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Abstract——Results are presented of a study of the

dipole electromagnetic fields in a detuned accelerating

section which are excited by a pointlike bunch.

The field-matching technique is used for the field

calculations. The transverse coupling impedance, the

kick factors, and the point wake function are found.

I. Introduction

The EM fields generated by the beam of particles
in an accelerating structure, known as a wakefield,
affects the beam stability. To avoid the build-up of
the transverse wake field along the linear accelerator, it
was suggested to use the detuned accelerating section [1]
with slightly different (detuned) frequencies of individual
cells. If the frequencies of the cells are distributed
in a certain pattern—in particular, for the Gaussian
distribution—the undesirable effects of the transverse
fields are reduced substantially. This has been previously
shown by approximating the structure with a chain of
coupled equivalent circuits [2]. The parameters of the
equivalent circuits have been obtained using numerical
codes for periodic structures built out of different cells of
the detuned section. For the Gaussian detuning (i.e., for
the Gaussian distribution of the dipole field frequencies)
with sigma ≈ 2.5%, the transverse wakefield acting on
a bunch travelling at the distance of 40 cm behind the
previous one has been shown to be reduced by a factor of
≈ 100. The high value of the reduction factor demands
its accurate evaluation by other independent methods.

Here we present the results of a study of the deflecting
dipole (m = 1) electromagnetic (EM) fields for the
same structure excited by a pointlike charge, using
computer code PROGON [3]. The code is based on the
field-matching technique for the Fourier harmonics of the
EM travelling waves. The calculation of the longitudinal
monopole (m = 0) EM fields in that structure, including
discussion of the choice of suitable couplers, can be found
in [4,5]. The geometry of the considered section—built
out of 204 cells (Nc = 204)—can be found in [3].

The present paper consists basically of two parts.
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In the first part (Sec. 2), the results of calculation
of the deflecting EM fields are presented for a detuned
accelerating section.

For an infinitely periodic structure built out of con-
nected rf cavities (cells), each eigenmode of a single
cavity produces a passband with the continuum of allowed
frequencies. Examples of dispersion curves are given for
three different cells taken from the beginning, the middle,
and the end of the accelerator section.

For an aperiodic structure, the concept of the passband
has little meaning. But loosely, we will call a passband
for the whole structure the passband of one of the cells
that is the widest in the frequency domain.

For an accelerating section consisting of a finite number
of cells, its passband splits into an equal number of the
EM field modes. These modes are found in the whole
range of frequencies corresponding to the first passband
of the accelerating section. For each mode, including the
trapped ones, the field pattern, the group velocity, and
the stored energy are calculated. The dipole coupling
impedance is then found in this range of frequencies. The
computer time needed to calculate all these quantities for
the considered detuned section consisting of 204 cells (a
cell is a cavity and the adjacent iris) is approximately
15 minutes on the workstation IBM RISC 6000. In these
calculations, 16 space harmonics in the cavity region
and 30 space harmonics in the iris region are taken into
account.

The second part of this paper (Secs. 3 and 4) is devoted
to discussion of several different ways for evaluating
the kick factors and the corresponding wake function.
For a large number of cells, the transverse coupling
impedance is represented by a large number of narrow
interfering resonances. Under such conditions, the choice
of the most accurate method to derive the wake function
from the transverse coupling impedance, which is found
numerically in a given finite number of frequency points,
is a nontrivial problem.

A number of different authors have used the field-
matching technique to obtain some of these results on
various levels of development [6,7,8]. As we discussed
in Sec. 5, our results match most of their results quite
well. Two computer programs, TBCI [9] and ABCI
[10], are available which allow calculation of the wake
function directly in the time domain. Unfortunately, due



         

Fig. 1. The dispersion diagrams, reproduced from [2], for three
periodic structures, labeled C, D and E, built of cells with
geometries listed in Table 1. The solid curves show the dispersion
curves obtained by the program TRANSVRS for the first dipole
passband, and the dashed curves show the same for the second
dipole passband. The symbols give the results of calculations using
the codes PROGON (full circle for cell type C, diamond for cell
type D, and square for cell type E) and URMEL (open circle). The
dotted lines correspond to velocity of light c.

to limitations in achievable resolution, these programs are
not suitable for calculations of the wake function for long
and complex structures at a large distance behind the
bunch.

