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STANLEY J. BRODSKY 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94309 

ABSTRACT In these lectures I will discuss three central 
topics in quantum chromodynamics: (1) the use of light cone 
quantization and Fock space methods to determ ine the long and 

-short-distance structure of quark and gluon distributions within 
hadrons; (2) th e role of spin, heavy quarks, and nuclei in unrav- 
eling fundamental phenomenological features of QCD; and (3) a 
new approach to understanding the scale and scheme dependence 
of perturbative QCD predictions. 

1. INTRODUCTION 

One of the most challenging problems in theoretical high energy physics 
is to compute the bound-state structure of the proton and other hadrons 

_ from  quantum chromodynamics (QCD), the field theory of quarks and 
gluons. The goal is to not only calculate the spectrum of hadron masses 
from  first principles, but also to derive the momentum and spin distri- 
butions of the quarks and. gluons which control high energy hadron 
interactions. In the first chapter, I will discuss new methods based 
on “light-cone” quantization which have been proposed as alternatives 
to lattice theory for solving non-perturbative problems in QCD and 
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other field theories. The basic idea is a generalization of Heisenberg’s 
pioneering matrix formulation of quantum mechanics: if one could nu- 
merically diagonalize the matrix of the Hamiltonian representing the 
underlying QCD interaction, then the resulting eigenvalues would give 
the hadron spectrum, while the corresponding eigenstates would de- 
scribe each hadron in terms of its quark and gluon degrees of freedom. 

The new ingredient which appears to make this method tractable 
is quantization on the light-cone-which sets boundary conditions as 
if the observer were travelling at the speed of light! For example, if 
one shines a laser directed along the z-axis on an atom, the scattered 
photons determine the coordinates of each electron at a fixed value of 
t - Z/C. One then can use the equations of motion of quantum elec- 
trodynamics QED to predict the coordinates of the electrons at later 
values of t - z/c. 

The foundations of light-cone quantization date back to Dirac, who 
in 1949 showed that there are remarkable advantages in quantizing 
relativistic field theories at fixed “light-cone time” t - Z/C rather than 

- ordinary time. In the traditional formulation, handling a moving bound 
state is as complicated as diagonalizing the Hamiltonian itself. On the 
other hand, quantization on the light-cone can be formulated without 

. --‘having to ch oose a specific frame of reference. Thus a light-cone QCD 
Hamiltonian describes bound states of confined relativistic quarks and 
.gluons of arbitrary four-momentum. It also provides a precise defini- 
tion of hadron structure in terms of quarks and gluons and a general 
calculus for computing relativistic scattering amplitudes, form factors, 
electroweak transitions, and other hadronic phenomena. 

The problem of computing the hadronic spectrum and the corre- 
sponding light-cone wavefunctions of QCD can thus be reduced to the 
diagonalization of a matrix representation of the light- cone Hamilto- 
nian. This method, called “discretized light-cone quantization” (DLCQ), 
has now been successfully applied to a number of quantum field theories 
in one-space and one-time dimension, including QCD, quantum elec- 
trodynamics, Yukawa models, and the two-dimensional matrix models 
of superstring theory. For QCD(l+l), complete numerical solutions 
for the spectrum and light-cone wavefunctions can be obtained as a 
function of the coupling strength, the quark masses, and the number 
of flavors and colors. 

Light-cone quantization of QCD in physical space-time is a highly 
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challenging numerical computational problem. In the DLCQ method, 
developed by H. C. Pauli and myself, the size of the quark and gluon 
basis and the discretization of the transverse momenta quickly leads 
to very large matrices. In addition, the Hamiltonian must be supple- 
mented by renormalization terms. Approximate methods have been 
developed which use effective light-cone Hamiltonians and a truncation 
of the quark and gluon basis states (the “Light-Front Tamm-Dancoff 
method”) or a combination of light-cone quantization with traditional 
lattice gauge theory in the transverse dimensions. In the case of quan- 

.tum electrodynamics in 3+1 dimensions, the positronium spectrum has 
been obtained at large coupling strength (a = 0.3) by solving an inte- 
gral equation derived from the truncated QED light-cone Hamiltonian. 

