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ABSTRACT 

The theory of the perturbative pomeron, due to Lipatov and collaborators, is used to 
compute the probability of observing parton-parton elastic scattering and rapidity 
gaps between jets in hadron collisions at Tevatron energies. 

1. Introduction 

At the SSC and LHC hadron colliders events predicted by the Standard 
Model, like Higgs-boson production via electroweak boson fusion, will be exper- 
iment ally accessible. A characterictic feature of this process is that no color is 

. 
exchanged in the t channel between the scattering hadrons, the color exchange be- 
ing confined to the fragmentation region between the struck and spectator partons’. 
On a Lego plot in azimuthal angle and rapidity, the signal will present, at the parton 
level, a rapidity gap between the struck partons2. 

There is, however, a background to this process from Higgs boson production 
via the fusion of two pairs of gluons in color singlet configurations213. Also in this 
case, no color is exchanged in the t channel between the struck partons. To under- 
stand the dynamics of such background events, we undertake here the propedeutic 
study of hadron-hadron scattering with exchange in the 1 channel of a pair of gluons 
in a color singlet configuration. Such a study can be already done experimentally 
at the energies of the Tevatron collider4, and indeed the first data on rapidity gaps 
in hadron collisions starts being available5. 

In this talk I illustrate a way of computing parton-parton elastic scattering 
and rapidity gaps between jets in hadron collisions at very high energie#, and use 
it to make predictions on rapidity gap production at Tevatron energies. In order to 
obtain quantitative predictions of jet production in the high energy limit, we tag 
two jets at a large rapidity interval y and with transverse momentum of order m and 
compute the total cross section’ through the BFKL theorye, which systematically 
corrects the lowest-order QCD result, by summing the leading logarithms of i. The 
total cross section is related, through the optical theorem, to the elastic scattering 
amplitude with color singlet exchange in the f channel. This leads to a final state 
which, at the parton level, contains two jets with a rapidity gap in gluon production 
between them. 
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We next study the potential backgrounds to these signals at the parton and 
hadron level. At the parton-level background, gluon exchange also contributes if we 
assume that we cannot detect partons with transverse momentum smaller than a 
fixed parameter p. In order to use perturbative QCD, the parameter ~1 must be larger 
than AQco. Thus we have two options: first, we can consider m > p w f&o, that is, 
we define a rapidity gap to be present if there are no jets of transverse momentum 
larger than p between the tagging jets. We will call this case quasi elastic scattering. 
The ratio R of the quasi-elastic to the total cross section is given by 

R(P) = Qainglet + Qoetct 
utot ’ 

(1) 

where all the cross sections in (1) have been convoluted with the appropriate parton 
distributions. Alternatively, we can consider p = 0(&o). Then at the parton level 
the color octet exchange is strongly suppressed, and only the color singlet exchange 
contributes to the cross section for producing rapidity gaps. 

At the hadron level, the interation between spectator partons may produce 
hadrons across the rapidity interval, spoiling the rapidity gap. Thus in order to 
compute the cross section for producing a rapidity gap at the hadron level, we 
need a non-perturbative model to estimate the survival of the rapidity gap2. The 
rapidity-gap survival probability < S2 > is defined as the probability that in a 

_ scattering event no other interaction occurs beside the hard collision of interest. 
< S2 > is expected to depend on the hadron-hadron center of mass energy, but only 
weakly on the size of the rapidity gap. Then to obtain the probability of a scattering 
event with a large rapidity gap at the hadron level, we must compute the ratio R 
at p = 0, that is, using only the singlet elastic cross section, and multiply it by the 
survival probability < S2 >: 

R pap =< S2 > R(p = 0). (2) 

In this contribution, we compute R(p) at the Tevatron center-of-mass energy fi= 
1.8 TeV and at different values of the minimum transverse momentum of the tagging 
jets m and the elastic scale ~1. 

