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Abstract

We discuss radiation zeros that are found in gauge tree amplitudes for processes

involving multi-photon emission. Previous results are clarified by examples and by fur-

ther elaboration. The conditions under which such amplitude zeros occur are identical

in form to those for the single-photon zeros, and all radiated photons must travel par-

allel to each other. Any other neutral particle likewise must be massless (e.g. gluon)

and travel in that common direction. The relevance to questions like gluon jet identifi-

cation and computational checks is considered. We use examples to show how certain

multi-photon amplitudes evade the zeros, and to demonstrate the connection to a more

general result, the decoupling of an external electromagnetic plane wave in the “null

zone”. Brief comments are made about zeros associated with other gauge-boson emis-

sion.
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I. Introduction

It is now more than a dozen years since radiation amplitude zeros were first discovered [1]

in the process ud → W+γ [2]. Subsequently, it was shown [3, 4, 5] that these can arise

more generally, originating as the destructive interference of radiation patterns in gauge-

theory tree amplitudes for massless gauge-boson emission. This is therefore a property of

gauge theories; anomalous electromagnetic moments, for example, would spoil the perfect

cancellations and such anomalies are forbidden in gauge couplings. For a specific analysis

of the effect of W anomalous moments in the ud → W+γ reaction, see [6]. Of course,

anomalous moments come up in higher-order corrections, and indeed radiation zeros do not

appear beyond the tree approximation in any theory.

Can we observe these zeros experimentally? Since we must be able to use the tree

approximation, the couplings have to be small for the process considered. The equations

that determine where the zeros are - essentially these are just the demand that the ratio

of coupling to light-cone energy be the same for all particles - specifically require that all

couplings have the same sign (electric charges, for photon emission). These two constraints,

weak couplings and same-sign charges, have very much limited the number of reactions in

which a RdipS would be found. In high-energy quark reactions where gluon emission can

be described perturbatively, the color charges, unfortunately, are ultimately averaged or

summed over. The benchmark e+e− reactions violate the like-sign condition. Even if certain

hadronic reactions involved electric charges of only one sign, and in some limit could be

approximated by tree amplitudes, hadrons with spin are composite particles with anomalous
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moments (g 6= 2). And small cross sections are perforce hard to measure!

Despite the difficulty in “measuring” zeros in experiments, the sensitivity of the basic

quark amplitude ud→ W+γ to the W -boson magnetic moment has attracted much interest

in the hope that this important parameter could be measured in proton-antiproton collid-

ers [7]. The radiation zero is present only for a magnetic moment value corresponding to

g = 2 as predicted by gauge theory. The extent to which there is a pronounced dip will

make it possible to put limits on the W magnetic moment (see Sec. V); experimenters

can also consider the crossed channel reaction, radiative W -decay, whose zero shows up in

the energy distributions [8]. A basic e−e− → e−e−γ radiation zero is irrelevant to present

accelerators, but there is the possibility that HERA experiments may probe a radiation am-

plitude zero in electron-quark bremsstrahlung and allow a direct measurement of the quark

charge [9, 10, 11].

The very welcome progress in accelerator experimentation brings with it a challenge. We

can anticipate more detailed information, not only in the way of more single-photon events,

but also in the variety of final states measured. Are there electromgnetic radiation zeros in

reactions with more final photons, such as two-photon exclusive reactions? What about the

associated production in the QCD perturbative regime of another massless gauge boson of

great interest, the gluon, such as in ud→ W+γg?

The answer to both is that, yes, in general the radiation zeros survive the addition of

more neutral, massless particles. If a given reaction has an electromagnetic radiation zero

in its tree amplitude, then the tree reaction with additional photons and gluons produced
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in the final state will too, occurring when these additional particles travel parallel to the

original photon, sharing its original energy. This answer is given to us already in Ref. [5].

In the present paper, we revisit this question, in view of the experimental change of

scenery and the fact that the higher-order zeros are not so well known. The purpose is

to call attention to our previous results on multi-photon/gluon electromagnetic radiation

zeros, and to try to combine them into a self-contained and clear picture through detailed

examples. The examples are laid out in Sec. II. In the next two sections, we use the examples

to illustrate the survival theorem [5] for neutral, massless particles, and the decoupling

theorem [12, 13] for an external electromagnetic plane wave field. Finally, we consider the

relevance of the multi-gauge-boson emission zeros as they pertain to the new generation of

electron-proton and proton-antiproton colliding beams.

