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We discuss nonperturbative contributions to the inclusive rareB decays B → Xsγ and

B → Xs`+`−. We employ an operator product expansion and the heavy quark effective

theory to compute the leading corrections to the decay rate found in the free quark decay

model, which is exact in the limit mb →∞. These corrections are of relative order 1/m2
b ,

and may be parameterised in terms of two low-energy parameters. We also discuss the

corrections to other observables, such as the average photon energy in B → Xsγ and the
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UCSD/PTH 93-23

SLAC-PUB-6317

JHU-TIPAC-930020

UTPT 93-19

CMU-HEP 93-12

DOE-ER/40682-37 August 1993

* Work supported in part by the Department of Energy under contracts DE–AC03–
76SF00515 (SLAC), DE–FG03–90ER40546 (UC San Diego), DE–FG02–91ER40682 (CMU).

1



1. Introduction

The rare decays of B mesons have never been of greater interest, both experimentally

and theoretically. The first observation of a decay mediated by the quark transition b→ s

recently has been reported by the CLEO Collaboration [1], who found a branching fraction

for the process B → K∗γ of (4.5±1.9±0.9)×10−5. Such transitions are typically induced

by the exchange of virtual heavy quanta, the effects of which appear at low energies as local

operators multiplied by small coefficients. It is hoped that the detection of these suppessed

interactions in the guise of rare B decays may provide a direct window to physics at much

higher scales.

In order for such a hope to be realised, however, it is necessary to connect the quark-

level operators which are generated perturbatively to the hadronic transitions which are

actually observed. This involves the consideration of nonperturbative hadronic matrix

elements, which typically are incalculable. One common approach to this problem is to

consider inclusive rates such as B → Xs rather than individual exclusive channels, and

to model the inclusive transition by the decay of a free bottom quark to a free strange

quark. It is hoped that for the b quark mass mb sufficiently large, the operator mediating

b → s acts over distances short compared to the scales of confinement and strong QCD

interactions, and the approximation is a good one.

The issue of how good this approximation really is originally was addressed by Chay,

Georgi and Grinstein [2]. Using the tools of the heavy quark effective theory (HQET),

they showed that the free quark model is in fact the first term in a controlled expansion in

1/mb, and hence is arbitrarily accurate as mb →∞. In addition, they demonstrated that

there are no contributions to the rate at subleading (1/mb) order, and that any corrections

could only come in at order 1/m2
b or higher.

In this paper, we extend the work of Chay et al. to compute the leading corrections

to free quark decay, for the inclusive processes B → Xsγ and B → Xs`+`−. While

the 1/m2
b corrections here are not particularly large, it is important to know their size if

the free quark decay model is to be trusted. We also believe that our computation is a

very nontrivial application of HQET in a somewhat unfamiliar regime, and is hence quite

interesting in its own right.

Finally, we note that work which overlaps with ours has been performed recently, in

a somewhat different formalism, by Bigi et al. [3].
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2. The Operator Product Expansion and Matrix Elements in HQET

In this section we will discuss our procedure in general terms, to elucidate the structure

of the expansion before beseiging the reader with particular details. We are interested in

the rare decays of b quarks, such as b → sγ or b → se+e−, which are mediated at low

energies by local operators of the form

OP (φ) = sΓbP (φ) . (2.1)

Here P (φ) is meant to stand for some function of perturbatively interacting fields such

as leptons or a photon, and Γ is a general Dirac structure. Interactions such as (2.1) are

typically induced at high energies by the exchange of virtual W bosons, top quarks, or new

exotic quanta. At low energies they appear in the effective Hamiltonian as local operators,

with coefficients which may be computed using renormalisation group techniques. We will

take the presence of such operators simply as given; our interest will be in the evaluation of

their hadronic matrix elements. We note that operators of the form (2.1) are not the only

relevant ones which will appear at low energies; for example, we will typically find four-

quark operators as well. For these, the techniques which we will present below will only be

appropriate when the invariant mass of the intermediate qq pair is far from any quarkonium

resonances. We will return to this issue in our discussion of the decay b→ se+e−.

For now, however, we restrict ouselves to operators with the structure (2.1). They

induce quark level transitions of the form b → s. However, since the quarks are confined,

what is observed is the decay B → Xs, in which a B meson decays to an arbitrary hadronic

state Xs with strangeness S = −1. (Decays from the lowest lying bottom baryon, Λb, are

also possible.) Hence we need to compute matrix elements of the form

〈Xs · · · | OP (φ) |B〉 , (2.2)

where the ellipses denote denote the additional perturbatively interacting fields which cou-

ple to P (φ). Unfortunately, exclusive hadronic matrix elements such as (2.2) are governed

by nonperturbative strong interactions and are typically incalculable. At best, SU(3)

and heavy quark symmetries may be used to relate the form factors which appear in one

such matrix element to those which appear in another [4]. But computations from first

principles are not at this point possible.

Instead of considering the exclusive modes individually, then, we will we will sum over

all possible strange final states Xs. As has been shown by Chay et al. [2], the inclusive decay
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rate may in fact be calculated reliably. Previous computations of the inclusive rate have

relied on the free quark decay model, in which the sum over exclusive decays is modeled by

the decay of an on-shell bottom quark to an on-shell strange quark. For mb → ∞ this is

justified by arguing that the decay is essentially a short distance process, which occurs on

time scales much shorter than those which govern the eventual hadronisation of the final

state. This argument can be made precise within a controlled expansion in inverse powers

of the bottom quark mass mb [2], and we will be able to compute the leading corrections

to this limit.

Squaring the matrix element (2.2) and summing over Xs, we find a differential decay

rate of the form

dΓ =
1

2MB

∑
Xs

d[P.S.](2π)4δ(4)(PB − PX − q)〈B| iO†P (φ)† |Xs · · ·〉 〈Xs · · · | iOP (φ) |B〉 .