The most subtle problem now confronting light-cone quantization 
methods is how to understand the spontaneous symmetry breaking 
normally associated with the structure of the vacuum. In light-cone 
quantization the momentum-independent “zero modes” of the quan- 
tum fields are determined from constraint equations derived from the 
equations -of motion‘ of the theory. Although the vacuum is simple in 
light-cone quantization, the values of the zero modes determine the 
phase and physics of the theory. There are other fundamental renor- 

‘malization and gauge invariance issues that still have to be completely 
understood, such as how symmetries lost in the truncation to a finite 
-basis of free quark and gluon states can be restored, how to deal con- 
sistently with massless particles, and how to control singularities. All 
of these problems make the field quite exciting and challenging. 

In addition to its potential for solving QCD problems, light-cone 
quantization has already led to many new insights into the quanti- 
zation of gauge theories. Light-cone quantization not only provides 
a consistent language for representing hadrons as QCD bound-states 
of relativistic quarks and gluons, but it also provides a novel method 
for simulating quantum field theory on a computer and understanding 
non-perturbative features of QCD. 

In the second chapter, I will discuss a number of interesting spin, 
heavy quark, and nuclear effects which test fundamental features of 
perturbative and non-perturbative QCD. These include constraints on 
the shape and normalization of the polarized quark and gluon struc- 
ture functions of the proton; the principle of hadron helicity retention 
in high TV inclusive reactions; predictions based on total hadron he- 
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licity conservation in high momentum transfer exclusive reactions; the 
dependence of nuclear structure functions and shadowing on virtual 
photon polarization; and general constraints on the magnetic moment 
of hadrons. I also will discuss the implications of several measurements 
which are in striking conflict with leading-twist perturbative QCD pre- 
dictions, such as the extraordinarily large spin correlation ANN ob- 
served in large angle proton-proton scattering, the anomalously large 
pn branching ratio of the J/t), and the rapidly changing polarization 
dependence of both J/G an continuum lepton pair hadroproduction d 
observed at large XF. 

In the third chapter, which is based on recent work with Hung Jung 
Lu, I will discuss a crucial problem in perturbative quantum chromody- 
namics: the setting of the renormalization scale in perturbative QCD 
predictions. First I discuss the use of generalized renormalization group 
equations which allow a careful analysis of the theoretical error when 
the scale is unspecified. I also discuss difficulties encountered when one 
uses various scale setting procedures. I then discuss the validity and 
ii-se of the automatic scale fixing procedure developed by Lepage and 
Mackenzie and myself. 

. .-, -. - 

t 2. LIGHT-CONE QUANTIZATION AND QCD 

A primary goal of particle physics is to understand the structure of 
hadrons in terms of their fundamental quark and gluon degrees of free- 
dom. It is important to predict not only the spectrum of the hadrons, 
but also to derive from first principles the hadron structure functions 
that control inclusive reactions, the form of the hadron distribution 
amplitudes that control exclusive processes, and the behavior of the 
fragmentation functions which control the transition between quark 
and gluon jets and hadrons. Such questions will evidently require an 
understanding of confinement and other properties of non-perturbative 
quantum chromodynamics at the amplitude level. The first, but non- 
trivial, step toward this goal is to give a consistent definition of hadron 
wavefunctions, the amplitudes which describe a composite system con- 
sisting of an arbitrary number of confined relativistic quarks and gluons. 

There are many reasons why detailed information on hadron wave- 
functions in QCD is critical for future progress in particle physics. For 
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example, in electroweak theory, the central unknown required for re- 
liable calculations of weak decay amplitudes are the hadronic matrix 
elements: the computation of the B meson decay into particular hadron 
channels requires detailed knowledge of both the light and heavy hadron 
wavefunctions. The coefficient functions in the operator product expan- 
sion needed to compute leading and higher twist structure functions 
and other inclusive cross sections are also essentially unknown. Form 
factors and exclusive scattering processes depend in detail on the ba- 
sic amplitude structure of the scattering hadrons in a general Lorentz 
frame. Even the calculation of the proton magnetic moment requires 
an understanding of hadron wavefunctions in a boosted frame. 

