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Parton-Parton Elastic Scattering and Rapidity Gaps

at SSC and LHC Energies

Vittorio Del Duca
Stanford Linear Accelerator Center

Stanford University, Stanford, California

ABSTRACT

The theory of the perturbative pomeron, due to Lipatov and collaborators, is used to
compute the probability of observing parton-parton elastic scattering and rapidity
gaps between jets in hadron collisions at SSC and LHC energies.

1. Introduction

At the SSC and LHC hadron colliders events predicted by the Standard
Model, like Higgs-boson production via electroweak boson fusion, will be experi-
mentally accessible. A characteristic signature of this process is that in the t chan-
nel no color is exchanged between the scattering hadrons, the color exchange being
confined to the fragmentation region between the struck and spectator partons1. On
a Lego plot in azimuthal angle and rapidity, the signal will present, at the parton
level, a rapidity gap between the struck partons2. In order, though, for the gap
to survive at the hadron level, it is necessary that no color radiation is exchanged
between the spectator partons in the hadronization process. Bjorken2 has first
defined and estimated the survival of the rapidity gap in the presence of soft spec-
tator interactions. A study of the event characteristics of Higgs-boson production
via electroweak-boson fusion has then been recently undertaken3.

The Higgs boson may be produced also via gluon-gluon fusion. This will usu-
ally have color all over the t channel, since the gluons, on their way to fuse together,
will emit gluon radiation. A fraction of events in this process, though, may simu-
late Higgs-boson production via electroweak-boson fusion even in its characteristic
signature, namely the Higgs boson may be produced by the fusion of two pairs of
gluons in color singlet configurations2,4. Then no color is exchanged in the t chan-
nel between the struck partons. To understand the dynamics of these background
events, it is better to undertake the propedeutic study of hadron-hadron scattering
with exchange in the t channel of a pair of gluons in a color singlet configuration.
Such a study can be already done experimentally at the energies of the Tevatron
collider5, and indeed the first data on rapidity gaps in hadron collisions starts being



available6.

2. Rapidity Gaps

In this talk I illustrate a way of computing the probability of observing
parton-parton elastic scattering and rapidity gaps between jets in hadron collisions
at very high energies7, and use it to make predictions on rapidity-gap production at
SSC and LHC energies. In order to obtain quantitative predictions of jet production
in the very high energy limit and separate it from the uncertainty involving the small
x dependence of parton distributions8, Mueller and Navelet9 proposed to measure
the two-jet inclusive cross section in hadron collisions by tagging two jets at a large
rapidity interval y and with transverse momentum of order m. These tagging jets
are produced in a nearly forward scattering of gluons or quarks with large center-
of-mass energy

√
ŝ. Lipatov and collaborators10−13 (BFKL) have shown that, in

this regime, the rapidity interval y = ln(ŝ/m2) between the scattered partons is filled
in by the radiation of additional gluons, roughly uniformly spaced in rapidity, all
with transverse momenta of order m. The BFKL theory systematically corrects the
lowest-order QCD result by summing the leading logarithms of ŝ. The result is to
replace the gluons exchanged in the t channel with effective, reggeized gluons, with
an infrared-sensitive trajectory11. Then one uses this resummed, effective gluon
exchange to compute the elastic amplitude in the Regge limit ŝ � −t̂ with color
singlet exchange in the t-channel. This is known as the BFKL pomeron11−13. The
imaginary part of the forward amplitude is the parton-parton total cross section.
To leading order in rapidity, the parton-parton total cross section and the related
2-jet inclusive cross section exhibit the energy dependence exp[(αP − 1)y] with

αP = 1 + 4 ln 2
αsCA
π

, (1)

where CA = Nc = 3 is the number of colors in QCD.
The elastic scattering amplitude with color singlet exchange in the t channel

is a higher order (α4
s) process13−14 but with energy dependence exp[2(αP − 1)y], and it

leads to a final state which, at the parton level, contains two jets with a rapidity gap
in gluon production between them. Some fraction of these states may produce the
experimental signatures of a large rapidity gap in secondary particle production.