Throughout the paper, the Gaussian system of units is
used in which both electric ~E and magnetic ~H fields have
the same dimensions.

II. Dispersion Curves, Electromagnetic Fields,
and Coupling Impedance

We first demonstrate the validity of the program
PROGON by calculating the dispersion curves for an
infinitely periodic structure corresponding to the three
different geometries of the cells of the structure. They
are labeled C for the cell at the beginning of the section,
D for the cell in its middle, and E for the cell at its end.
To facilitate the comparison, their labels and geometry
are chosen to coincide with the labels and geometry
considered in [2]. Let f be the frequency and φ the phase
advance per cell of a periodic structure. The iris and
cavity radii, and the synchronous fs frequencies for the
first and second passbands for the cells C, D and E, are
given in Table 1. In Fig. 1 the solid curves labeled C,

D, and E that are reproduced from [2] show the functions
f(φ) obtained by the program TRANSVRS [11] for the first
dipole passband, and the dashed curves [2] show the same

Fig. 2. Three examples of the field pattern in the detuned
structure showing the mode trapping (in arbitrary units). For each
frequency shown at the top of the plot the row label means: (a) the
real part of the transverse impedance Re {Ztr(n)}; (b) the imaginary
part of the transverse impedance Im {Ztr(n)}; (c) the stored electric
WE(n) and magnetic WM (n) energy in the nth cell (both curves
coincide).

for the second dipole passband. The symbols in Fig. 1
give the results of calculation using the codes PROGON

(full symbols) and URMEL [12] (open circles). In this
example, the matrices are truncated at 16 radial modes
in a cavity and 30 modes in an iris. PROGON is in good
agreement with both TRANSVRS and URMEL. Notice
that there is a a positive derivative of the dispersion curve
C and a negative derivative of the dispersion curve E in
the first passband. Since df/dφ is proportional to the
group velocity, this is a necessary condition for the mode
trapping.

A. Mode Patterns

Next, we illustrate the pattern of the EM field excited
by a charge for three different frequencies that correspond
to the excitation of the field in the beginning, middle, and
end of the accelerating section. The purpose of Fig. 2
is to show localization of the mode at these different
frequencies. The y-axis labels in Fig. 2 are not missing,



      

TABLE I

CELL GEOMETRIES FOR THE THREE PERIODIC STRUCTURES IN

FIG. 1. ALL CELLS HAVE IRIS THICKNESS l = 0.146 cm, GAP

LENGTH g = 0.729 cm, AND PERIOD LENGTH d = 0.875 cm.

Label a (cm) b (cm) fs1 (GHz) fs2 (GHz)

C 0.5250 1.112 14.80 19.89

D 0.4625 1.083 15.34 20.26

E 0.4000 1.058 15.97 20.68

they are irrelevant and are therefore arbitrary—the
vertical scale does not matter, as long as it is kept
unchanged along the section. In Fig. 2, in panels a and b,
respectively, the real and imaginary parts of the average
synchronous component of the transverse EM force, i.e.,
the dipole coupling impedance Ztr, see Eq. (1), are plotted
for each frequency versus the cell number. The trapping
of the field is exhibited for the frequencies which roughly
correspond to the range 14.80 GHz < f < 15.97 GHz; cf.,
Table 1.