In this chapter I will discuss the light-cone quantization of gauge 
theories from  two perspectives: as a language for representing hadrons 
as QCD bound-states of relativistic quarks and gluons, and also as 
a novel method for simulating quantum field theory on a computer. 
The light-cone Fock state expansion of wavefunctions at fixed light- 
cone time in fact provides a precise definition of the parton model 
and a general calculus for hadronic matrix elements. The Hamilto- 
nian formulation of quantum field theory quantized at fixed light-cone 
time has led to new non-perturbative calculational tools for numerically _, -. - 
solving quantum field theories.’ In particular, the “discretized light- 

cone quantization,” method (DLCQ)” h as b een successfully applied to 
several gauge theories, including QCD in one-space and one-time di- 
mension, and quantum electrodynamics in physical space-time at large 
coupling strength. Other non-perturbative methods based on light- 
cone quantization, such as the transverse lattice3 and the Light-Front 

Tamm-Dancoff method4 are also being developed as new alternatives 
to conventional lattice gauge theory. 

There have been relatively few calculations of the wavefunctions of 
hadrons from  first principles in QCD. The most interesting progress 
has come from  QCD sum rule calculations: and lattice gauge the- 

ory 677 both of which have provided predictions for the lowest moments 
(x1) of the proton’s distribution amplitude, $p(xi, &). The distribu- 
tion amplitude is the fundamental gauge invariant wavefunction which 
describes the fractional longitudinal momentum distributions of the va- 
lence quarks in a hadron integrated over transverse momentum up to 
the scale 9.” However, the results from  the two analyses are in strong 
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disagreement: the QCD sum rule analysis predicts a strongly asymmet- 
ric three-quark distribution (see Fig. l), whereas the lattice results: 
obtained in the quenched approximation, favor a symmetric distribu- 
tion in the x;. Models of the proton distribution amplitude based on a 
quark-di-quark structure suggest strong asymmetries and strong spin- 
correlations in the baryon wavefunctions.’ Even less is known from first 
principles in non-perturbative QCD about the gluon and non-valence 
quark contributions to the proton wavefunction, although data from 
a number of experiments now suggest non-trivial spin correlations, a 
significant strangeness content, and a large z component to the charm 
quark distribution in the proton.” 

It is also interesting to note that light-cone wavefunctions of the 
projectile hadron in large measure control the distributions of final 
state hadrons produced in the fragmentation region of inclusive pro- 
cesses AB + CX. At high energies, the Fock states of large invariant 
mass M survive for times T = Z&,/M2 and are materialized by the 
interactions of the slowest parton spectators in the target. Because 
of color screening, small color singlet configurations in the projectile 
Fock state can penetrate the target with minimal QCD interactions 
whereas large transverse size color fluctuations interact strongly in the 

--target. These considerations can help explain many of the features of 
Feynman-scaling distributions, including the nuclear dependence on SF 

.and the size of the multiplicity fluctuations and leading charm produc- 
tion. Further details may be found in Ref. 11. 

By far the simplest and most intuitive representation of relativistic 
bound state wavefunctions is the light-cone Fock expansion. In 1949 
Diracr2 showed that there are remarkable advantages of quantizing rel- 
ativistic field theories at fixed “light-cone time” r = t + z/c rather than 
ordinary time. In the traditional equal-time Hamiltonian formulation 
none of the Poincare operators that generate Lorentz boosts commute 
with the Hamiltonian; thus computing a boosted wavefunction is as 
complicated a dynamical problem as diagonalizing the Hamiltonian it- 
self. On the other hand, quantization on the light-cone can be formu- 
lated without reference to the choice of a specific Lorentz frame; the 
eigensolutions of the light-cone Hamiltonian, the generator of transla- 
tions in 7, describe bound states of arbitrary four-momentum, allowing 
the computation of scattering amplitudes and other dynamical quan- 
tities. Another remarkable feature of this formalism is the apparent 
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Figure 1. The proton distribution amplitude +p(Zi,p) evaluated at the scale 
/,A - 1 GeV from QCD sum rules.5 The enhancement at large 21 corresponds to a 
strong positive correlation when the u quark with spin parallel to that of the proton 
has a high. momentum fraction. 
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simplicity of the light-cone vacuum. In many theories the vacuum state 
of the free Hamiltonian is an eigenstate of the total light-cone Hamil- 
tonian. In principle, the Fock expansion constructed on this vacuum 
state provides a complete relativistic many-particle basis for diagonal- 
izing the full theory. 