To understand the relation between rapidity gaps in hard-gluon and hadron
production, we must discuss the potential backgrounds to these signals at the parton
and hadron level. To analize the parton-level background, assume that we cannot
detect partons with transverse momentum smaller than a fixed parameter µ. In
this case, there is an additional contribution to elastic scattering from color octet
exchange in the t channel. According to BFKL, this proceeds via the exchange of
a reggeized gluon, which contains all the leading virtual radiative corrections and
it has the form of a Sudakov form factor. The parameter µ fixes the scale below
which soft gluon radiation is allowed. As µ→ 0, the contribution of the color octet
exchange vanishes, since it is impossible to have scattering with exchange of a gluon,



without allowing for the emission of soft gluon radiation.
In order to use perturbative QCD, the parameter µ must be larger than ΛQCD.

Thus we have two options: first, we can consider m� µ� ΛQCD, that is, we define a
rapidity gap to be present if there are no jets of transverse momentum larger than µ

between the tagging jets. We will call this case quasi elastic scattering, since it allows
gluon radiation below the scale µ. The ratio R of the quasi-elastic to the total cross
section is given by

R(µ) =
σsinglet + σoctet

σtot
. (2)

where all the cross sections in (2) have been convoluted with the appropriate parton
distributions. Alternatively, we can consider µ = O(ΛQCD). Then at the parton level
the color octet exchange is strongly suppressed, and only the color singlet exchange
contributes to the cross section for producing rapidity gaps.

At the hadron level, the interaction between spectator partons may produce
hadrons across the rapidity interval, spoiling the rapidity gap. Thus in order to
compute the cross section for producing a rapidity gap at the hadron level, we need
a non-perturbative model which describes the hadron interaction and estimates the
survival of the rapidity gap in the presence of soft spectator interactions2. The
rapidity-gap survival probability < S2 > is defined as the probability that in a
scattering event no other interaction occurs beside the hard collision of interest.
< S2 > is expected to depend on the hadron-hadron center of mass energy, but only
weakly on the size of the rapidity gap. Then to obtain the probability of a scattering
event with a large rapidity gap at the hadron level, we must compute the ratio R

at µ = 0, that is, using only the singlet elastic cross section, and multiply it by the
survival probability < S2 >:

Rgap =< S2 > R(µ = 0). (3)

In this contribution, we compute R(µ) at the SSC and LHC center-of-mass energies√
s of 40 TeV and 16 TeV respectively, and at different values of the minimum

transverse momentum of the tagging jets m and the elastic scale µ.

3. Jet Cross Sections

We consider the scattering of two hadrons of momenta kA and kB in the
center-of-mass frame and we imagine to tag two jets at the extremes of the Lego
plot, with the rapidity interval between them filled with jets. The tagging jets can
be characterized by their transverse momenta pA⊥ and pB⊥ and by their rapidities yA
and yB. The inclusive cross section for producing two tagging jets with transverse
momenta greater than a minimum value m is then9

dσ

dydȳ
(AB → j(xA)j(xB) +X) =∫

dp2
A⊥dp

2
B⊥

∏
i=A,B

[
G(xi, m2) + 4/9

∑
f

[Qf(xi, m2) + Q̄f(xi, m2)]
]

dσ̂tot
dp2
A⊥dp

2
B⊥

(4)



where xA ' eyApA⊥/
√
s, xB ' e−yBpB⊥/

√
s are the light-cone momentum fractions of

the tagging jets with respect to their parent hadrons, y = |yA − yB | is the rapidity
difference and ȳ = (yA + yB)/2 is the rapidity boost, ŝ = 2 kA · kBxAxB is the parton-
parton squared center-of-mass energy, and

dσ̂tot
dp2
A⊥dp

2
B⊥

=
(αsCA)2

2p3
A⊥p

3
B⊥

∫ ∞
0

dνeω(ν)y cos
(
ν ln

p2
A⊥
p2
B⊥

)
(5)

is the BFKL total cross section for gluon-gluon scattering within an impact distance
of size 1/m, and

ω(ν) =
2αsCA
π

[
ψ(1) −Reψ(

1
2

+ iν)
]
, (6)

with ψ(z) the logarithmic derivative of the Gamma function. In eq. (4) we use the
large-y effective parton distribution functions15, computed at the factorization scale
Q2 = m2.

