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ABSTRACT 

A method to estimate perturbative coefficients in High Energy Physics, Con- 

densed Matter Theory and Statistical Physics is presented. It is shown to be accu- 

rate for a wide class of expansions. It is then applied to the ortho-positronium decay 

rate, where a discrepancy between theory and experiment has persisted for seven 

years. This difference is reduced to less than 2a. In the case of para-positronium, 

the agreement between theory and experiment persists. 



It has long been a hope in perturbative quantum field theory (PQFT), first 

expressed by Richard Feynman, to be able to estimate, in a given order, the result 

for the coefficient, without the brute force evaluation of all the Feynman diagrams 

contributing in this order. As one goes to higher and higher order the number of 

diagrams, and the complexity of each, increases very rapidly. Feynman suggested 

that even a way of determining the sign of the contribution would be useful. 

The Standard Model (SM) of particle phy sits seems to work extremely well. 

This includes Quantum Chromodynamics (QCD), the Electroweak Theory as mani- 

fested in the Weinberg-Glashow-Salam Model and Quantum Electrodynamics (QED). 

In each case, however, we must use perturbation theory and compute large num- 

bers of Feynman diagrams. In most of these calculations, however, we have no idea 

of the size or sign of the result until the computation is completed. 

Recently we proposed [l] a method to estimate coefficients in a given order of 

PQFT, without actually evaluating all ,of the Feynman diagrams in this order. In 

this Letter we would like to present our method to a wider audience and demon- 

strate that it works for a large class of expansions in Quantum Field Theory, High 

Energy Physics, Condensed Matter Theory and Statistical Physics. In addition we 

will show that the long-standing discrepancy [2,3] between theory and experiment 

for the ortho-positronium decay rate is resolved, if one uses our estimate for the 

next coefficient in the expansion. The good agreement between theory and experi- 

ment in the case of para-positronium persists and we will obtain a new theoretical 

prediction which is 40 times more accurate than the current experimental value. 

We await a new more accurate experimental measurement for the para-positronium 

decay rate. 

Our method makes use of Pad& Approximants (PA) with which we can predict 
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the next term Sn+m+l in the perturbation series S given by 

s = so + SlX + * - * + sn+,xn+rn . 

We begin by defining the Pad6 approximant (type I) 

[n,ml = 
a0 + alx + - - - + a,xn 
1 + blx + * * * + bmxm 

(1) 

(2) 

to the series S where we set 

[n, m] = S + O(xn+m+l) . (3) 

We have written a computer program which solves Eq. (3) in general and then 

predicts the coefficient of the next term Sn+m+l. We call this estimate the Pad& 

Approximant Prediction (PAP). M oreover we have derived algebraic formulae for 

the [n, 11, [n, 21, [n, 31 and [n, 41 PAP’s. We present here only the [n, l] and [n, 21 

PAP’s since the [n,3] and [n,4] are too complicated to be presented here and will 

be included in the long, detailed paper to follow [4]. 

Our results for the [n, l] and [n, 21 PAP’s are: 

S SZ+1 
n+2 = - 

Sn 
b% 11 

S n+3 = 
2SnSn+lSn+2 - 5LlS;4+2 - Sz+l 

s: - &-l&+1 
b,21 * (5) 

As indicated above one can step up or down in n for m fixed in the [n,m] PAP. 

When stepping down one should put S-1 = 0. 
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We have shown [1,5] th a our method works for a large number of cases in t 

PQFT, Condensed Matter Theory and Statistical Physics. These include the 

anomalous magnetic moment of the muon, the tau lepton, and the electron, which 

we will reconsider here, the R, ratio and the p function in Perturbative Quantum 

Chromodynamics (P&CD), various Sum Rules in PQCD, the 5 loop ,B function in 

gd4 theory, high-temperature expansions for the magnetic susceptibility in Con- 

densed Matter Theory, a large number of expansions in Statistical Physics and 

many mathematical examples. 

We begin with the R, ratio [6] in the MS and MS schemes. R, is defined by 

R, = r( r --t v + hadrons) 
l?(7 + evi?) ’ (6) 

The results are shown in Tables I and II respectively for various numbers of fermions 

Nf. Also shown are two predictions for the next-unknown term S4. It can be seen 

that the estimates are excellent and the [1,2] and the [2,1] PAP’s for S4 agree very 

well with each other. Next we present the result for 

R= 
btot( e+e- + hadrons) 

a(e+e- + p+p-) ’ (7) 

The results in the MS and MS [6,7] are shown in Tables III and IV respectively. The 

results in the MS scheme are very good, however, the results in the MS scheme are 

not too good. The sign of S3 cannot be predicted correctly since the sign pattern 

is (+++-). I n such cases one needs more terms for the PAP to be accurate. 