There are advantages of light-cone quantization even in ordinary 
quantum mechanics. Consider an experiment which could specify the 
initial wavefunction of a multi-electron atom. Determining @(?‘;,t = 
0), i = l,... n would require the simultaneous measurement of the 
positions of the n bound electrons. In principle this could be carried out 
by the simultaneous Compton scattering of n independent laser beams 
on the atom. In contrast, determining the initial wavefunction at a 
fixed light-cone time r requires only the scattering of one plane-wave 
laser beam since the signal reaching each of the electrons is received 
along the light front at the same light-cone time r = t; + z;/c. 

In.the case of perturbation theory, light-cone quantization has over- 
whelming advantages over standard time-ordered perturbation theory. 

_ In order to calculate a Feynman amplitude of order gn in TOPTH one 
must suffer the calculation of n time-ordered graphs, each of which is 
a non-covariant function of energy denominators which, in turn, con- 

. .-, -_ - 
sist of sums of complicated square roots pp = Jr pi + mi. On the other 

hand: in light-cone perturbation theory (LCPTH), only a relatively few 
.graphs give non-zero contributions, and those that are non-zero have 
light-cone energy denominators which are simple sums of rational forms 

P- = (p’:i + mS)/p~. A n analog of light-cone perturbation theory has 
in fact been used to calculate the anomalous magnetic moment to two 
loops in QED113 

In light-cone quantization, a free particle is specified by its four 
momentum k” = (k+, k-, kl) where k l = 1’ f k3. Since it has positive 
energy, its light-cone energy is also positive: k- = (kt + m2)/k+ > 
0. In perturbation theory, transverse momentum C kl and the plus 
momentum C k+ are conserved at each vertex. The light-cone bound- 
state wavefunction thus describes constituents which are on their mass 
shell, but off the light-cone energy shell: P- < C k;. 

In principle, the problem of computing the spectrum in QCD and 
the corresponding light-cone wavefunctions for each hadron can be re- 
duced to the diagonalization of the Fock state matrix representation . 
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of the QCD light-cone Hamiltonian in analogy to Heisenberg quantum 
mechanics. Any hadron state must be an eigenstate of the light-cone 
Hamiltonian. (For convenience we will work in the “standard” frame 
where p, E (P+,Pl) = (1,OJ and P; = Mz..) Thus the state Iw) 
satisfies an equation 

(fq - HLC) In) = 0. (1) 

Projecting this onto the various Fock states (~71, (@gl . . . results in an 

infinite number of coupled integral eigenvalue equations: 

= 

. .-, -_ - 

(2) 

where V is the interaction part of HLC. Diagrammatically, V involves 
completely irreducible interactions--i. e. diagrams having no internal 
propagators-coupling Fock states. (See Fig. 2.) The explicit forms 
of each matrix element of V are given in Ref. 2. In principle,the solu- 
tions to these equations determine not only the hadronic spectrum of 
QCD but also. the light-cone wavefunctions needed to compute hadronic 
amplitudes. 

0 . . . - r I OE . . . . . . 

D= : 1 3 . . . PIY‘ 
Figure 2. Coupled eigenvalue equations for the light-cone wavefunctions of a 

pion. 
. 
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Recently a new numerical method, discretized light-cone quantiza- 
tion (DLCQ), h as b een developed to diagonalize the light-cone Hamil- 
tonian on a covariantly regulated discrete basis.2 By imposing periodic 
or anti-periodic boundary conditions of the fields in x- and ~1, and an 
upper bound on the invariant mass of the particles in the Fock space 

M;=c (k’;m2)i<A2 

(the “global cutoff”), one obtains a discrete momentum space matrix 
representation of the light-cone Hamiltonian. The DLCQ method thus 
provides a new type of computer simulation of quantum field theories 
in momentum space. Since only relative coordinates appear, the for- 
mulation is completely independent of the total momentum p+ and pi 
of the system. By using light-cone gauge, only the minimum number 
of physical degrees of freedom appear in the simulation. Unlike lattice 
gauge theory, DLCQ has no fermion doubling problem. 