II. Examples

We wish to present several tree amplitudes for the emission/absorption of multiple gauge

bosons. The first intention is to exhibit their

zero structure, and also to show a simple counter-example, in which there are multiple

photons but neither a physical nor unphysical radiation zero. Second, we focus on a reaction

relevant to experiment.
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A. Scalar particles and photons

Consider the radiative process where a scalar particle decays in lowest order through a

single-vertex scalar interaction into n − 1 other scalar particles plus one photon. Denoting

the electric charges by Qi, the reaction is

Q1 → Q2 + . . .+ Qn + γ(q)

The diagrams of the tree amplitude are illustrated in Fig. 1 and we can write it as

M =
n∑
i=1

(
Qi

pi · q
− Qj

pj · q

)
gδipi · ε (2.1)

where j is fixed and can take any i value, and δi = −1(+1) for incoming (outgoing) particles.

The fact that we could rearrange (factorize) (2.1) as shown [14, 3, 4, 5] is due to the

presence of the zero. It is evident that the amplitude vanishes in the null zone defined by the

n− 1 equations [these actually reduce to n− 2 independent ones by charge and momentum

conservation]

Qi

pi · q
=

Qj

pj · q
, all i, j (2.2)

That is, the kinematical conditions for the null radiation zone are that all particles must

have the same charge to light-front-energy ratio. The ratios are recognized as the factors

arising from the attachment of a photon to the various external lines, with the remarkable

feature that these conditions also suffice to cancel out internal-line attachments in the tree

amplitudes. (One sees immediately why closed-loop, higher-order amplitudes will not be

nullified: Integrated internal loop momenta are certainly not fixed.)
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We digress for the moment. Recall that the radiation amplitude zero is not spoiled by

photons attached to internal tree lines. For example, if we look at a tree source graph with

one internal line, the photon attachments can be rearranged into a sum over two vertex

terms. The vertex terms can themselves be rearranged as in (2.1). In particular, consider

the process

Q1 → Q2 + (Qint → Q3 + . . .+Qn) + γ(k)

where Qint = Q1 −Q2 represents a virtual particle of mass m. The total amplitude for this

process is obtained by attaching the photon in all possible ways to the external lines and

also the internal line (see Fig. 2). Using the radiation decomposition identity [3, 5] on the

term with photon emission from the internal line (p′ = p− q)

1

p′2 −m2
Q(p′ + p) · ε 1

p2 −m2
=

1

p′2 −m2

Q

p′ · qp
′ · ε− p · ε Q

p · q
1

p2 −m2
(2.3)

this amplitude can be written as two clusters corresponding to corrections to the two source

vertices

M = −iε∗ ·
{[

Q1p1

p1·q −
Q2p2

p2·q −
Qint(p1−p2)

(p1−p2)·q

]
1

(p1−p2−q)2−m2

−
[∑n

i=3
Qipi
pi·q −

Qint(p1−p2)
(p1−p2)·q

]
1

(p1−p2)2−m2

} (2.4)

Since the quantity in each square bracket vanishes under the zero conditions, we see that the

zeros persist at the same location in phase space, independent of the mass of the internal

particle. In its clustered form this example will help the reader follow the more general

discussion given in Sec. III.

Now add another photon. The process we consider is

Q1 → Q2 + . . .+ Qn + γ(q1) + γ(q2).
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Although we still restrict ourselves to spinless charges with scalar self-interactions, the sub-

sequent discussion will make it clear how spin and gauge interactions can be incorporated.

We again consider only a single n-scalar vertex.