We next consider 

for the electron [S]. 0 ur results are shown in Tables V and VI. It can be seen in 

Table V that the estimates are pretty good, especially the [0,2] PAP. In Table VI we 
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give our prediction for the next-unknown term (NT) and the next-next-unknown 

term (NNT). 

In Tables VII and VIII we present two representative examples from Condensed 

Matter Theory [9]. It can be seen that the PAP’s are excellent! Moreover the 

percent error decreases as n and m increase! 

In Tables IX and X we give two representative examples from Statistical 

Physics. In both cases the PAP is excellent and the error decreases as n and 

m increase! The number in parenthesis refers to the power of 10, e.g. 0.83(-10) = 

0.83 x 10-l’. We will present more examples from Condensed Matter Theory and 

Statistical Physics in our long paper. 

Finally we come to the positronium decay rates. For ortho-positronium there 

has been a discrepancy between theory and experiment for seven years! The decay 

rate is given by 

where 

x0 = 
a6mc22(7r2 - 9) 

h97T * 

The current situation is given by: 

A = -10.282(3) 

B=N=M=O 

A(l) = 7 03831(7) p-l . Ih * 

The most recent experimental result [3] is 

A,, = 7.0482(16) /is-’ . 

(10) 

(11) 

(12) 
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In this experiment positronium was formed in a vacuum. This yields a difference 

X ex - A(l) = 0 0099(16) th * 7 (13) 

a 6.2~ discrepancy between theory and experiment. The previous experiment was 

a gas experiment in which positronium was formed in Isobutane, Neopentane, N2 

and Ne. That result [2] was 

X,x = 7.0516( 13) /is-’ (14 

and led to a difference 

x ex - A(l) = 0 0133(13) /Js-l th - 7 (15) 

a lOa discrepancy! However it was later suggested that the extrapolation to zero 

pressure was understood only for N2 and Ne for which the result was [3] 

X,x = 7.0492( 15) /LS-l (16) 

in good agreement with the vacuum experimental result in Eq. (12). We will 

therefore use the result in Eq. (12) in the following analysis. 

The PAP [O,l] for B is 

B = 105.7 (17) 

which leads to a theoretical prediction 

Xt2) =704243/d th * (18) 

and 

X ex - Xc2) = 0 0058(16) /Cl th * , (19) 

only a 3.6~ difference. Moreover Xii) should have an estimated error associated 
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with it. We estimate ]M] < 25 and IN] < 10,000 and hence 

Xc2) = 7 0424(26) /is-’ th - PO> 

and Xex th - - Xt2) = 0 0058(31) /~s-l 7 only a 1.90 difference! Alternatively we could 

estimate an error for B and obtain 

B = 106(67) = 106 f 67 . (21) 

Thus the original lOa discrepancy in Eq. (15) h as now been reduced to a difference 

of less than 2a and, hence, the ortho-positronium decay rate discrepancy has been 

resolved! 

In the case of para-positronium [lO,ll] th ere is agreement between theory and 

experiment and we should make sure that this agreement is not spoiled by the 

PAP. The decay rate for para-positronium is 

kh=,,(,,.(f) -2a2.ha+B(~)2+N(~)3+yy,lgn2a} (22) 

where X0 = a5mc2/2h and 

with B = N = M = 0, 

d 
A=g-5 (23) 

A(l) = 7 989460( 1) ns-’ . th - 

The experimental value [ll] is 

(24) 

X,x = 7.994( 11) ns-1 

8 

(25) 



and 

X ex - A(l) = 0 0045( 110) ns-l th - . 

This difference is only 0.410! 

The PAP [O,l] is 

B = 6.4141 

(26) 

(27) 

which leads to 

A$’ = 7.98974ns-l (28) 

and 

x ex - xt2) = 0 0043( 110) th * 7 (29) 

a 0.390 difference. Now we should estimate the error in Xth . (‘) We use [MI < 25 

and IN] < 1000, which leads to 

A$’ = 7.98974(25) ns-’ (30) 

and X,x - Xth (‘I is unchanged from the result given in Eq. (29). It should be 

noted that the present experimental error is 44 times the theoretical error given 

in Eq. (30). H ence we eagerly await more precise experiments to measure the 

para-positronium decay rate. 