B. Stored Energy and Group Velocity

After the EM fields in the structure are found, the
corresponding stored energy W (n) = WE(n) + WM (n)
in the nth cell and the power flow Sz(n) through the
cavity cross section are found. These quantities define the
relative group velocity vg(n)/c = Szd/W , where d is the
cell length. The curves of the stored energy are plotted in
panel c of Fig. 2 for each cell of the section, for the electric
WE(n) and magnetic WM (n) stored energy separately.
The two quantities are equal with high accuracy, and are
indistinguishable in Fig. 2 [WE = WM is an identity. It
is exactly for this reason that the relation can be used to
check the results of calculations, because if incorrect it will
indicate an error in computation.] This is one of several
checks performed to ensure that the fields are caclculated
correctly. Another such check is to demonstrate that
the calculated EM fields satisfy boundary and continuity
conditions at each boundary between cavities and irises.
For the (standing) trapped modes, the power flow Sz
and, correspondingly, the group velocity are zero. This
is confirmed by direct calculations.

C. Coupling Impedance

The dipole transverse coupling impedance Ztr is defined
as integral of the transverse force from the dipole field
excited by a charge Ne with offset r0 acting on a test
particle at the observation point z, r [13]:

Ztr(f) = − i

eNr0 cos θ

Nc∑
n=1

×
∫ d

0

dz eikz [Er(z, r)−Hθ(z, r)] . (1)

Here k is the wave number k = 2πf/c. Each term in the
sum is represented by a sum of two integrals—one in which
the integration is performed over a cavity gap of length
g, and the other over an iris of thickness l, d = g + l. In
each such integral, the integration of the Er −Hθ can be
substituted by an integration of the derivative over r of
the longitudinal component of the electric field Ez, using
the identity which follows from the Maxwell equations for
an axial symmetric structure. For example, the identity
for a cavity is

ik
∫ g

0
dz e−ikz [Er(z, r)−Hθ(z, r)] = (2)

∫ g
0

dz e−ikz
dEz(z, r)

dr
+ Er(0, r)− Er(g, r) e−ikg .

In the case when the last two terms in this identity
are absent or cancel each other, expression (2) is the
manifestation of the Panofsky–Wenzel theorem [14].
Expressions (1) and (2) are independent of the observation
radius r, when it satisfies the condition 0 ≤ r ≤ b [15].

The main contribution to the impedance comes from
the modes that are localized inside the section. For most
of them, the field extensions to the entrance and to the
exit of the section are small, and hence, for the perfectly
conductive walls, the energy loss is very small. In this
case, the real part of the impedance is represented by a
series of extremely narrow peaks. The frequency position
of each of them is difficult to find numerically, and it is
even more difficult to evaluate the area under a peak with
any reasonable accuracy.

This difficulty can be alleviated by taking into account a
small energy loss either by considering a finite conductive
wall of the section or by filling the section with a lossy
dielectric. In the first approach, rather complicated
boundary conditions need to be considered. We choose
the second approach. The expressions for the field
expansion in an axially symmetric structure filled with
a dielectric that has a constant complex permittivity ε is
given in the Appendix.

In the presence of such a dielectric, each resonance peak
decreases in height and becomes wider, preserving the
area under the peak. In this case, the heights and widths
of the resonance peaks have no relation to the actual loss
of the EM energy. Nevertheless, all the relevant physical
quantities, such as kick factors and wake functions, are
expressed as integrals of the impedance and do not depend
on the assumed imaginary part of the permittivity γ. This
was confirmed numerically by showing that the area under
the peaks is the same for different values of γ. A note of
caution should be made in respect to the widths of the
resonances. We discuss this problem below in Sec. 4.

At the same time, the choice of γ influences the
choice of the frequency step size in the impedance
calculations. Small γ decreases the needed frequency step
and increases the time needed for accurate calculation of
the impedance. If γ is chosen too big, the resonance



       

Fig. 3(a) The real part of the transverse coupling impedance
Re {Ztr(f)} for the first passband.

peaks may strongly overlap. This would decrease the
accuracy of the evaluation of the kick factors. As a
reasonable compromise, we choose the permittivity to be
ε = 1 + 0.5 · 10−4 i and the frequency step 0.5 MHz. The
sign of the imaginary part γ of the permittivity is chosen
so that it will result in the energy dissipation (the sign of
γ depends on the convention of the Fourier expansion of
the fields).