(2.3)

Here PB and PX are the momenta of the intial B and final Xs systems, and q = PB −PX
is the momentum transfered to the other decay products. The symbol d[P.S.] denotes an

appropriate phase space differential. The part of dΓ which involves the fields P (φ) may be

calculated perturbatively. We then find that dΓ is equal to the product of known factors

times an expression W (q) which involves only the quark and gluon fields:

W (q) =
∑
Xs

(2π)4δ(4)(PB − PX − q)〈B| O† |Xs〉 〈Xs| O |B〉 . (2.4)

Here the sum over Xs includes the hadronic phase space integral. The treatment of this

nonperturbative expression is the subject of the rest of this section.

We begin by noting that W (q), being essentially a total decay rate, is related by the

optical theorem to the discontinuity in a forward scattering amplitude. That is, we may

write

W (q) = 2ImT (q) , (2.5)

where an example of the time-ordered product

T (q) = 〈B|T{O†,O}|B〉 (2.6)

is shown in fig. 1.

Now we come to a crucial observation [2]. The sum over Xs in eq. (2.4) includes

hadronic states with a large range of invariant masses, M2
K ≤ P 2

X ≤ M2
B . The energy

4



which flows into the hadronic system Xs scales with mb as the bottom mass increases,

and in the limit mb → ∞ is typically much larger than the energy scale ΛQCD which

characterizes the strong interactions. Hence, in all but a corner of the Dalitz plot, in

which P 2
X ≈ m2

s, the strange quark in fig. 1 is far from its mass shell. In position space,

this means that the points at whichO and O† act must be very near each other on the scale

of nonperturbative QCD, and it is appropriate to perform an operator product expansion of

the time-ordered product in eq. (2.6). This operator product expansion may be computed

perturbatively in αs(mb). It will be valid over almost all of the Dalitz plot, failing only in

the region where P 2
X is small. In the large mb limit, the fractional contribution of this bad

region to the total phase space integral is negligible, and our calculation of the inclusive

decay rate based on this expansion will be reliable. Our approach, then, will be to perform

a systematic expansion in inverse powers of mb, of which the leading term will be the

result in the mb → ∞ limit of the theory [2]. However, we will also be able to compute

the leading corrections to this limit, using the tools of the heavy quark effective theory.

In this section we will discuss the form of the operator product expansion, and how

to take the hadronic matrix elements of the operators which come out of it. When we

apply this formalism in the following sections, the expressions which we derive sometimes

will be quite lengthy. Here we will concentrate only on the structure of the procedure. In

general, then, the time-ordered product (2.6) may be expanded in a series of local operators

suppressed by powers of the mass of the bottom quark,

T{O†,O} OPE=
1
mb

[
O0 +

1
2mb
O1 +

1
4m2

b

O2 + . . .

]
. (2.7)

The operator On is an operator of dimension 3 + n, with n derivatives.

At this point, it is useful to introduce the heavy quark effective theory (HQET) [5], an

effective theory of QCD in which the mass of the b quark is taken to infinity. This effective

theory implements on the lagrangian level the new “spin-flavor” symmetry of QCD which

arises in this limit [6]. Both the mass and the spin of the b quark decouple from the soft

bound state dynamics of the hadron of which it is a part; so far as the light degrees of

freedom are concerned, the heavy quark is nothing but a static, point-like source of color.

The exchange of soft gluons with the light degrees of freedom leave the b quark always

almost on shell. Thus we can write its four-momentum pµb as the sum of its “on-shell”

momentum mbvµ and a “residual momentum” kµ, such that the components of kµ are
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always small compared to mb. It is then convenient to replace the usual quark field b(x)

by a new two-component field h(x) with fixed four-velocity vµ,

h(x) = eimbv·xP+b(x) , (2.8)

where P+ = 1
2 (1 + v/) projects onto the quark, rather than antiquark, degrees of freedom.

This effective field has the property that a derivative acting on h(x) yields the residual

momentum kµ rather than the full momentum pµb . An expansion in terms of Dµ/mb then

becomes sensible. Expanding in powers of 1/mb, we may invert (2.8) to find

b(x) = e−imbv·x [1 + iD/ /2mb + · · ·]h(x) . (2.9)

Inserting this into the usual QCD lagrangian b iD/ b, we find the effective lagrangian for

HQET [5],

L = hv · iDh+ δL (2.10)

where the correction terms [7]

δL =
1

2mb
h(iD)2h− 1

2mb
Z1(µ)h(v · iD)2h+

1
2mb

Z2(µ)hsµνGµνh+O(1/4m2
b) (2.11)

are treated as perturbations to the mb →∞ limit. Here the gluon field strength is defined

by Gµν = [iDµ, iDν ], and sµν = − i
2
σµν . The renormalisation constants are given by

Z1(µ) = 3
(
αs(mb)
αs(µ)

)8/25

− 2 ,

Z2(µ) =
(
αs(mb)
αs(µ)

)9/25
(2.12)

above the charm threshold.

Because the operator product expansion (2.7) is an expansion in Dµ/mb, we must

express the operators On in terms of the HQET field h(x) rather than the full fields b(x).

However, as we shall see, it turns out to be convenient to leave the leading operator in

terms of b(x), and to expand the rest in h(x). The operators On which appear in the

expansion (2.7) then take the form

O0 = b Γ b ,

O1 = hΓ iDµh ,

O2 = hΓ iDµiDνh ,

(2.13)
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and so forth. In each case, Γ denotes an arbitrary Dirac structure, in which we also absorb

all dependence on the external momentum q, as well as on any other variables. We will

keep operators in the expansion with up to two derivatives.

We now turn to the evaluation of the forward matrix elements of the operators On
between B meson states. At leading order, we need matrix elements of the form

〈B|b Γ b |B〉 , (2.14)

which is nonzero only for Γ = 1 or Γ = γµ. In the second case, the conservation of the

b-number current in QCD yields the matrix element normalised absolutely,

〈B|bγµb |B〉 = 2PµB . (2.15)

This, of course, is why we left O0 in terms of the field b(x) in eq. (2.13). As for the scalar

current, it may be rewritten in terms of the vector current plus higher dimension operators

of the form of O2 [3],

b b = vµbγµb +
1

2m2
b

h
[
(iD)2 − (v · iD)2 + sµνGµν

]
h+ . . . . (2.16)

This identity may easily be proven by using eq. (2.9) to expand both sides in terms of the

effective field h. It is only meaningful when the four-velocity vµ of the b field is fixed.