One of us (MAS) would like to thank the theory group at SLAC for its kind 

hospitality. He would also like to thank Martin Per1 and Jacques and Helen Perk 

for very helpful discussions. This work was supported by the U.S. Department of 

Energy under Grant Numbers DE-FG05-84ER40215 and DE-AC03-76SF00515. 
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TABLE I 

N.f 

0 137 158 2135 2132 

1 121 137 1717 1715 

2 106 118 1349 1347 

3 92.1 99.2 1026 1025 

4 79.0 81.7 751 750 

5 67.0 65.2 518 518 

_ 6 56.0 49.7 330 330 

R, in the MS Scheme 

ESTIMATE [l,l] EXACT P A I411 
s3 s3 s4 s4 



TABLE II 

4 

0 40.3 48.6 376 372 

1 35.5 40.9 281 280 

2 31.1 33.5 201 201 

3 27.1 26.4 134 134 

4 23.3 19.6 80.3 79.6 

5 19.8 13.1 41.7 38.8 

_ 6 16.5 7.0 19.3 12.0 

R, in the MS Scheme 

ESTIMATE [l,l] EXACT PA FYI 
s3 s3 s4 s4 



TABLE III 

N.f 

_ 6 

R in the MS Scheme 

ESTIMATE [l,l] EXACT WI WI 
s3 s3 s4 s4 

54.2 56.0 426.6 426.5 

47.9 47.4 325.1 325.1 

42.0 39.2 237.1 236.9 

36.4 31.3 162.9 162.0 

31.3 23.7 102.8 100.6 

26.6 16.5 57.7 53.0 

22.2 9.7 28.9 19.9 



TABLE IV 

Nf 

0 3.9 -6.6 79.4 22.2 

1 3.5 -7.8 111.8 32.9 

2 3.1 -9.1 157.9 46.7 

3 2.7 -10.3 224 64.4 

4 2.3 -11.5 326 87.0 

5 2.0 -12.8 491 116 

_ 6 1.7 -14.0 794 152 

R in the MS Scheme 

ESTIMATE [l,l] EXACT PA PJI 
s3 s3 s4 s4 



TABLE V 

x = a/w 

[WI 
Ml 
PA 
PJI 
Ku1 
PJI 
WI 
PA 
WI 
PJI 

a, = x/2 - 0.3285 x2 + 1.1765x3 - 1.43x4 

ESTIMATE 

0.22 

-4.21 

1.74 

-2.12(S4 = 1.74) 

-7.25(& = 3.22) 

-1.40 

3.22 

-2.12(S4 = 1.74) 

-4.93(S4 = 3.22) 

-4.93(S4 = 3.22) 

EXACT 

1.1765 

-1.43 

NT 

NNT 

NNT 

-1.43 

NT 

NNT 

NNT 

NNT 



TABLE VI 

a,: Predictions for the next-term and the next-next term. 

NT 

NNT 

WI 1.74 

DC4 3.22 

PJI 2.77 (+) 

AVERAGE 

KU1 
KU1 
PA 
I&21 
DJI 
L31 

AVERAGE 

2.6(8) 

-2.12(S4 = 1.74) 

-7.25(& = 3.22) 

-2.12(S4 = 1.74) 

-4.93(& = 3.22) 

-6.23( -) 

-4.93(& = 3.22) 

-4.6(2.7) 



TABLE VII 

d&z x/dw where x is the magnetic susceptibility for the 2-D square lattice Ising 

Model of Ferromagnetism (high temperature expansion). 

h ml 

PJI 
PA 
WI 
PA 
PA 
K421 

- [3,31 

WI 
PA 
kwl 
Ml 
[WI 
K451 
WI 
kz51 
Fvl 
PJI 
I7761 
WI 

Number of Input 

Coefficients 

3 

4 

4 

5 

6 

6 

7 

8 

8 

9 

10 

10 

11 

12 

12 

13 

14 

14 

15 

Pade Exact 

98 48 

201 164 

82 164 

288 296 

961 956 

963 956 

1820 1760 

4876 5428 

5172 5428 

10,160 10,568 

33,584 31,068 

33,932 31,068 

67,746 62,640 

177,201 179,092 

178,461 179,092 

370,472 369,160 

1,033,105 1,034,828 

1,034,923 1,034,828 

2,172,702 N.T. 