The real and imaginary parts of the transverse coupling
impedance Ztr(f) for the first dipole passband are
presented in Figs. 3(a) and (b). The impedance is
represented by a series of sharp peaks. In the middle of the
passband they are separated from each other by ≈ 6 MHz.
By an order of magnitude this number is the width of the
passband divided by the number of cells: (fs1E−fs1C)/Nc
(cf., Table 1). The peak separation increases toward the
edges of the passband.

III. Kick Factors

The analytic properties of the coupling impedance of
any structure are defined by its poles and cuts in the
complex plane of the variable ω = f/2π. In the lowest
passbands, the most important part of the impedance is
given by a sum over poles, while the contribution of the
cuts can be neglected. If the energy loss in the structure is
small in comparison to the energy stored in the EM field,
the shift of a pole from the real axis is small in comparison
to its real value. Each pole produces a resonance peak
in the impedance. The interference of the neighboring
resonances generates an offset of the impedance curve.

Fig. 3(b) the imaginary part of the transverse coupling impedance
Im {Ztr(f)}for the first passband.

Hence, the calculated impedance including the offset may
be approximated by a sum of the resonance terms.

A. Approximation of Impedance as a Sum of the Reso-
nance Terms

The rth resonance peak in the calculated transverse
impedance Ztr(f) can be approximated by

Zrapprox(f) = iκBWr

(
1

f − fr + iΓr
− 1

f + fr + iΓr

)
. (3)

Expression (3) with real resonance parameters κBWr , fr
and Γr has the well known [16,17] symmetry property of
the transverse impedance Z(−f) = −Z?(f), where the
star means the complex conjugate value.

The offset in Ztr should be taken out before a peak
can be approximated by the resonance curve. After that,
the resonance parameters for each resonance peak may
be found, provided that the impedance is calculated for a
sufficiently large number of frequency points.

Panel a in Fig. 4 illustrates the procedure. The whole
frequency range was split into intervals between the sub-
sequent two minima of the calculated function ReZtr(f)
(represented by the curve going through the open circles
in Fig. 4). Let the frequencies of the minima on both
sides of the rth peak in Re Ztr be f1r and f2r. Then
the difference Re Ztr(f) −min[Re Ztr(f1r),Re Ztr(f2r)],
represented by the curve going through the full circles in
Fig. 4, in the interval f1r ≤ f ≤ f2r was approximated by
the real part of the resonance function Eq. (3) using the



       

Fig. 3(c) the kick function κ(f) obtained by formula Eq. (6) for the
first passband.

least square method to find the parameters κBWr , fr, and
Γr. The real part of Zrapprox for these parameters is shown
without symbols in panel a of Fig. 4. The imaginary part
of Zrapprox (the curve without symbols) is compared with
ImZtr (represented by a curve going through full circles)
in panel b of Fig. 4.

When the parameters of the resonance Zrapprox for all
the resonance peaks in the calculated impedance are
found, the sum of the resonance terms

∑
r Zrapprox

represents a rather good approximation for the calculated
impedance Ztr(f), including the offset of its real part.
The approximation is slightly worse toward the edges of
the passband.

B. Various Methods to Evaluate Kick Factors

Given the transverse impedance, there are several ways
to derive the kick factors κr. Each of the methods has its
own advantages and drawbacks:

1) Method 1: If one approximates the calculated imped-
ance Ztr(f) by the sum of the resonance terms, Eq. (3),
the parameter κBWr is an estimate of the kick factor for
the rth resonance at frequency fr. The parameter Γr
is inversely proportional to the quality factor Qr of the
rth resonance: Qr = fr/2Γr. The accuracy of such an
estimate decreases at both edges of the passband, since
the peaks of Ztr(f) deviate there from the resonance
shape. In this case, the least square method does not
give an accurate evaluation of the kick factor. The
magnitude of the kick factors at the edge of the passband
is smaller then in its interior, but their distribution in

Fig. 4. Illustration of the approximation of one of the impedance
peaks by the resonance curve Eq. (3). The resonance parameters
found for this peak are: κBW = 497.49 V/pC/m, Γ = 0.31952 ·
10−3 GHz, the resonance frequency f = 15.403 GHz, the vertical
offset = 10.547 MΩ/m. The value of the impedance in the vicinity
of the maximum of curve ReZapprox (open square) is calculated
independently by PROGON. It is added after the least-square
calculation is performed in order to illustrate the accuracy of the
approximation.

frequency affects the behavior of the wake function at
large distances.