The correction term in eq. (2.16) may be absorbed into O2. Hence, the leading term in

the expansion of T (q) may be evaluated unambiguously, using eq. (2.15). In fact, the

leading term is precisely the free quark decay model result, which becomes exact in the

limit mb → ∞ [2]. The subleading operators On in the operator product expansion (2.7)

will provide systematically the corrections for finite b quark mass.

The evaluation of the matrix elements of the higher dimension operators O1 and O2

involves the equation of motion of the effective theory [8]. This is given by the lowest order

lagrangian,

v · iDh = 0 . (2.17)

Since the external states are characterized only by their four-velocity vµ, Lorentz invariance

severely restricts the forward matrix elements of operators of the form (2.13). For the

operator O1 of dimension four, we find

〈M | O1 |M〉 = 〈M |hΓ iDµh |M〉 = 〈M |hΓvµv · iDh |M〉 . (2.18)

7



However, this is now the matrix element of an operator which vanishes by the equation of

motion (2.17). Politzer [9] has shown that all such matrix elements vanish identically; his

proof is outlined in the Appendix. Since O1 is the only possible source of corrections of

order 1/mb to the lowest order result, we see that the leading corrections to the free quark

decay model are actually of second order in the heavy quark expansion. As first pointed out

by Chay et al., this is a most surprising result, since exclusive decay modes all presumably

receive corrections already at order 1/mb. Somehow these individual contributions must

cancel in the inclusive rate.

The dimension five operators do give nonvanishing contributions, of order 1/m2
b . How-

ever, their forward matrix elements have a very simple parameterisation [10]. The symme-

tries of the effective theory may be used to write the matrix element as an ordinary Dirac

trace,

〈M | O2 |N〉 = 〈M |hΓ iDµiDνh |M〉 = MB Tr
{

ΓP+ψµνP+

}
, (2.19)

where

ψµν =
1
3
λ1(gµν − vµvν) +

1
2
λ2iσµν . (2.20)

The mass parameters λ1 and λ2 are defined in terms of certain expectation values in the

effective theory,
〈M(∗)|h(iD)2h |M(∗)〉 = 2MBλ1 ,

〈M(∗)|hsµνGµνh |M(∗)〉 = 2MBdM(∗)λ2(µ) ,
(2.21)

where dM = 3 and dM∗ = −1. The µ-dependence of λ2 cancels that of the renormalisation

constant Z2(µ) (2.12). We note that Z2(mb) = 1; hence from this point on we will drop it

and by λ2 mean λ2(mb).

The role which these parameters play in the effective theory is revealed when one

expands the masses of the heavy pseudoscalar and vector mesons in powers of 1/mb:

MB = mb + Λ− 1
2mb

(λ1 + 3λ2) + . . . ,

MB∗ = mb + Λ− 1
2mb

(λ1 − λ2) + . . . .

(2.22)

In this expansion, the term Λ represents the energy of the light degrees of freedom in

the meson. We see that λ1 and λ2 are higher order effects of the finite b quark mass;

λ1 is essentially a “Fermi motion” effect, while λ2, the leading spin symmetry-violating
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correction, arises from the hyperfine chromomagnetic interactions. From (2.22) we have

the well-known relation

λ2 =
mb

8
(MB∗ −MB) ≈ 1

4
(M2

B∗ −M2
B) = 0.12 GeV2 , (2.23)

where we are neglecting higher-order corrections in 1/mb. There have been attempts to

extract both λ1 and λ2 from QCD sum rules by computing the matrix elements (2.21),

with the results [11]
0 ≤ λ1 ≤ 1 GeV2 ,

λ2(1 GeV) = 0.12± 0.02 GeV2 .
(2.24)

The parameter λ2 is much better determined in this approach and agrees nicely with the

experimental B–B∗ mass splitting (2.23).

Finally, there is one other source of corrections of order 1/m2
b , namely time-ordered

products of O1 with the correction δL to the effective lagrangian (2.10). As discussed in the

Appendix, these arise because the states |M〉 in the effective theory differ at order 1/mb

from those |B〉 of QCD. The difference is compensated for at each order by computing

matrix elements of the form [8][10]

i
∫

dx 〈M |T
{
hΓh , δL(x)

}
|M〉 ,

i
∫

dx 〈M |T
{
hΓ iDµh , δL(x)

}
|M〉 ,

(2.25)

and so on. We did not encounter the time-ordered product δL with the dimension three

operator O0 above, because we were able to compute its matrix element (2.15) directly in

full QCD. For the operators of dimension four, since we are working in the effective theory,

we must evaluate eq. (2.25). First, we use the fact that the external states depend only on

the four-velocity vµ to write the analogue of eq. (2.18):

i
∫

dx 〈M |T
{
hΓ iDµh, δL(x) |M〉 = i

∫
dx 〈M |T

{
hΓ vµv · iDh, δL(x)

}
|M〉 . (2.26)

We may now apply the identity derived in the Appendix, which exploits the fact that the

operator which appears on the right-hand side of eq. (2.26) vanishes by the equation of

motion of the effective theory. We then obtain the matrix element of a local current,

i
∫

dx 〈M |T
{
hΓ iDµh, δL(x)

}
|M〉 = −vµ ·

1
2mb
〈M |hΓP+F (D)h |M〉 , (2.27)
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where F (D) = (iD)2 + sµνGµν . This matrix element may then be evaluated in terms of λ1

and λ2, using eq. (2.19).