It is not hard to write down the lowest-order tree amplitude such that the zero is man-

ifest. We can rearrange the sum of diagrams, using experience gained from our previous

factorization study to rewrite some of the terms,

M = g
∑n
i=1

δiQi
pi·q1pi · ε

∗
1

∑n
k=1

(
Qk
pk·q2 −

Qj
pj ·q2

)
(δkpk + δikq1) · ε∗2

+g
∑n
i=1

(
Qi

pi·(q1+q2)
− Qj

pj ·(q1+q2)

)
δiQi(−ε∗1 · ε∗2)

+q1 · q2g
∑n
i=1Q

2
i

[
1

δipi·(q1+q2)+q1·q2
1

pi·q2
1

(δipi+q1)·q2 pi · ε
∗
1 (δipi + q1) · ε∗2

− 1
pi·q1

1
pi·q2

1
(δipi+q1)·q2 δipi · ε

∗
1 (δipi + q1) · ε∗2

+ 1
δipi·(q1+q2)

1
δipi·(q1+q2)+q1·q2 ε

∗
1 · ε∗2

]
+g

∑n
i=1

Q2
i

δi pi·(q1+q2)+q1·q2
1

pi·q2 (q2 · ε∗1pi · ε∗2 − q1 · ε∗2 pi · ε∗1)

(2.5)

On the face of it, one might assume that we need three different sets of conditions for

(2.5) to vanish. The first set is the null zone conditions for q1

Qi

pi · q1
=

Qj

pj · q1
, all i, j (2.6)

The second set is the analogous conditions for q2

Qi

pi · q2

=
Qj

pj · q2

, all i, j (2.7)

And the third is that the two photons must be parallel (their momenta must be proportional

to the same null vector, q1, q2 ∝ n).

Actually, one set of null zone conditions is all we need. From the conditions (2.6), for

example, taken alone, it follows that the second photon, with its zero charge, must be
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massless and parallel to the first photon, and therefore the set (2.7) follows as well. We

refer the reader to Sec. III and a related discussion in [5]. Equation (2.6) is therefore

sufficient.

B. Photons and Gluons

Next we look at an example very much relevant to experiment. This will serve to introduce

spin, another massless neutral particle, and a parton reaction to which we return later in

the paper. Consider the radiative decay process where quark-antiquak annihilation leads to

a W -boson plus a gluon plus a photon,

ud → W+ + g + γ

The eight diagrams of its tree amplitude are indicated in Fig. 3. Drawing again on our

previous experience[5], we can collapse the results into the following form

M = ieGud
V−Av̄(p2)

{
Q2,color

2p2·k

[∑3
i=1

(
Qi
pi·q −

Qj
pj ·q

)
δipi · εq (6 k 6 εk + 2p2 · εk) 6 ε3

+
(
Q1

p1·q −
Q3

p3·q

)
(6 k 6 εk 6 εq q · ε3 − 2 6 q εq · ε3 p2 · εk + 2 6 εq q · ε3 p2 · εk)

+
(
Q1

p1·q −
Q2

p2·q

)
6 q 6 εq p2 · εk 6 ε3

]
−Q1,color

2p1·k

[∑3
i=1

(
Qi
pi·q −

Qj
pj ·q

)
δipi · εq 6 ε3 (6 εk 6 k + 2p1 · εk)

+
(
Q2

p2·q −
Q3

p3·q

)
(6 εq 6 εk 6 k q · ε3 − 2 6 q εq · ε3 p1 · εk + 2 6 εq q · ε3 p1 · εk)

+
(
Q2

p2·q −
Q1

p1·q

)
6 ε3 p1 · εk 6 εq 6 q

]
+
(

Q1Q1,color

p1·(q+k)−q·k −
Q2Q2,color

p2·(q+k)−q·k

)
εq · εk 6 ε3

+ terms with factors 6 k 6 q, q · k, k · εq, or q · εk } (1− γ5)u(p1)

(2.8)
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where j is any fixed number j ∈ [1, 3], and ε3 = ε∗(p3), etc. Qi,color refers to the SU(3)

Clebsch-Gordan coefficients; in this case Q1,color = Q2,color. Notice that we have arranged

the expression to show u-d̄ crossing symmetry.