2) Method 2: The kick factor κinteg
r for the rth reso-

nance can also be estimated by integration of the real part
of the impedance ReZrtr between points f1r and f2r:

κinteg
r = 2

∫ f2r

f1r

df Re Zrtr(f) . (4)

Notice that this formula, derived from Eq. (3), would be
exact if there were only one resonance peak and f2r =∞,
f1r = −∞. When there are many resonances, Eq. (4) does
not take into account the effect of the peaks overlapping.
As the consequence, the evaluation of the kick factor using
this formula is reliable when the overlapping of the peaks
is small.

3) Method 3: The kick factor can also be derived
directly if the dipole EM field Ez(z, r) is known. Define
the voltage

V (r) =

∫ L

0

dz e−ikz Ez(z, r) , (5)



      

Fig. 5. Kick factors κr obtained in three different ways (solid
curves): (a) interpolation of the peaks by the resonance formula,
Eq. (3); (b) integration of the real parts of Ztr, Eq. (4); (c) the
values of the function κ(f) according to Eq. (6) at f = fr (see text).
The results obtained by the equivalent circuit model [2] is presented
for comparison (dashed curves, courtesy of K. Bane).

where L is the total length of the section. Then calculate
function

κ(f) =
[V ?(r0)/r0] dV (r)/dr

4 kW
, (6)

where W is the total stored energy for whole section W =
ΣnW (n). Function κ(f) can be calculated at the same
time the impedance is calculated. Figure 3(c) presents
this function.

Strictly speaking, formula (6) has been derived [16,17]
to give the kick factor for a standing eigenmode of a closed
cavity (with a descrite spectrum). The EM modes we are
dealing with exist in an open section with attached infinite
beam pipes. In the presence of the energy loss, the EM
field has a continuous spectrum, and there is uncertainty
in choosing a proper mode frequency. Nevertheless, it can
be shown that this formula gives an approximation to the
kick factor κr for the rth mode if it is evaluated at f = fr;
i.e., in the vicinity of the rth maxima of the real part of
the transverse impedance. Hence, the kick factors κWB

r

can be found by picking up the values of the function κ(f)
from Eq. (6) at f = fr.

Fig. 5 illustrates an application of our main results.
(The discrepancy in the kick factors obtained by different
methods is a problem of these methods. In addition,
both Fig. 5 and Fig. 7 illustrate the fact that calculations
of the long range wakefields are sensitive to the subtle
details, such as exact pattern of detuning or losses in
the structure.) In Fig. 5, the kick factors obtained in
three different ways are plotted as functions of frequency.
For a comparison, we reproduce on the same plots the
curve obtained using the equivalent circuit model [2].
The agreement in the two last cases is quite good,
while the first method of obtaining the kick factor is
not satisfactory. Agreement might be even better if the

end conditions in both approaches were the same. (The
structure considered in this paper has open ends, unlike
the one with closed ends that was considered by Bane and
Gluckstern [2].)

IV. Wake Function

The point wake function [13] can be found by using its
definition as the Fourier image of the coupling impedance

A. Method 1

When the transverse impedance can be represented by
the sum of the resonance terms, the point wake function

wtr(s) = −i
∫ ∞
−∞

df e−iks
∑

r
Zrapprox(f) (7)

is expressed in terms of the resonance parameters κr, fr,
and Γr:

wtr(s) =


∑

r
κr e

−2πΓrs/c sin 2πfrs/c s ≥ 0 ,

0 s < 0 .