The DLCQ method thus converts the problem of solving a quantum 
field theory to the diagonalization of the light-cone Hamiltonian on a 

. --‘discrete Fock-space basis 

Its most dramatic success has been the applications to quantum field 
theories in one-space and one-time dimensions. The DLCQ method was 
first used to obtain the mass spectrum and wavefunctions of Yukawa - 
theory, $+c$, in one-space and one-time dimensions. l4 This success led 
to further applications including QED(l+l) for general mass fermions 

and the massless Schwinger model by Eller et al.:’ $4 theory in l+l 

dimensions by Harindranath and Vary, l6 and QCD(l+l) for NC = 2,3,4 

by Hornbostel et aZ.17 Complete numerical solutions have been obtained 
for the meson and baryon spectra as well as their respective light-cone 
Fock state wavefunctions for general values of the coupling constant, 
quark masses, and color. Similar results for QCD(l+l) were also ob- 
tained by Burkardt18 by solving the coupled light-cone integral equa- 
tion in the low particle number sector. Burkardt was also able to study 
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non-additive nuclear effects in the structure functions of nuclear states 
in QCD(l+l). I n each of these applications, the mass spectrum and 
wavefunctions were successfully obtained, and all results agree with pre- 
vious analytical and numerical work, where they were available. More 
recently, Hiller lg has used DLCQ and the Lanczos algorithm for ma- 
trix diagonalization to compute the annihilation cross section, structure 
functions and form factors in l+l theories. Although these are just toy 
models, they do exhibit confinement and are excellent tests of the light- 
cone Fock methods. 

In the case of gauge theories in one-space and one-time dimension, 
there are no physical gluon degrees of freedom in light-cone gauge. The 
computational problem is thus tractable, and it is possible to explicitly 
diagonalize the light-cone Hamiltonian and solve these theories numer- 
ically. In the work of Hornbostel et a1.,17 complete numerical solutions 
for the spectrum and light-cone wavefunctions in QCD(l+l) can be 
obtained for any value of the coupling strength and quark masses and 
any number of flavor and color. 

A related approach, the light-front Tamm-Dancoff method (LFTD) 4 
has also been proposed to solve the light-cone equation of motion. As 

.-,-in the traditional Tamm-Dancoff method, the light-cone Fock space is 
truncated to a fixed particle number, and cutoffs are imposed on the 
maximum transverse momentum and minimum Icz. Renormalization 
counterterms are then introduced to restore the QCD symmetries vio- 
lated by the Fock space truncation. 

The application of the DLCQ and LFTD methods to QCD in phys- 
ical space-time is a highly challenging problem. The size of the quark 
and gluon Fock space and the discretization of the transverse momenta 
leads quickly to very large matrices. A more subtle difficulty is the 
necessity to include zero mode contributions enforced by the equations 
of motion and the imposed boundary conditions. The effective Hamil- 
tonian must also be supplemented by terms specified by the ultravio- 
let renormalization procedure. Despite these challenges, the light-cone 
methods have been successfully been applied to QED(3+1)20’2”22 at 

couplings Q w 0.3. For example, Kaluza and Pauli21 have computed 
the structure functions of QED bound states, the lepton and photon 
light-cone momentum distributions of positronium. 

It is. thus natural to employ the light-cone Fock expansion as the 
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basis for representing the physical states of QCD. For example, a pion 

with momentum p = (P +, 31) is described by expansion over color- 
singlet eigenstates of the free QCD light-cone Hamiltonian: 

I7r : PJ 

n : Zip+, SiFl+ Zli, Ai +,l,(li, zli, Xi) 

where the sum is over all Fock states and helicities, and where 

(4) 

nd2zli - n d2Zli 16r3 b2 . 
i i 

The wavefunction ,$,iX( xi, Zli, Xi) is the amplitude for finding partons 

in a specific light-cone Fock state n with momenta (zip+, xi?* + ZLi) 
in the pion. The Fock state is off the light-cone energy shell: C rC,T > 
P-. The light-cone momentum coordinates xi, with Cy=r zi = 1 and 

zli, with CKr Zli = 77 1, are actually relative coordinates; i.e. they 
are independent of the total momentum P+ and P_L of the bound state. 
The special feature that light-cone wavefunctions do not depend on the 
total momentum is not surprising, since xi is the longitudinal momen- 
tum fraction carried by the ith-parton (0 < xi 5 l), and Zli is its 
momentum “transverse” to the direction of the meson. Both of these 
are frame-independent quantities. The ability to specify wavefunctions 
simultaneously in any frame is a special feature of light-cone quantiza- 
tion. 