First we consider the electromagnetic radiation zero. It is evident that the amplitude

(2.8) vanishes in the photon null zone defined by

Qi

pi · q
=

Qj

pj · q
, all i, j (2.9)

As before, this is all we need; (2.9) forces k ∝ q and in turn this implies

Qi

pi · k
=

Qj

pj · k
, all i, j (2.10)

Second, we consider the chromodynamic radiation zero. We are reminded that there are

zeros associated with any gauge group when the corresponding massless gauge bosons are

emitted [5, 14]. In this reaction, we can think of two ways its tree amplitude can vanish:

electromagnetic interference and chromodynamic interference. Instead of thinking of the

gluon as just another particle ( electrically neutral) produced along with the photon, let

us consider it as the radiation due to the color charges (some of which are zero; indeed,

the photon is now the “neutral” massless co-produced particle that must be parallel to the

gluon). The analogous zeros for massless gluon radiation depend on the color charges. The

color null zone is defined by

Qi,color

pi · k
=

Qj,color

pj · k
, all i, j (2.11)

But these demand that the colorless W -boson be massless (which it is not), and that all

particles be parallel, a singularly uninteresting limit. One can show, however, that the
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amplitude (2.8) does have this unphysical zero.

C. Counterexamples: Compton

A question about Compton amplitudes leaps to mind when radiation zeros are studied. The

null zone for photon-electron elastic scattering, for example, is easily seen to be the forward

zero-momentum-transfer limit. But it is well-known that the forward amplitude does not

vanish. Why is there no amplitude zero in this physical limit?

This amplitude can be rearranged as

M = iū(p2)
[(

Q1

p1·q1Q2 − Q2

p2·q1Q1

)
6 ε∗2(6 ε1 6 q1 − 2p1 · ε1)

−Q1Q2

p2·q1 (6 ε1 q1 · ε∗2+ 6 ε∗2 q2 · ε1)
]
u(p1)

+iQ1Q2

p2·q1 ū(p2) 6 q1 u(p2) ε1 · ε∗2

(2.12)

where the last term does not vanish under the conditions in (2.6). (Recall that they force

q1 ∝ q2 so that q1 · ε2 = 0, etc.)

And this is not an electron spin effect; the forward amplitude is nonzero for photon-boson

scattering as well. The amplitude for Compton scattering of scalar particles has a similar

term (now arising from the seagull graph) which is not zero in the null zone

M = 2i
(

Q2

p2·q1 Q1 − Q1

p1·q1 Q2

)
p1 · ε1 p2 · ε∗2

−2iQ1Q2

p2·q1 [(p1 − q2) · ε1 q1 · ε∗2 − q2 · ε1 p2 · ε∗2]

+2iQ1Q2 ε1 · ε∗2

(2.13)

The reason the Compton amplitudes are not null in the null zone lies in the forward limit

where there is no momentum transfer. We turn our attention to the general proof in order

to understand, among other things, this exceptional case.
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III. The General Result

We can understand where there are multi-photon zeros in gauge theoretic tree amplitudes

by appealing to a general radiation interference theorem for single-photon zeros and certain

neutral particle lemmas associated with it [5]. In this section, we revisit the proof of those

lemmas to show two things: First, how the examples of the previous section fit into the

arguments, with the neutral particles identified as additional photons. Second, how the

proof is readily generalizable to multi-boson zeros for the emission of other massless gauge

bosons. This opportunity lets us reference also a larger, unpublished version [15] of the

previous work.

The presence of a radiation zero for single-photon emission means that it possible to

rewrite the tree amplitude in a factorized form, really, a sum of factored terms in one-to-one

correspondence to the set of independent conditions, such as those in (2.2). A radiation

representation has been found in [5] where the formulas are organized according to the

original vertices in the RsourceS graphs to which the photons would be attached. The

radiation amplitude can be written as a sum of vertex attachments with coefficients related

to the rest of the original source graph. Each vertex term V has a radiation representation

of the form

Mγ(V ) =
n∑
i=1

δipi · q∆ij(Q)∆ik(δJ) (3.1)

with any fixed choice for j and k, and the definition

∆ij(x) =
xi
pi · q

− xj
pj · q

(3.2)
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It is supposed that there are n internal and external legs on the vertex, and Ji is the product

of the photon-emission current for the ith leg and the remaining factors of the original vertex

amplitude. For other gauge groups, the charges Qi refer to the Clebsch-Gordan coefficients

coupling an incoming particle to an outgoing particle through the gauge boson vertex. See

Secs. VI and X of [5] for more detail.

We can use the above development for a multi-photon argument, by considering one of

the source’s external legs to correspond to another photon. (Although neutral internal lines

are not of interest to us, they do not spoil radiation zeros anyway.) It might appear that

there is no zero if one of the original external particles r has zero charge, Qr = 0. One term

in a ∆ factor in (3.1) is eliminated and hence that factor will not vanish in the null zone.