(8)

Notice that in this case the causality (wtr(s) = 0 for s < 0)
is fulfilled automatically.

Now we can return to the problem of the widths
of the resonance peaks Γr, which enter the expression
Eq. (8) directly and influence the magnitude of the wake
function at a very large distance behind the bunch.
In practice, such a distance for a detuned accelerating
section is much larger then the length of the bunch train,
≈ 40 m in our case. Indeed, for the considered number
of cells, the summation in Eq. (8) can be substituted
by an integration [2]. (The distance S for such a
substitution to be valid should be smaller than c/∆f,
where ∆f ≈ 6 MHz is frequency difference between
neighboring resonances; i.e., S < 50 m). The result of
integration can then be represented as a product of
two exponential factors: one coming from the relative
frequency spread σ/f ≈ 2.5%, and the other from the field
damping Q = f/2Γ. Evaluating the Q–factor for which
the damping could overcome the frequency spread, we
get Q < f/σ ≈ 40. The situation can be further improved
by using the experimental or empirical values for the
Q-factors in Eq. (8).

B. Method 2

On the other hand, if the impedance is known in the
whole frequency range, the point wake function can be
obtained by direct integration of the impedance, avoiding
the necessity of evaluating the kick factors altogether:

wtr(s) = 2

∫ ∞
0

df [ImZtr · cos ks− ReZtr · sin ks] . (9)



       

Fig. 6. The absolute values of the short-range wake function
calculated in three different ways: panels (a,d) using direct
integration of Ztr, Eq. (11); panels (b,e) using Eq. (8) with the kicks
calculated from Eq. (6.); panels (c,f) using Eq. (8) with the kicks
calculated from Eq. (4). In panels d, e, f, the same functions are
plotted on a scale ten times larger for the vertical axis then in panels
a, b, c, respectively, to show the reduction of the wake function.

In this case, it follows from the causality that for s < 0∫ ∞
0

df ImZtr · cos ks =

∫ ∞
0

df ReZtr · sin ks (10)

or

wtr(s) = 4

∫ ∞
0

df ImZtr · cos ks . (11)

Equation (10) can be employed as a control of the
correctness of calculations.

In practice, the impedance can be calculated in a finite
frequency range. Then formula (11) is applicable only
when the impedance at high frequencies decreases rapidly
enough. In each particular case, the range is determined
by the contributions of higher passbands.

Figure 6 gives the short-range point wake function
calculated in three different ways, taking into account the
impedance of the first passband only. The long-range
wake is represented in Fig. 7. Apparent discrepancies
shown in Fig. 7 (and Fig. 5) reflect the fact that
calculations of the long range wake fields are sensitive to
the subtle details, such as exact pattern of detuning or
losses in the structure.

V. Conclusions

The results obtained by using the program PROGON,
which is based on the field-matching technique, is in good
agreement with the results obtained by means of other
codes. In particular, the dispersion curves obtained here
agree with those obtained by the code TRANSVRS. The
transverse coupling impedance agrees with that obtained

Fig. 7. The absolute values of the long-range wake function
calculated in three different ways: panel (a) using direct integration
of Ztr, Eq. (11); panel (b) using Eq. (8) with the kicks calculated
from Eq. (6), panel (c) using Eq. (8) with the kicks calculated from
Eq. (4). Notice that the scale for the vertical axis is enlarged to
show the growth of the wake function at large distances.

smallskip

in [8]. We compare different methods of obtaining the kick
factors and find the two methods where the results are
in good agreement with these obtained by the equivalent
circuit method [2].

Nevertheless, the detailed behavior of the wake function
is somewhat different for different methods of its calcu-
lations. Moreover, the most significant parameter—the
magnitude of the wake function reduction for the sub-
sequent bunches—has rather different values for different
methods of its calculation. It well may be that the method
of calculating the transverse wake function by directly
integrating the transverse inpedance, Eq. (11), which
avoids the calculation of the kick factors altogether, is the
most accurate. In this case, indeed, the deflecting field
acting on a bunch travelling at the distance of ≈ 40 cm
behind the previous one is reduced by a factor of ≈ 100,
as has been found in Ref. [2]; see Fig. 6(e). Further study
is needed to ensure reliable results for this quantity.