The result of this long and involved procedure is an expression for the nonperturbative

hadronic quantity T (q), of the form

T (q) = T0(q2, v · q) +
1

4m2
b

T2(q2, v · q) + . . . . (2.28)

The expansion is a series in 1/mb and αs(mb), and the ellipses in (2.28) denote higher order

terms in both small parameters. (The radiative corrections to T0 have been computed

previously [12]; we will not include those to T2.) We now take the imaginary part of T (q)

to recover W (q), multiply by the perturbative part of the matrix element which couples

to P (φ), and compute the inclusive differential width dΓ. This may then be integrated to

give the total width, Γ, or other smoothly weighted distributions. As we have mentioned,

the contribution of T0 will be precisely that of the free quark decay model [2]. The leading

corrections to the mb → ∞ limit are of relative order 1/m2
b and encoded in T2; they are

expressible entirely in terms of the mass parameters λ1 and λ2. We will now apply this

procedure, and compute these corrections, for two interesting examples.

3. Application to Rare B Decays

We will consider inclusive decays of the form B → Xsγ and B → Xs`+`−, where ` = e

or µ is a light lepton. They are governed by the effective Hamiltonian density

Heff = −4GF√
2
VtbV

∗
ts

∑
j

cj(µ)Oj(µ) , (3.1)

where the sum is over the truncated set of local operators

O1 = sαγµPLbα cβγµPLcβ

O2 = sαγµPLbβ cβγµPLcα

O7 =
e

16π2
mb sασµνPRbα Fµν

O8 =
e2

16π2
sαγµPLbαeγµe

O9 =
e2

16π2
sαγµPLbαeγµγ5e ,

(3.2)

Here PL = 1
2 (1 − γ5) and PR = 1

2(1 + γ5) are helicity projection operators, Fµν is the

photon field strength and α, β are colour indices. We have included in O8 and O9 only the
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coupling to the electron current; the coupling to the muon is analogous. There are also

additional operators, such as sαγµPLbα [uβγµPLuβ + . . .+ bβγµPLbβ ], which contribute to

these decays, but their coefficients are small and we shall neglect them. The coefficients

cj(mb) have been calculated in leading logarithmic approximation, both in the standard

model and in certain minimal extensions, and are presented in refs. [13]–[19]

We now apply the procedure of the previous section to compute the rates for inclusive

decays mediated by the operators (3.2). The first step is to construct the operator product

expansion (2.7), which takes the form

T
{

bΓ1s, sΓ2b
} OPE= 1

mb

[
O0 +

1
2mb
O1 +

1
4m2

b

O2 + . . .

]
. (3.3)

For now, we will allow Γ1 and Γ2 to be arbitrary Dirac matrices. To compute the terms

in this series, we must expand the diagrams in fig. 1 in powers of 1/mb. Fixing the four-

velocity of the external b quark to be vµ, we may expand its momentum as pµb = mbvµ+kµ.

Then the graph in fig. 1(a) gives

iM = −iub
Γ1 (mbv/− /q + /k +ms) Γ2

(mbv − q + k)2 −m2
s + iε

ub

= − i
mbx

ubΓ1 (v/ − q̂/+ m̂s) Γ2ub

− i
m2
b

ub

(
1
x

Γ1/kΓ2 −
2
x2

Γ1 (v/ − q̂/+ m̂s)Γ2 (v − q̂)αkα
)
ub

+O
(
1/m3

b

)
(3.4)

where q̂ = q/mb, m̂s = ms/mb, and

x = 1− 2v · q̂ + q̂2 − m̂2
s + iε (3.5)

contains the pole corresponding to an on-shell strange quark, near the end of the physical

cut. The spinor ub which appears is the ordinary on-shell b quark spinor of QCD. From the

matrix element (3.4), we may deduce the first two terms in the operator product expansion

(3.3):

O0 =
1
x

b Γ1(v/− q̂/+ m̂s)Γ2 b ,

O1 =
2
x
hΓ1γ

αΓ2iDαh−
4
x2

(v − q̂)α hΓ1(v/− q̂/+ m̂s)Γ2 iDαh .

(3.6)

Note that while we have left the leading operator in terms of the four-component fields

b(x), we have expanded O1 in terms of the two-component effective fields h(x). The reason

for this choice was discussed in the previous section.
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To obtain O2 we must also expand the one-gluon graph in fig. 1(b), in order to identify

the contribution from the gluon field strength Gµν = [iDµ, iDν ]. Additional contributions

to O2 arise when the full QCD fields b(x) in O1are replaced by the effective theory fields

h(x) via the relation (2.9). Equivalently, one may expand the spinors ub in the matrix

element (3.4) in terms of the two-component spinors uh of HQET,

ub =
[
1 +

/k
2mb

+O

(
1
m2
b

)]
uh , (3.7)

and check that the result may be made covariant. Finally, there will be corrections at order

1/m2
b if the leading operator O0 contains a scalar current bb, because of the expansion

(2.16). These are still contained in O0 and are not included in O2. A straightforward

calculation then yields

O2 =
16
x3

(v − q̂)α(v − q̂)β hΓ1(v/− q̂/+ m̂s)Γ2 iDαiDβh

− 4
x2
hΓ1(v/ − q̂/+ m̂s)Γ2(iD)2h

− 4
x2

(v − q̂)β hΓ1γ
αΓ2 (iDαiDβ + iDβ iDα)h

+
2
x2
m̂s hΓ1 iσαβΓ2G

αβh

− 2
x2

iεµλαβ(v − q̂)λ hΓ1γµγ5Γ2Gαβh

+
2
x
h
(
γβΓ1γ

αΓ2 + Γ1γ
βΓ2γ

α
)

iDβ iDαh

− 4
x2

(v − q̂)α hγβΓ1(v/− q̂/+ m̂s)Γ2 iDβ iDαh

− 4
x2

(v − q̂)α hΓ1(v/ − q̂/+ m̂s)Γ2γ
β iDαiDβh .

(3.8)

To continue any further, we must specify the Dirac structures Γ1 and Γ2.

3.1. B → Xsγ

For the transition B → Xsγ, only the operator O7 from (3.2) contributes and the

operator product expansion simplifies considerably. We now contract the terms in the

time ordered product (3.3) with the external photon fields and take the matrix element

between B mesons to construct the hadronic object T (q) defined in eq. (2.6). Because the

decay is to an on-shell photon, q2 = 0 is fixed, and T (q) becomes a function only of the
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scaled photon energy v · q̂ = Eγ/mb. Including the matrix element of the photon field, we
find

T̃ (v · q̂) ≡ i2〈B|T
{

bσµν s, sσρτb
}
|B〉 ·

∑
ε=1,2

〈γ(q̂, ε)|FµνFρσ |γ(q̂, ε)〉

= −16MBmb(v · q̂)2

[
1
x
− λ1

2m2
b

(
5− 6v · q̂

3x3

)
+

λ2

2m2
b

· 3
x2

]
.