But this is not the whole story.

Looking at the terms in the ∆ factors in (3.1), we still get zero if, in addition to ∆ij(Q) = 0

(for j, k 6= r) we have pr · q = 0 and Jr = 0 in the null zone. So the neutral particle must

be massless (which is fine for photons!) and travel parallel to the photon (which are just

the conditions derived [5, 15] from the zero-charge limit, Qr → 0, of the null zone equations,

forcing pr · q → 0). Furthermore Jr can vanish when pr ∝ q for a massless vector neutral

particle r if it is coupled to a conserved current (which is also fine for photons!) in a

“nonforward” direction (explained below). To understand this vanishing for a given photon

attachment, let us go over the various current contributions for pr ∝ q. The convection

current pr · ε is clearly zero, as is the contact current which involves the contraction pαr ωαβ

where ωαβ = qα εβ − εα qβ . The vector spin current ωαβηβr = qα ε · ηr contains the factor qα
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(which is to be contracted into the conserved current vertex source of the vector particle).

This factor is proportional to the momentum transferred to the vertex, ∆p = pr ± q for

photon emission from a particle in the final/initial state. Thus, if the momentum transfer

∆p is nonzero (“nonforward scattering”), the vector spin current contribution vanishes by

current conservation. When the momentum transfer is zero, however, we no longer have any

proportionality relation, the vector spin current contribution is not zero, and neither is the

amplitude.

The point is that if the null zone corresponds to forward scattering of massless vector

particles (like photons) then the amplitude is not null. The last terms in the Dirac and

scalar Compton amplitudes, (2.12) and (2.13), respectively, do not vanish under the null

zone conditions, and exemplify the vector currents of which we

The lemmas in the references [5, 15] tell us that an arbitrary number of neutral external

particles can coexist with a radiation zero, as long as they are all massless and all travel

parallel to the photon, and hence to each other. We can take the special case of their all

being photons, each certainly coupled to a conserved current, and we merely need to avoid

forward scattering limits where the picture is of a subset of initial photons turning into a

subset of final photons without a change in the overall momentum of the photon “pack”.

Considering only final photons, for example, eliminates this problem.

The resulting null zone is consistent with the zero-charge limit of the general null zone

conditions. And in fact it is often useful to think of the final (or initial) multi-photon subset

as a massless composite particle.

13



We cannot write radiation amplitudes for multi-boson emission in which the zeros are

made manifest by a series in ∆ij factors. As seen in the examples (2.5) and (2.8), some

terms do not have these factors, yet vanish in the null zone by virtue of their momentum

and current dependence. These terms are again related to the currents Jr analyzed above.

We can, however, establish simple forms in the limit where all photons have the same

momentum. This is related to the all-orders solution for an external plane-wave field coming

up next.

IV. The More General Result: An External Field

It has been pointed out previously [12] that multiphoton zeros follow from a decoupling

theorem for the scattering of a system of particles immersed in an exernal electromagnetic

plane wave. In this section we review and elaborate upon the details showing this connection,

and we use one of the examples in Sec. II to demonstrate the result.

For a particle with charge Q and mass m coupled to an external electromagnetic plane

wave Aµ = Aµ(n · x), n2 = 0 (gauge n ·A = 0), the wave functions for spins 0, 1/2, 1 can all

be written in the form [12, 13]

Ψ(x) = ULTχ(x) (4.1)

where χ is the free solution and U ,L,T are local gauge, Lorentz, and displacement transfor-

mations, respectively. Explicitly, we have for spins {0, 1/2} and a free plane wave,

χp(x) = e−ip·x {1; ω(p)} (4.2)
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where p2 = m2, 6 pω = mω, and

L = {1; 1 + Q
2n·p 6 n 6 A}

U(θ) = eiθ, θ = Q2

2n·p
∫ n·x dz A2(z)

T (d) = e−ip·d, dµ = Q
n·p
∫ n·x dz Aµ(z)

(4.3)

The spin-one results can be found in the references [12, 13].