2. Jet Cross Sections 

We consider the scattering of two hadrons of momenta LA and kE in the 
center-of-mass frame and we imagine to tag two jets at the extremes of the Lego 
plot, with the rapidity interval between them filled with jets. The tagging jets can 
be characterized by their transverse momenta PAI and psi and by their rapidities PA 
and vB. The inclusive cross section for producing two tagging jets with transverse 
momenta greater than a minimum value m is then7 

&(AB + i( + X) = 

J 
dp:,d&, n G(+i,m’) +4/9x[Qj(2i,m2) +&/(ti~m~)l dbtot 

(3) 
i=A,E / I dp;,dp;, 
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where ZA z ev*PAI/fiv ZB 2: e-vBpsl/fi are the light-cone momentum fractions of 
the tagging jets with respect to their parent hadrons, y = lg,, - ysl is the rapidity 
difference and 1= ($IA + us)/2 is the rapidity boost, i = 2 kA . ksZAZfl is the parton- 
parton squared center-of-mass energy, and 

d&tot (&BCA)~ O” 

d&d&, = 2PMl1 0 J dve”(“)V cos (4) 

is the BFKL total cross section for gluon-gluon scattering within an impact distance 
of size l/m, and 

w(v) = * [tj(l) - S+(i +iv)] , (5) 

with $(z) the logarithmic derivative of the Gamma function. In eq. (3) we use the 
large-9 effective parton distribution functions, computed at the factorization scale 
Q2 = m2. 

The high-energy elastic cross section for two tagging jets, with color singlet 
exchange in the t channel, is 

$(AB + j(zA)j(zg)) = Jdi n 
itA,B 

[G(zi, m2) + (4/9)2 c[Qj(zi, m2) + of(zi, m2)]] 3, 
1 

(6) 
where i z -pt, with pI the transverse momentum of the tagging jets. The gluon- 

_ 
gluon elastic scattering cross section, with the tagging jets collimated and with 
minimum transverse momentum m, is9 

dkring -r= @8c-d4 (J O3 d,, 112 2ew(y)y 
47ri2 -= (v’ + f) (7) 

Since two reggeized gluons are involved in the color singlet exchange in the 1 channel, 
in keeping into account in (6) the possibility that the scattering is initiated by 
quarks we obtain the suppression factor (4/9)2. The background to the color singlet 
exchange comes from the exchange of a reggeized gluong. This contribution is given 
bY 

s(AB + j(tA)j(zB)) = n [G(zi, m2) -I 4/g C[Q,(%, m2) + Q/(ti, d)]] %, (8) 

i=A,B / 

where the gluon-gluon elastic scattering cross section in the color octet channel is 

dko,t 

T-= 

+,CA)2 

2i2 . (9) 

For m w ~1 the exponential reduces tog exp(-ct,C,,/r1n(p:/p2)g) and has the typical 
form of a Sudakov form factor. As ~1 - 0, or y becomes large, the contribution of 
the octet to the gluon-gluon elastic cross section vanishes. 

3. The Numerical Evaluation of the Ratio R(p) 

R(p) is the probability of having elastic scattering at the parton level, as de- 
fined in (l), and is obtained by summing (6) and (8), and dividing by (3). To eval- 
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uate it, we scale the running coupling constant from a,(m(Z)) = 0.12 using the l-loop 
evolution with 5 flavors, and use the CTEQ set-5 parton distribution functionslO. 
In the figure we plot R(c() as a function of y, at rapidity boost 5 = 0, and with m= 
10, 20, 30, 40 GeV and elastic scale p = 0, 0.5, 2, 5, 10 GeV. 
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The ratio R(p) as a function of y, at 5 = 0. 

The rapid growth of R(p) at the kinematical upper boundary in y is due to the 
energy dependence of the pomeron trajectorplg16, enhanced by the scaling behavior 
at z near 1 of the distribution functions integrated over transverse momentum. 
The growth of R(P) due to the pomeron trajectory6 only is more apparent in the 
plot with m= 10 GeV where the largest kinematically accessible values of y can 
be probed. At p = 0, the octet exchange does not contribute to R(P). The value 
of R(P = 0), multiplied by the survival probability c 9 >, gives the probability of 
having a collision with a rapidity gap in secondary particle production (2). Since 
c SL > is estimated in ref. 2 to be N 0.1 and in ref. 11 to be in the range of 
0.05 to 0.2, we expect that, at the Tevatron, a few tenths percent of events with 
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tagging jets will show rapidity gaps. The probability of finding a gap increases with 
the rapidity interval between the tagging jets. This prediction is peculiar of the 
radiative corrections to R(P), since R(P) at the lowest order in as does not depend 
on y. 

Since all of the analysis above is in the leading logarithmic approximation, 
there is ambiguity in the choice of the proper scale in rapidity for which this analysis 
is valid, and so the exact value of the normalization and thus of R(P) cannot be 
determined precisely. However, the slope of the curves in the asymptotic regime 
is free from this scale uncertainty and thus the experimental measurement of the 
ratio R(p)/Roap in the large rapidity-gap regime should give us an unambiguous 
determination of the survival probability < ~2 >. 
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