For evaluation of the wake function, the coupling
impedance is needed in an infinite range of frequencies.
In other words, the accuracy of the evaluation depends on
the amount of the contribution from the higher passbands
of the section. In particular, the values of the impedance
in the second passband are two orders of magnitude
smaller then the impedance in the first passband. On the
other hand, the obtained reduction factor is also of the
same order of magnitude. Hence, inclusion of the effects
of the higher passbands may be important.



    

Appendix

This appendix gives expressions for the Fourier com-
ponents of the EM dipole (m = 1) fields in the axially
symmetric structure of the radius b, filled by a dielectric
with a complex constant permittivity ε.

Suppose that a charge Ne moves with the velocity of
light c along a line parallel to the axis of the structure at
distance r0. The EM field in the structure is the sum of
the field of the charge and the radiation field excited by it.
The expressions for the Fourier components at frequency
f (and corresponding wave number k = 2πf/c) of the
total fields in the region r > r0 are

Er
cos θ =

q

ε
eikz

(
1

r2
+

1

b2

)

+

∞∑
l=1

[
λl

dJ1 (νlr/b)

dr
yl(z)

−k J1 (µlr/b)

r
ỹl(z)

]
, (A1)

Eθ
sin θ =

q

ε
eikz

(
1

r2
− 1

b2

)

−
∞∑
l=1

[
λl

J1 (νlr/b)

r
yl(z)

−k dJ1 (µlr/b)

dr
ỹl(z)

]
, (A2)

Ez
cos θ = −i q

ε
eikz kr

(
1

r2
− 1

b2

)
(1− ε)

+

∞∑
l=1

ν2
l

b2
J1

(νlr
b

)
xl(z) , (A3)

Hr
sin θ = −q eikz

(
1

r2
− 1

b2

)

+ i

∞∑
l=1

[
εk
J1 (νlr/b)

r
xl(z)

−σl
dJ1 (µlr/b)

dr
x̃l(z)

]
, (A4)

Hθ
cos θ = q eikz

(
1

r2
+

1

b2

)

− i

∞∑
l=1

[
εk

dJ1 (νlr/b)

dr
xl(z)

−σl
J1 (µlr/b)

r
x̃l(z)

]
, (A5)

Hz
sin θ = i

∞∑
l=1

µ2
l

b2
J1

(µlr
b

)
x̃l(z) . (A6)

Here q = 2πNer0/c, J1 is the Bessel function of the first
kind and the first order, and 0 < ν1 < ν2 < ... < νl... <∞
are the roots of J1 (excluding 0) in ascending order.
Likewise, µ1 < µ2 < ... < µl... < ∞ are the roots of
dJ1(r)/dr in ascending order. The fields (A.1–A.6) satisfy
the boundary conditions at the ideally conducting metal
surface at r = b.

The propagation functions xl(z), yl(z) for the TM–
modes and x̃l(z), ỹl(z) for the TE–modes are

xl(z) = C+
l eiλlz + C−l e−iλlz , (A7)

yl(z) = i
[
C+
l eiλlz − C−l e−iλlz

]
, (A8)

x̃l(z) = C̃+
l eiσlz + C̃−l e−iσlz , (A9)

ỹl(z) = i
[
C̃+
l eiσlz − C̃−l e−iσlz

]
, (A10)

where the constant complex amplitudes C+
l , C−l , C̃+

l , and

C̃−l are unknown and should be defined from the boundary
and continuity conditions at the interface of regions with
different radii. Further, the propagation constants for the
TM– and TE–modes, respectively, are

λl =

√
εk2 − ν2

l

b2
, (A.11)

and

σl =

√
εk2 − µ2

l

b2
. (A.12)
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