Consider initially the scattering of a system of particles with no external field. The tree

amplitude is

T =
∏
V

∏
I

∫
dpI D(pI)V (k) (4.4)

with internal propagators D(pI ) and vertex factors V (k) [k legs and including delta functions

δ(
∑k pi)]. If we turn on the external electromagnetic field A, the internal and external legs

of the tree amplitude (4.4) are altered according to the Fourier transform of (4.1) changing

the δ-functions to

δext =
k∏
j=1

(ULT )jδ(
k∑
i=1

pi) (4.5)

where it is understood that we replace n · x by in · ∂/∂pj in the (ULT )j . Supplementary

changes for vertices with derivative couplings are discussed in [12, 13], but in any case

(4.5) helps us understand the changes in particle momenta due to the external field. For

a monochromatic external wave, Aµ = 2Re (Nεµe−iq·x), with frequency ω and momentum

q = ωn, we see how harmonics arise through the identity

(e±q·∂/∂p)lδ(p) = δ(p± lq) (4.6)
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To see the generalized radiation zero, we ask that the conditions analogous to (2.6) be

satisfied

Qi

n · pi
= same for all external particles i (4.7)

The effect of ∂/∂pj on the delta function in (4.5) is independent of j, implying the various

θj and dj of (4.3) are also independent of j. From charge conservation, Lorentz invariance,

and momentum conservation, all the phases (group parameters) cancel out:

k∏
j=1

(ULT )j = 1, in the “null zone” defined by (4.7) (4.8)

We see that the external field effects have disappeared; the field is decoupled in the null

zone. Even though it may have been kinematically allowed for the particle system to evolve

to some final state under the influence of the external field, the probability amplitude for

that is zero!

An expansion order-by-order of (4.5) in the various charges of the particles is in one-to-

one correspondence with the sequence of amplitudes for n collinear photons. For example,

attaching n photons with the same momentum q (and polarization) to a given leg in all

possible ways, remembering the seagull graphs for scalars, leads to an exponential form

when summed over n. In this way, we see the connection between the zeros for an n-photon

amplitude and the decoupling theorem. When the exponentials collapse to unity, every such

amplitude is zero. To generalize to photons with different polarizations, we can replace QA

by Q1A1 + Q2A2 + ... in (4.3) and, as long as the different external fields are collinear with

respect to their null vectors ni, the forms (4.1) and (4.5) continue to hold. The expansion in
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charge produces now the more general n-photon amplitudes, with independent polarization

for each photon. Again a decoupling theorem exists and implies the higher-order radiation

zeros amplitude-by-amplitude.

It is satisfying to compare an expansion of (4.5) with our examples. Equation (2.5) in

the limits q1 = q2 = q and ε1 = ε2 = ε is

M = g
∑
i

(
Qi
pi·q −

Qj
pj ·q

)
δipi · ε∗

∑
k

(
Qk
pk·q −

Ql
pl·q

)
δkpk · ε∗

−1
2
g(ε∗)2∑

i

(
Qi
pi·q −

Qj
pj ·q

)
δiQi

(4.9)

This checks perfectly against the second-order term; the first line comes from two powers

of “d terms”, and the second line corresponds to one power of “θ terms”, refering to the

nomenclature in (4.3).

V. Experiments and Discussion

In this last section we discuss reactions involving the production of multiple photons, gluons,

or supersymmetric partners thereof, which are well approximated by tree amplitudes, and

where their tree amplitudes have radiation amplitude zeros (RAZ). We often have in mind

the possibility that the zeros may be sensitive to fundamental particle parameters.

There have already been some limits set on the W magnetic moment parameter κ from

Wγ and radiative W decay at CDF (Fermilab) and UA2 (CERN). The results [16] are

−2.4 ≤ κ ≤ 3.7 (CDF)

−3.1 ≤ κ ≤ 4.2 (UA2)

(5.1)
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So far, since the number of events are limited [17], only the total number of events have been

used to obtain these limits. The new run at CDF and also D0 will obtain many more events

and then one should be able to obtain an angular distribution and, hopefully, see the RAZ.

For a related discussion, see [18]. Also, the rapidity correlation study by Baur et al. [7] is a

new and effective tool in the radiation zero analysis.