The coefficients in the light-cone Fock state expansion thus are 
the parton wavefunctions $,,,H( xi, Zli, Xi) which describe the decom- 
position of each hadron in terms of its fundamental quark and gluon 
degrees.of freedom. The light-cone variable xi is often identified with 

12 



I 
: 

z 
- -  1, -  .- 

the constituent’s longitudinal momentum fraction xi = kf/P”, in a 
frame where the total momentum P” + 00. However, in light-cone 
Hamiltonian formulation of QCD, xi is the boost-invariant light-cone 
fraction, 

k+ .qE’= kg + kf 
P+ PO + Pz ’ (5) 

independent of the choice of Lorentz frame. 

Given the light-cone wavefunctions, tin/H(xi, Zli, Xi), one can com- 
pute virtually any hadronic quantity by convolution with the appropri- 
ate quark and gluon matrix elements. For example, the leading-twist 
structure functions measured in deep inelastic lepton scattering are im- 
mediately related to the light-cone probability distributions: 

2M F1(x, Q) = F2’z’ ‘) x c ei G,/,(x, Q) 
a 

(6) 

.-- 
where 

,. -~- .da;p(x, Q) = c Jn dxigd>i I$iQ)(xi, /Cli, xi)/2 C 6(x* - xc> (7) 
di i b=a 

is the number density of partons of type a with longitudinal momen- 
tum fraction x in the proton. This follows from the observation that 
deep inelastic lepton scattering in the Bjorken-scaling limit occurs if 
Xbj matches the light-cone fraction of the struck quark. (The xb is 
over all partons of type a in state n.) However, the light-cone wave- 
functions contain much more information for the final state of deep 
inelastic scattering, such as the multi-parton distributions, spin and 
flavor correlations, and the spectator jet composition. 

The spacelike form factor is the sum of overlap integrals analogous 
to the corresponding nonrelativistic formula: 23 

F(Q2) = C C ea J n ‘dxif$i ~~*)*(xi, .e;i, xi) ~~*)(xi, ~~;, x;). n,Xi Q i 
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Here e, is the charge of the struck quark, A2 >> q’, and 

Z*i S 
Zli - xi<’ + gl for the struck quark 

Z*i - Xi& for all other partons. 
(9) 

The general rule for calculating an amplitude involving wavefunction 

&*), describing Fock state n in a hadron with p = (P+, $l), has the 

form’ (see Fig. 3): 

where Z’,$“) is the irreducible scattering amplitude in LCPTH with the 
hadron replaced by Fock state n. The light-cone Fock expansion thus 
aJ.lows a,definition of.the parton model and wavefunctions. By using the 
light-cone-gauge, A+ = 0, only physical non-ghost degrees of freedom 
appear in the Fock expansion even for non-Abelian theories. Further- 

. -more in this gauge, the numerator couplings of soft gluons inserted into 
hard scattering expansions remain finite in the high momentum transfer 
limit. Thus this formalism is ideal for proving factorization theorems, 
.i.e. the isolation of hard and soft contributions at high momentum 
transfer. 

Figure 3. Calculation of hadronic amplitudes in the light-cone Fock formalism. 
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Exclusive Processes and Light-cone Wavefunctions 

The dynamics of exclusive reactions reflects not only the behavior 
of quark-gluon scattering processes at the amplitude level, but also the 
fundamental structure of the hadron wavefunctions themselves. In a 
relativistic quantum field theory, a bound state cannot be described 
in terms of a fixed number of constituents. However, in the case of 
exclusive reactions at large momentum transfer, there is an enormous 
simplification: only the lowest valence-quark light-cone Fock state of 
each hadron contributes to a high momentum transfer exclusive scat- 
tering process. It is easy to show that in the light-cone gauge, A+ = 0, 
higher Fock state contributions involving extra gluons are always sup- 
pressed by powers of the momentum transfer Q.24 Furthermore, the 
absence of gluon radiation into the final state demands that the va- 
lence quarks in the hadron wavefunction must be at relative transverse 
separation bi of order l/Q; so that small color-dipole configurations 
of the, hadron,wavefunction control large momentum transfer exclusive 
.-- 25,24 