(3.9)

The sum is over the transverse polarizations of the photon, and there is a factor of i
from each insertion of the effective Hamiltonian (3.1). We neglect contributions of order

m̂2
s. Note that we distinguish between mb, the bottom quark mass which arises in the

operator product expansion, and MB , the B meson mass which arises from the relativistic
normalisation of the states (and therefore drops out of the final expression). The inclusive

rate for B → Xsγ is then given by

ΓB→Xsγ =
αG2

F

8π3

m2
b

MB
|VtbV ∗ts|2|c7(mb)|2 Im

∫
d3k

(2π)32Eγ
T̃ (v · q̂)

=
αG2

F

32π5

m4
b

MB
|VtbV ∗ts|2|c7(mb)|2

∮
z T̃ (z) dz ,

(3.10)

where z = v · q̂, and the contour integral is taken around the pole at x = 0. It is

straightforward to evaluate this integral, and we find

ΓB→Xsγ =
αG2

F

16π4
m5
b |VtbV ∗ts|2|c7(mb)|2

[
1 +

1
2m2

b

(λ1 − 9λ2)
]
. (3.11)

This expression for the total rate agrees with the result of ref. [3]. The first term is just

what one would obtain in the free quark decay model.
We may consider using the same method to compute certain features of the photon

energy spectrum. Of course, the precise shape of the spectrum is not available to us, in

particular its behaviour near the endpoint of maximum Eγ. This is true at any order in
the 1/mb expansion, because in this region the strange quark approaches its mass shell and

the operator product expansion breaks down. For example, the fact that the true endpoint
of the photon energy spectrum is found not at Eγ = mb/2 but rather at (M2

B−M2
K)/2MB

is entirely unavailable to us in this formalism.
It is instructive, however, to generalise eq. (3.10) to calculate the nonperturbative

contributions to the moments of the energy spectrum. For example, the deviation of the

average photon energy from that of the free quark decay model is

〈Eγ〉 =
1

ΓB→Xsγ
αG2

F

32π5

m4
b

MB
|VtbV ∗ts|2|c7(mb)|2

∮
(mbz) z T̃ (z) dz

=
mb

2

(
1− λ1 + 3λ2

2m2
b

)
.

(3.12)
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This result has an interesting structure, if we compare it to the 1/mb expansion of the B

meson mass (2.22). Näıvely, we might have expected 〈Eγ〉 to be shifted from the free quark

value mb/2 to half the physical meson mass MB/2. However, that is not what we find; only

the order 1/m2
b terms contribute. The reason is that the correction Λ to MB in eq. (2.22)

is the contribution to the meson mass of the light antiquark and the other light degrees of

freedom, which in this formalism are mere spectators to the decay. Since they are present

in the final state Xs as well as in the initial state, they do not represent additional energy

available to the photon. By contrast, the higher-order mass corrections proportional to

λ1 and λ2 arise from terms in the effective Hamiltonian of the b quark, representing its

“Fermi motion” and its chromomagnetic interaction with the soft hadronic surroundings.

These bound state shifts in the b quark energy are then reflected in the average photon

energy 〈Eγ〉.
We could also generalise eq. (3.12) to higher moments of the photon spectrum. How-

ever, there arises an additional complication if we insist that the moments we compute be

experimentally meaningful quantities. This is because they are constructed by convolv-

ing a power of the photon energy with the measured energy spectrum, but this spectrum

is only related to our computation once our result (3.9) has been smeared over typical

hadronic scales. That is, T̃ (z) should be replaced by the smoothed quantity

T̃f (z) =
∫

dz′ f(z − z′) T̃ (z′) , (3.13)

where f(x) is some smearing function of width δ = ∆E/mb. If we take f(x) to be a Gaus-

sian distribution, f(x) = exp(−x2/δ2)/
√
πδ2, we can calculate the moments analytically.

Keeping terms of order δ2, for the n’th moment we find

Γ(n) =
αG2

F

32π5

m4
b

MB
|VtbV ∗ts|2|c7(mb)|2

∮
(mbz)n z T̃f (z) dz

=
(mb

2

)n [
1 + 2n(n− 1)

(∆E)2

2m2
b

− n(n+ 2)
3

λ1

2m2
b

− 3n
λ2

2m2
b

]
ΓB→Xsγ .

(3.14)

The total rate (n = 0) and average energy (n = 1) which we have already presented are

unaffected by this procedure, but the same is not true for the moments with n ≥ 2. Note

that the effect of the smearing is proportional to δ2 rather than δ, and so is formally of

the same order as the nonperturbative corrections we have been considering. However,

in order for our inclusive predictions to be meaningful, the resolution ∆E with which the

photon energy spectrum is measured actually must be much greater than ΛQCD, so that
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many exclusive states are always summed over. Hence, it is in fact this resolution, rather

than the nonperturbative effects, which will dominate the corrections to the moments Γ(n).

In addition, real gluon emission will broaden the energy spectrum over the entire allowed

phase space 0 < Eγ < mb/2, which will affect substantially the shape of the experimentally

measured spectrum [12].

3.2. B → Xs`+`−

The transition B → Xs`+`− receives contributions from the complete set of operators

in (3.2). In particular, unlike the decayB → Xsγ, the four-quark operatorsO1 andO2 have

non-vanishing matrix elements. In order for our treatment of the four-quark operators to

be valid, it is crucial that the invariant mass of the lepton pair not be near any resonances

in the charm system such as the ψ, so that strong final state interaction corrections will

be small. In this case we can treat the contributions from O1 and O2 as effectively local

on the scale of hadronic interactions.