Of course the RAZ occurs only if κW = 1, or gW = κW + 1 = 2. Thus this is a test of

the Standard Model (SM) in which κW = 1 (plus radiative corrections). Recently Brodsky

and Hiller [19] have shown that a composite particle has in general non-standard magnetic

and quadrupole moments. However, in the limit of zero radius the moments take their SM

values. This has been shown for spin 1. The spin 1/2 case was treated earlier [20]. Thus

the RAZ in the reactions described previously and in what follows constitute a test of the

compositeness of the W boson.

Consider first the 2γ double bremsstrahlung process

Q1 +Q2 → Q1 +Q2 + γ + γ (5.2)

This process is being studied by Ward et al. [21]. As a check of this calculation, one may

impose the null-zone conditions described in Sec. II, irrespective of whether the zero is

physical or not. The differential cross section should then vanish. If it does not, there is

an error in the calculation. Such computational checks are a useful feature of the presence

of radiation zeros, particularly in the higher-order QED and QCD calculations that have

become increasingly relevant to experimental analysis.
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We come back now to the processes

W → dūγg (5.3)

dū→Wγg (5.4)

We have described earlier in Sec. II that these reactions have zeros essentially at the same

places as the original reactions without the gluons, but now with the gluon and photon

traveling together. These gluon processes could be seen in [22]

pp(p̄)→ WγgX → (e, µ)νγgX (5.5)

pp(p̄)→ WX → (e, µ)νγgX

where a sharp dip should persist. These again occur only if κW = 1, or gW = 2 and, therefore,

are a test of the SM. Here we must be able to distinguish gluon jets from quark jets and

remove the qq̄ background. One could imagine tagging gluon jets with photons, and thereby

verifying the consistency of jet identification algorithms. One would look for photons inside

gluon jets and find no events when the zero conditions are satisfied. Such an experiment,

although difficult would be very interesting.

The difficulty of detecting the photon and jet together has been emphasized by Diakonos

et al. [23]. In their recent paper, they refer to the neutral particle extension [5] of the radiation

zeros, noting that the zero arising when the photon and gluon are parallel (and at the original

RAZ magic angle) is a powerful check on the matrix element calculation. Although they are

much less sanguine about the experimental consequences, there is the possibility that the
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recent approach by Baur et al. [7] may be adapted to the W -photon-gluon final state, and

improve the signal to noise.

One could also look at HERA (DESY) for the process [9, 10, 11]

e+u→ e+uγg (5.6)

This could be seen in

e+p→ e+pγgX (5.7)

where a dip should persist. In the corresponding process

e−p→ e−pγg (5.8)

the zero is washed out [10, 11].

In addition, we can consider supersymmetric versions of the radiation zeros [24, 25]. For

example, in

χ+ → χ0ud̄ (5.9)

a RAZ occurs in the supersymmetric limit, when

tan β = 1 (5.10)

and the masses are equal. In the context of this paper, it is to be noted that adding photons

or gluons, or their supersymmetric partners, again does not subtract the zeros.

Recently, Ohnemus and Stirling [26] considered the process

pp→W±γγX (5.11)
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which is obtained from the elementary processes

q + g → W + γ + q(→ γX) (5.12)

q + q̄ →W + γ + g(→ γX) (5.13)

q + q̄ →W + g(→ γX) + g(→ γX) (5.14)

q + q̄ →W + q(→ γX) + q̄(→ γX) (5.15)

q + g → W + q(→ γX) + g(→ γX) (5.16)

g + g → W + q(→ γX) + q̄(→ γX) (5.17)

These processes were considered as background to the search for the Higgs boson via asso-

ciated production with W bosons. This process

pp→W +H(→ γγ) +X (5.18)

provides a very clean signature and could be used at the SSC or the LHC to find the Higgs.

Process (5.13) has the physical RAZ we have been talking about. One could hope that a

dip persists in (5.11); we note again the recent work of Baur et al. [7]. A rough estimate

suggests that one could obtain 200 such events at the SSC.

ACKNOWLEDGMENTS

It is a pleasure for MAS to acknowledge the Aspen Center for Physics and the theory

group at SLAC for their gracious hospitality, and he would also like to thank Stanley Brodsky

and George Siopsis for valuable discussions. His work was supported by the U. S. Department

21



of Energy under Grant No. DE-FG05-84ER40215. RWB and MEC are supported by the

National Science Foundation and its REU program, and the CWRU industrial problem

solving group, and are grateful to Kenneth Kowalski for discussions on these matters through

the years.