The high-energy elastic cross section for two tagging jets, with color singlet
exchange in the t channel, is
dσsing
dydȳ

(AB → j(xA)j(xB)) =
∫
dt̂

∏
i=A,B

[
G(xi, m2) + (4/9)2

∑
f

[Qf(xi, m2) + Q̄f(xi, m2)]
]
dσ̂sing

dt̂
,

(7)
where t̂ ' −p2

⊥, with p⊥ the transverse momentum of the tagging jets. The gluon-
gluon elastic scattering cross section, with the tagging jets collimated and with
minimum transverse momentum m, is14

dσ̂sing

dt̂
=

(αsCA)4

4πt̂2

(∫ ∞
−∞

dν
ν2(

ν2 + 1
4

)2 eω(ν)y

)2

. (8)

Since two reggeized gluons are involved in the color singlet exchange in the t channel,
in keeping into account in (7) the possibility that the scattering is initiated by
quarks we obtain the suppression factor (4/9)2. The background to the color singlet
exchange comes from the exchange of a reggeized gluon. This contribution is given
by

dσoctet
dydȳ

(AB → j(xA)j(xB)) =
∏

i=A,B

[
G(xi, m2) + 4/9

∑
f

[Qf(xi, m2) + Q̄f (xi, m2)]
]
dσ̂oct

dt̂
, (9)

where the gluon-gluon elastic scattering cross section in the color octet channel is

dσ̂oct

dt̂
=
π(αsCA)2

2t̂2
exp

(
−αsCA

π
y

1√
1 + 4µ2/p2

⊥
ln

√
1 + 4µ2/p2

⊥ + 1√
1 + 4µ2/p2

⊥ − 1

)
. (10)

For m� µ the exponential reduces to14 exp(−αsCA/π ln(p2
⊥/µ

2) y) and has the typical
form of a Sudakov form factor. As µ → 0, or y becomes large, the contribution of
the octet to the gluon-gluon elastic cross section vanishes.

4. The Numerical Evaluation of the Ratio R(µ)

R(µ) is the probability of having elastic scattering at the parton level, as de-



fined in (2), and is obtained by summing (7) and (9), and dividing by (4). To eval-
uate it, we scale the running coupling constant from αs(m(Z)) = 0.12 using the 1-loop
evolution with 5 flavors, and use the CTEQ set-5 parton distribution functions16.
We plot R(µ) at LHC and SSC energies as a function of y, at rapidity boost ȳ =
0, and with m= 30, 60, 100 GeV and elastic scale µ = 0, 0.5, 2, 5, 10 GeV. The
rapid growth of R(µ) at the kinematical upper boundary in y is due to the energy
dependence of the pomeron trajectory (1) enhanced by the scaling behavior at x

near 1 of the distribution functions integrated over transverse momentum.



The ratio R(µ) as a function of y, at ȳ = 0,
at √s= 16 TeV in the left column and √s= 40 TeV in the right column.

The growth of R(µ) due to the pomeron trajectory7 only is more apparent in the
plots with m = 30 GeV where the largest kinematically accessible values of y can
be probed. At µ = 0, the octet exchange does not contribute to R(µ). The value
of R(µ = 0), multiplied by the survival probability < S2 >, gives the probability of
having a collision with a rapidity gap in secondary particle production (3). Since
< S2 > is estimated in ref. 2 to be ' 0.1 and in ref. 17 to be in the range of 0.05
to 0.2, we expect that, at the LHC and SSC, a few tenths percent of events with
tagging jets will show rapidity gaps. < S2 >, though, is expected to decrease with√
s, so fewer rapidity-gap events should be found at LHC and SSC energies than

at Tevatron energies, at comparable values of y18. The probability of finding a gap
increases with the rapidity interval between the tagging jets. This prediction is
peculiar of the radiative corrections to R(µ), since R(µ) at the lowest order in αS

does not depend on y.
Since all of the analysis above is in the leading logarithmic approximation,

there is ambiguity in the choice of the proper scale in rapidity for which this analysis
is valid, and so the exact value of the normalization and thus of R(µ) cannot be
determined precisely. However, the slope of the curves in the asymptotic regime
is free from this scale uncertainty and thus the experimental measurement of the
ratio R(µ)/Rgap in the large rapidity-gap regime should give us an unambiguous
determination of the survival probability < S2 >.
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