It is convenient to separate the total rate for B → Xs`+`− into two terms, correspond-

ing to the decay to left- and right-handed leptons

dΓB→Xs`+`− ∝W
µν
L (q̂2, v · q̂)LLµν + Wµν

R (q̂2, v · q̂)LRµν , (3.15)

where the lepton tensors are given by

LL(R)µν = pµ+p
ν
− + pν+p

µ
− − gµνp+ · p− ± iεµνσρp+σp−ρ . (3.16)

Here p+ and p− are respectively the four-momenta of the `+ and `−. Since we are restrict-

ing ourselves to ` = e or µ, we neglect the masses of the leptons.

The two Lorentz structures which arise from the effective Hamiltonian (3.2) are γµ(1−
γ5) and σµν(1 + γ5)q̂ν . Hence it is convenient to write

ΓL(R)
2 =

1
2

(1− γ5)γµ
[
AL(R) −BL(R)q̂//ŝ

]
,

ΓL(R)
1 =ΓL(R)†

2 ,

(3.17)

where ŝ = q̂2. The A’s and B’s are then combinations of the coefficients c1, . . . , c9:

AL = c8(mb)− c9(mb) + [3c1(mb) + c2(mb)] g(mc/mb, ŝ) ,

AR = c8(mb) + c9(mb) + [3c1(mb) + c2(mb)] g(mc/mb, ŝ) ,

BL = BR = −2c7(mb) ,

(3.18)
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where the function g(mc/mb, ŝ) multiplying c1 and c2 arises from taking the one-loop

matrix elements of O1 and O2 and has the form

g(z, ŝ) = −4
9

log z2 +
8
27

+
16
9
z2

ŝ
− 2

9

√
1− 4z2

ŝ

(
2 +

4z2

ŝ

)
× log

(√
1− 4z2/ŝ+ 1 + iε√
1− 4z2/ŝ− 1 + iε

)
.

(3.19)

Integrating over the lepton phase space, the total decay rate is given by

ΓB→Xs`+`− =
1

2MB

∫
d3p+

(2π)32E+

d3p−
(2π)32E−

(
Wµν
L LLµν +Wµν

R LRµν
)

=
m2
b

128π4MB

∫
dŝ dÊ1 Im

∮
dv · q̂

(
TµνL LLµν + TµνR LRµν

)
.

(3.20)

We must next perform the contour integral in the v · q̂ plane and then the Ê1 integral

to obtain the differential decay width. Since the calculation is quite tedious and the

intermediate expressions extremely lengthy, we present only the final result:

dΓB→Xs`+`−
dŝ

=
G2
Fα

2

256π5
m5
b |VtbV ∗ts|2(1 − ŝ)

×
∑
i=L,R

{
1
6 (1 − ŝ)(1 + 2ŝ)|Ai|2 + 1

6 (1− ŝ)(1 + 2/ŝ)|Bi|2

− (1− ŝ)Re (B∗iAi)

+
λ1

2m2
b

[ (
− 1

3
ŝ2 + 1

2
ŝ+ 5

6

)
|Ai|2 − 1

6
(1 + ŝ)|Bi|2

+
(
ŝ− 5

3

)
Re (B∗iAi)

]
+

λ2

2m2
b

[ (
−5ŝ2 + 15

2 ŝ+ 1
2

)
|Ai|2 − 5

2 (1 + ŝ)|Bi|2

+ (7ŝ− 5)Re (B∗iAi)
]}
.

(3.21)

The summation is over the two chirality states of the leptons.

The leading term in eq. (3.21) reproduces the free quark decay model result obtained

in refs. [14][18], while the subsequent terms are the leading non-perturbative contributions

to the decay rate. It is interesting to note that unlike the parton level result, which

has a characteristic 1/ŝ behaviour at small ŝ from the one-photon intermediate state, the

non-perturbative corrections approach a finite constant value as ŝ → 0. The differential

spectrum for the invariant mass of the lepton pair is plotted in fig. 2. We have chosen

16



a top quark mass of mt = 150 GeV, along with mb = 4.5 GeV, αs(mW ) = 0.12 and

αs(mb) = 0.21, to generate the spectrum. The free quark decay model result (λ1 = λ2 = 0)

is presented along with the spectrum for λ1 = 0.5 GeV2 and λ2 = 0.12 GeV2. We have

normalised the width for this decay to that for semileptonic B decay (which includes the

nonperturbative corrections given in ref. [20]). The modification to the B → Xs`+`− rate

is reasonably large and tends to enhance the overall rate for high mass lepton pairs by

order 10%.

4. Summary and Conclusions

Because of the necessary cuts to remove backgrounds, the full spectrum from a decay

such as B → Xsγ and B → Xs`+`− is not available in an accelerator experiment. It is

therefore important to understand well the shapes of these spectra if one is to relate the

observed branching fractions to fundamental parameters of the electroweak theory. This

is particularly true for the high photon energy and high invariant lepton mass regions of

the Dalitz plot. Modifications to the simplest model, that of free quark decay, arise from

strong interactions that can be classified heuristically as perturbative and non-perturbative

corrections.

The perturbative corrections arising from gluon bremstrahlung and one-loop effects

for B → Xsγ have been computed previously [12]. It is to the non-perturbative corrrec-

tions that we have addressed ourselves in this paper. We have detailed the formalism for

treating the semi-hadronic inclusive decays of mesons containing a single heavy quark.

Upon summing over all hadronic final states, one may express the rate for a given process

in terms of a time-ordered product of quark bilinears. This time-ordered product is then

expanded in a series of local operators, the matrix elements of which either are known

or may be parameterised simply. Heavy quark symmetries and the heavy quark effective

theory play a key role in the analysis.

We have applied these tools to the rare decays B → Xsγ and B → Xs`+`−. The lead-

ing non-perturbative corrections to the free quark decay model, of relative order 1/m2
b , may

be expressed entirely in terms of two low-energy parameters. One of these is determined

from the splitting between the heavy pseudoscalar and vector mesons; a model-dependent

estimate of the other comes from QCD sum rules. In addition to the total rates, we have

computed the correction to the average photon energy in B → Xsγ and found the shift to
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be small. The correction to the spectrum for B → Xsl+l− is larger and for high invariant

mass lepton pairs is at about the 10% level.