References

[1] K.O. Mikaelian, M.A. Samuel, and D. Sahdev, Phys. Rev. Lett. 43, 746 (1979).

[2] R.W. Brown, D. Sahdev, and K.O. Mikalian, Phys. Rev. D 20, 1164 (1979).

[3] S.J. Brodsky and R.W. Brown, Phys. Rev. Lett. 49, 966 (1982).

[4] M.A. Samuel, Phys. Rev. D 27, 2724, (1983).

[5] R.W. Brown, K.L. Kowalski and S.J. Brodsky, Phys. Rev. D 28, 624 (1983).

[6] M.A. Samuel, N. Sinha, R. Sinha and M.K. Sundaresan, Phys. Rev. D 44, 2064 (1991).

[7] Very recently, it has been shown that rapidity correlations involving the photon and

the charged decay lepton and not requiring the reconstruction of the parton center of

mass frame, display a pronounced dip corresponding to the radiation zero: U. Baur,

S. Errede, and G. Landsberg, FSU-HEP-930727, to appear in the Proceedings of the

Workshop “Physics at Current Accelerators and the Supercollider”, Argonne National

Laboratory, June 2-5, 1993. See also U. Baur and D. Zeppenfeld, Nucl. Phys. 308B,

127 (1988); U. Baur and E.L. Berger, Phys. Rev. D 41, 1476 (1990).

22



[8] T.R. Grose and K.O. Mikaelian, Phys. Rev. D 23, 123 (1981).

[9] C.L. Bilchak, J. Phys. G: Nucl. Phys. 11, 1117 (1985).

[10] G. Couture, Phys. Rev. D 39, 2527 (1987).

[11] J. Reid, G. Li, and M.A. Samuel, Phys. Rev. D 41, 1675 (1990).

[12] R.W. Brown and K.L. Kowalski, Phys. Rev. Lett. 51, 2355 (1983).

[13] R.W. Brown and K.L. Kowalski, Phys. Rev. D 30, 2602 (1984).

[14] C.J. Goebel, F. Halzen, and J.P. Leveille, Phys. Rev. D 23, 2682 (1981).

[15] R.W. Brown, K.L. Kowalski, and S.J.Brodsky, Report No. Fermilab-82/102, 1982 (un-

published).

[16] M.A. Samuel, G. Li, N. Sinha, R. Sinha and M.K. Sundaresan, Phys. Lett. 280B, 124

(1992).

[17] J. Aitti et al., Phys. Lett. 277B, 194 (1992);

M. Timko, ”Status of WGamma Search at CDF”, APS Meeting (Washington, DC, April

1990) unpublished.

[18] J. Reid and M.A. Samuel, Phys. Rev. D 39, 2046 (1989).

[19] S.J. Brodsky and J.R. Hiller, Phys. Rev. D 46, 2141 (1992).

[20] S.J. Brodsky and S.D. Drell, Phys. Rev. D 22, 2236 (1980).

23



[21] B. Ward, private communication.

[22] A careful assessment of QCD corrections to the original radiation zero has been given

by J. Smith, W.L. van Neerven and J.A.M. Vermaseren, Z. Phys. C 30, 621 (1986); J.

Smith, D. Thomas and W.L. van Neerven, Z. Phys. C 44, 267 (1989); S. Mendoza, J.

Smith and W.L. van Neerven, Phys. Rev. D 47, 3913 (1993).

[23] F.K. Diakonos et al., Phys. Lett. 303B, 177 (1993).

[24] R.W. Brown and K.L. Kowalski, Phys. Lett. 144B, 235 (1984).

[25] D. DeLaney, E. Gates and O. Tornqvist, Phys. Lett. 186B, 91 (1987).

[26] J. Ohnemus and W.J. Stirling, Phys. Rev. D 47, 336 (1993). See also E.N. Argyres et

al., Phys. Lett. 280B, 324 (1992).

24



Figure Captions.

1. Lowest-order diagrams for decay of a scalar particle through a single scalar interaction

into n− 1 scalar particles and a photon.

2. Diagrams for a photon attached to a sample tree source graph with one internal line.

3. Diagrams for the radiative decay process where quark-antiquark annihilation leads to a

W-boson plus a photon and a gluon.
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