% error 

104 

22.8 

49.8 

2.8 

0.48 

0.76 

3.4 

10.2 

4.7 

3.9 

8.1 

9.2 

8.2 

1.1 

0.35 

0.36 

0.17 

0.009 

- 



TABLE VIII 

High Temperature Magnetic Susceptibility for a spin-l/2 Heisenberg Model in a 

S-space dimensional face-centered cubic lattice 

1% ml 

PJI 
PA 
PJI 
PA 
PA 
WI 
-[2,31 

[WI 
PA 
Kvl 
PA 
WI 
PA 

Number of Input 

Coefficients 

2 

3 

3 

4 

5 

5 

6 

7 

7 

8 

9 

9 

10 

Pad& 

144 

4032 

4800 

203,616 

9,230,112 

9,387,269 

5.0641 x 10’ 

3.0639 x lOlo 

3.0720 x lOlo 

2.1045 x 1Or2 

1.5997 x 1or4 

1.6005 x 1014 

1.3444 x 1016 

Exact 

240 

6624 

6624 

234,720 

10,208,832 

10,208,832 

5.2681 x 10’ 

3.1435 x 1010 

3.1435 x 1o1O 

2.1278 x 1012 

1.6106 x 1o14 

1.6106 x 1o14 

N.T. 

% error 

40 

39 

28 

13 

10 

8 

4 

2.5 

2.3 

1.1 

0.7 

0.6 



TABLE IX 

High Temperature Susceptibility Series of the Square-Lattice Ising Model 

b? ml 

PJI 
WI 
PA 
PA 
PA 
[WI 
wd 
K461 

. [7,61 
VJI 
PJI 

Pw4 
rwl 
PO,201 
PWI 
w ,211 
w,221 
P4,231 

Pwl 
[24,251 

P57241 

[26,251 

[26,261 

[27,261 

W4271 

W’J71 

Pade 

16 

108 

1972 

5188 

5188 

34856 

89764 

229704 

1486858 

3764311 

9496081 

36212337725 

89896881041 

68849212197681(3) 

169150097346(6) 

41541963877(7) 

1019816266329(6) 

36912183773288(6) 

90466431959184(6) 

22164947092629(7) 

221649470925546(6) 

13294400774266(g) 

32546159798889(8) 

79654880661744( 8) 

79654880659339( 8) 

194906447358589( 8) 

Exact 

12 

100 

1972 

5172 

5172 

34876 

89764 

229628 

1486308 

3763460 

9497380 

36212402548 

89896870204 

68849212197172(3) 

169150097365(6) 

41541963949(7) 

1019816266253(6) 

36912183772985(6) 

90466431959612(6) 

22164947092555(7) 

22164947092555(6) 

13294400774247(g) 

32546159798489(g) 

79654880659405(8) 

79654880659405(8) 

N.T. 

% Error 

33 

8 

0 

0.31 

0.31 

0.057 

0 

0.033 

0.037 

0.023 

0.014 

0.18(-3) 

0.12(-4) 

0.74(-9) 

O.ll(-7) 

0.17(-6) 

0.75(-8) 

0.82(-9) 

0.47(-9) 

0.33(-9) 

0.38(-11) 

0.14(-9) 

0.12(-8) 

0.29(-8) 

0.83(-10) 

- 



b, ml Pad& Exact 

PJI 4 7 

PJI 24.5 28 

PA 114.3 124 

PA 15641.4 15268 

[WI 81603.2 81826 

WI 2520776.4 2521270 

KG1 14382759.9 14385376 

WJ 83301403.3 83290424 

WI 17332403704.6 17332874364 

-[7,81 104653043328.9 104653427012 

Kw 636737111378.9 636737003384 

[8791 3900768657365.8 3900770002646 

PA 3900768645591.6 3900770002646 

PA 24045477087166.3 24045500114388 

WOI 149059818372329 149059814328236 

w791 149059814952508 149059814328236 

PWI 928782402852355 928782423033008 

PWI 5814401458255866 5814401613289290 

Pwl 5814400906586723 5814401613289290 

[W11 36556766563181916 36556766640745936 

[w21 230757492329413778 230757492737449632 

wwl 230757492299121126 230757492737449632 

Pf4121 1461972664107671386 1461972662850874880 

[l2,l31 9293993426515280515 9293993428791900928 

[l3,l21 9293993426247752549 9293993428791900928 

P3J31 592709055867(8) N.T. 

TABLE X 

Number of closed Polygons on a Square Lattice 

% Error 

43 

13 

7.8 

2.4 

0.27 

0.02 

0.018 

0.013 

0.27(-2) 

0.37(-3) 

0.17(-4) 

0.34(-4) 

0.35(-4) 

0.96(-4) 

0.27(-5) 

0.42(-6) 

0.22(-5) 

0.27(-5) 

0.12(-4) 

0.21(-6) 

0.18(-6) 

0.19(-6) 

0.86(-7) 

0.24(-7) 

0.27(-7) 

- 