Finally, we note that there has been considerable recent work in which a similar

formalism has been applied to semileptonic b decays [20].
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Appendix A. Matrix Elements and the Equation of Motion

In this appendix we derive an identity for the matrix element of a time-ordered product

of two operators, where one of the operators vanishes by the equation of motion of the

theory. This will be a generalisation of a proof by Politzer [9] that matrix elements of

single operators which vanish by the equation of motion themselves vanish. We will derive

our result within the context of the heavy quark effective theory (HQET), because this

is the application which we have in mind, but with obvious modifications our result is

completely general.

We begin by recalling how such time-ordered products arise within HQET. In this

effective theory, the heavy quark part of the lagrangian takes the form [5][7]

L = hv · iDh+
1

2mb
hF (D)h + . . . , (A.1)

where

F (D) = (iD)2 − Z1(µ)(v · iD)2 + Z2(µ)sµνGµν , (A.2)

and the ellipses denote terms of higher order in the 1/mb expansion. Here the gluon field

strength is defined by Gµν = [iDµ, iDν], and sµν = − i
2σ

µν . The renormalisation constants

Z1(µ) and Z2(µ) are given in Section 2. The equation of motion in HQET is derived from

the leading term in the lagrangian (A.1), and is simply

v · iDh = 0 . (A.3)
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Instead of being included in the equation of motion, the corrections to L in eq. (A.1) are

treated as perturbations. They reappear in the following way: because the states |M〉
of HQET are defined by the truncated equation of motion (A.3), they differ from those

|B〉 of full QCD. The states |M〉 have the significant advantage that, unlike |B〉, they are

independent of the heavy quark mass mb, and so have simple transformations under the

spin-flavor symmetries of the effective theory. The difference between |M〉 and the physical

states |B〉 is then compensated by including in the matrix elements of effective operators

additional time-ordered products with the subleading terms in L [8][10]. That is, if we

have an effective operator h
′
C(D)h whose matrix element we require between eigenstates

|B〉 of full QCD, then we must write

〈B(p′)|h′C(D)h |B(p)〉 = 〈M(v′)|h′C(D)h |M(v)〉

+
1

2mb
i
∫

dx 〈M(v′)|T
{
h
′
C(D)h, hF (D)h(x)

}
|M(v)〉 + . . . .

(A.4)

We have shown the expansion up to order 1/mb explicity; the ellipses denote denote terms

of higher order which may be included if more accuracy is needed. We consider here the

general case in which the initial and final heavy quarks have different four-velocities. The

field h creates a heavy quark with velocity vµ, while h′ creates one with velocity v′µ. There

is a separate effective lagrangian (A.1) for each of these fields, but for simplicity we will

include the 1/mb corrections only for the field h. The time-ordered products in (A.4) are

new nonperturbative matrix elements which must be evaluated if one wishes to use the

effective theory beyond leading order.

We will be concerned with a special case of eq. (A.4), in which the operator h
′
C(D)h

vanishes by the equation of motion (A.3) of the effective theory.1 That is, C(D) takes the

particular form

C(D) = A(D)v · iD , (A.5)

where A(D) may include an arbitrary Dirac structure. Politzer has shown that matrix

elements of such operators, such as would appear in the first term in eq. (A.4), vanish [9]:

〈M(v′)|h′A(D)v · iDh |M(v)〉 = 0 . (A.6)

1 We are grateful to A. Manohar for discussions of this point. See also ref. [20].
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Note that it is the effective theory states |M〉 which appear here. The purpose of this

appendix is to generalise this argument to prove a similar identity for the time-ordered

product appearing in the second term of (A.4), namely, that

i
∫

dx 〈M(v′)|T
{
h
′
A(D)v · iDh, hF (D)h(x)

}
|M(v)〉

=− 〈M(v′)|h′A(D)P+F (D)h |M(v)〉 ,
(A.7)

where P+ = 1
2(1 + v/). For the computation of this paper, we will apply this identity in

the case that A(D) actually contains no derivatives, and at zero recoil; then the matrix

element on the right-hand side of (A.7) is of the simple form

〈M |h Γ iDµiDνh |M〉 , (A.8)

and can be evaluated in terms of the constants λ1 and λ2 as in Section 2.

Before proving the identity (A.7), however, we note its relation to the result we would

obtain by taking a different approach. Instead of introducing the states |M〉, which are

eigenstates of the lowest order effective lagrangian, we could chose to work always in terms

of the full states |B〉 of QCD. This would be undesireable, in that it would reintroduce

the mass-dependence which it is the goal of HQET to remove, thereby obscuring the spin-

flavor symmetries of the heavy quark limit. However, if we do so, the equation of motion

is given by the full Lagrangian (A.1), taking the form

v · iDh = − 1
2mb

P+F (D)h+ . . . . (A.9)

This equation of motion may be applied directly to matrix elements between the states

|B〉. We then find for the matrix element (A.4) the relation

〈B(p′)|h′C(D)h |B(p)〉 = − 1
2mb
〈B(p′)|h′A(D)P+F (D)h |B(p)〉 . (A.10)

Inserting eqs. (A.6) and (A.7) into eq. (A.4), and noting that the states |M〉 and |B〉
differ only at order 1/mb, we see that this is the same result that we find working entirely

within the effective theory. The proof which we now present may be seen as verifying the

consistency of the effective theory approach. It is both an application and a generalisation

of the proof of Politzer.
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We begin by using the LSZ reduction formula to write the desired matrix element in

terms of a vacuum expectation value:

i
∫

dx 〈M(v′)|T
{
h
′
A(D)v · iDh(0), hF (D)h(x)

}
|M(v)〉

= i
∫

dx
∫

dzdz′eik·zeik′·z′v · iDz v
′ · iDz′

· 〈0|T
{

qΓ′h′(z′), h
′
A(D)v · iDh(0), hF (D)h(x), hΓq(z)

}
|0〉 .

(A.11)

Here the operators hΓq and qΓ′h interpolate the initial and final meson states, respectively.

