;f’q1(kl,k;,y) = ?- 
J 

dv 
Y2 

qH (u” + a>2 expb(~M, 

which leads to 

I 
(2~)” exp[(ap - lhl d2kld2k; f’qL(kl, k;, y) = 2 

‘?I [;acAc(3)?/13’2 

with (Y = a(q:) and ayp = 1 + 41n2CA(r/7r. Using f’ rather than f in (8) gives 

(15) 

(16) 

(17) 

as our final formula for the elastic quark-quark scattering at high energy for color 
singlet quantum numbers in the t channel. 
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