(Of course, the proof is valid for any external heavy hadrons, not just mesons.) Note that

in HQET, the one-particle poles are projected out by the differential operator v · iD rather

than by [(iD)2 −M2
B ] as in full QCD.

We now write the generating functional for Green’s functions of this theory:

exp(iW ) =
∫

[dh][dh][dh′][dh
′
][dAµ] exp

{
i
∫

dy [L0 + SJ + SL + SM + . . .]
}
. (A.12)

Here

L0 = hv · iDh+ h
′
v′ · iDh′ (A.13)

is the lagrangian of the effective theory, and we have included explicitly a variety of relevant

source terms:
SJ = J h

′
A(D)v · iDh ,

SL = LhF (D)h ,

SM = K hΓq +K ′ qΓ′h′ .

(A.14)

The ellipses denote sources for the fermions and gauge fields, and gauge-fixing terms which

will play no role in the analysis. With these definitions, then, we have

δ

δiK ′(z′)
δ

δiJ(0)
δ

δiL(x)
δ

δiK(z)
exp(iW )

∣∣∣∣
sources =0

= 〈0|T
{

qΓ′h′(z′), h
′
A(D)v · iDh(0), hF (D)h(x), hΓq(z)

}
|0〉 .

(A.15)

We now perform a shift of the integration variable h,

h = h
∗ − J h′A(D)P+ , (A.16)
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insert it into the generating functional (A.12), and drop terms of order J2. We then obtain

shifts in some of the expressions (A.13) and (A.14):

L0 = h
∗
v · iDh− J h′A(D)v · iDh+ h

′
v′ · iDh′ ,

SJ = J h
′
A(D)v · iDh ,

SL = Lh
∗
F (D)h− LJ h′A(D)P+F (D)h ,

SM = K h
∗
Γq−KJ h′A(D)P+Γq +K ′ qΓ′h′ .

(A.17)

Note that the original source term SJ cancels against the shift in L0 in (A.17), but new

terms appear in SL and SM . Replacing the dummy variable h
∗

by h, we recover the

generating functional (A.12), but with the source SJ changed,

SJ → −LJ h
′
A(D)P+F (D)h−KJ h′A(D)P+Γq . (A.18)

We now repeat the derivative in eq. (A.15). When we set the sources to zero, we see that

a derivative with respect to L or K must come with a derivative with respect to J to give

a nonzero contribution. We then find

〈0|T
{

qΓ′h′(z′), h
′
A(D)v · iDh(0), hF (D)h(x), hΓq(z)

}
|0〉

= iδ(z) 〈0|T
{

qΓ′h′(z′), hA(D)h(x), h
′
A(D)P+Γq(0)

}
|0〉

+ iδ(x) 〈0|T
{

qΓ′h′(z′), h
′
A(D)P+F (D)h(0), hΓq(z)

}
|0〉 .

(A.19)

Finally, we must perform the integral (i
∫

dx
∫

dzdz′eik·zeik′·z′v · iDzv′ · iDz′) to re-

cover the matrix element (A.11). In this integral, the first term on the right-hand side of

eq. (A.19) vanishes for an on-shell state with v ·k = 0, because the integral over z is trivial

and there is no longer a one-particle pole to pick out. The second term, however, yields

an S-matrix element in the usual way,

i
∫

dx iδ(x)
∫

dzdz′eik·zeik′·z′v · iDz v
′ · iDz′

· 〈0|T
{

qΓ′h′(z′), h
′
A(D)P+F (D)h(0), hΓq(z)

}
|0〉

= −〈M(v′)|h′A(D)P+F (D)h(0) |M(v)〉 .

(A.20)

Thus we obtain the desired identity,

i
∫

dx 〈M(v′)|T
{
h
′
A(D)v · iDh, hF (D)h(x)

}
|M(v)〉

=− 〈M(v′)|h′A(D)P+F (D)h |M(v)〉 .
(A.21)
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Note that the term in F (D) proportional to (v · iD)2 will not contribute here, since this

matrix element is of the form (A.6) and hence vanishes by the equation of motion.

A few additional comments are in order. First, Politzer’s result (A.6) for the matrix

elements of an operator which vanishes by the equation of motion follows from an identical

derivation, but with the derivative δ/δiL omitted. In this case the second term of eq. (A.19)

does not appear, and we obtain zero instead of the right-hand side of eq. (A.20). (We stress

that the intermediate result (A.19), which is the key to both proofs, is derived by Politzer

in full generality.) Second, it is clear how this result is to be generalised to the time-ordered

product of an arbitrary number of operators. Essentially, we obtain a term on the right-

hand side for each contraction of h
′
A(D)v · iDh with an operator insertion hG(D)h, where

G(D) is any function of covariant derivatives. More than one contraction may be required

to give a nonzero result; for example, an operator of the form h
′
A(D)(v · iD)nh will have a

nonvanishing matrix element only when included in a time-ordered product with n other

operators such as hF (D)h. Finally, we reiterate that while for concreteness we have framed

our derivation within the heavy quark effective theory, it is in fact completely general.
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Figure Captions

Fig. 1. Feynman diagrams contributing to the time-ordered product T
{

bΓ1s, sΓ2b
}

.

Fig. 2. Invariant mass spectrum for B → Xs`+`−. The solid line corresponds to the
parton model, while the dashed line corresponds to λ1 = 0.5 GeV2 and λ2 =
0.12 GeV2. The cusp at ŝ = (2mc/mb)2 corresponds to the charm threshold.
Near this point our estimate of the nonperturbative corrections is not valid due
to resonance effects.
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Fig. 1. Feynman diagrams contributing to the time-ordered product T{GI’rs, SI’2b). 
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Fig. 2. Invariant mass spectrum for B + X,k’+C. The solid line corresponds to the 
parton model, while the dashed line corresponds to Xr = 0.5 GeV* and X2 = 0.12 GeV*. 
The cusp at s^ = (2mc/ma)* corresponds to the charm threshold. Near this point our 
estimate of the nonperturbative corrections is not valid due to resonance effects. 
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