- processes.- Thus at high momentum transfer exclusive reactions pro- 
vide an important testing ground for light-cone wavefunctions since in 
the light-cone gauge only the simplest valence wavefunction is involved. . .-, -_ - 

On the other hand, many properties of large momentum transfer 
exclusive reactions can be calculated without explicit knowledge of the 
form of the non-perturbative light-cone wavefunctions. The main in- 
gredients of this analysis are asymptotic freedom, and the power-law 
scaling relations and quark helicity conservation rules of perturbative 
QCD. For example, consider the light-cone convolution formula for the 
meson form factor at high momentum transfer Q2. If the internal mo- 
mentum transfer is large then one can iterate the gluon-exchange term 
in the effective potential for the light-cone wavefunctions. The result is 
the hadron form factors can be written in a factorized form as a convo- 
lution of quark “distribution amplitudes” $(xi, Q), one for each hadron 

- involved in the amplitude, with a hard-scattering amplitude TH. 8’26 The 
distribution amplitude is the fundamental gauge invariant wavefunction 
which describes the fractional longitudinal momentum distributions of 
the valence quarks in a hadron integrated over transverse momentum 
up to the scale Q.” The pion’s electromagnetic form factor, for example, 

can be written as 
8,26,27 
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H e r e  TH is th e  scat ter ing a m p litu d e  fo r  th e  fo r m  factor  b u t wi th th e  
p ions  rep laced  by  co l l inear  q q  pairs- i .e.  th e  p ions  a r e  rep laced  by  the i r  
va lence  p a r to n s . W e  c a n  a lso  r e g a r d  TH as  th e  f ree p a r ticle m a trix 
e l e m e n t o f th e  o r d e r  l/Q 2  te r m  in  th e  e ffect ive L a g r a n g i a n  fo r  y*qif +  

qT* 
1 0  

T h e  p r o c e s s - i n d e p e n d e n t d istr ibut ion a m p litu d e ’ &(x,  Q ) is th e  
probabi l i ty  a m p litu d e  fo r  fin d i n g  th e  qi j  pa i r  in  th e  p i o n  with xq  =  x a n d  
X T  =  l-x. It is direct ly re la ted  to  th e  l igh t -cone va lence  w a v e fu n c tio n : 

. - - . -The -$ l  in tegrat ion in  th e  a b o v e  e q u a tio n  is cut o ff by  th e  ul traviolet  
cutoff A  =  ‘Q  * p l’ ‘t im ici in  th e  w a v e fu n c tio n ; th u s  on ly  Fock sta tes  with 
invar iant  mass  s q u a r e d  M 2  5  Q 2  c o n tr ibute. 

T h e  a b o v e  resul t  fo r  exclus ive a m p litu d e s  is in  th e  fo r m  o f a  fac-  
tor izat ion th e o r e m ; al l  o f th e  n o n - p e r tu r b a tive  dynamics  is fac tor ized 
into th e  n o n - p e r tu r b a tive  distr ibut ion a m p litu d e s , wh ich  sums  al l  in-  
te rna l  m o m e n tu m  transfers u p  to  th e  sca le  Q 2 . O n  th e  o th e r  h a n d , al l  
m o m e n tu m  transfers h i g h e r  th a n  Q 2  a p p e a r  in  TH, which,  b e c a u s e  o f 
a s y m p to tic f r e e d o m , c a n  b e  c o m p u te d  p e r tu r b a tively in  p o w e r s  o f th e  
Q C D  r u n n i n g  coup l ing  constant  cr,(Q 2 ) . 

Isg u r  a n d  L lewel lyn  S m ith 2 8  a n d  a lso  Radyushk in2’ h a v e  ra ised  
th e  concern  th a t i m p o r ta n t c o n tr ibut ions to  exclus ive processes  cou ld  
ar ise  f rom n o n - factor iz ing e n d - p o i n t c o n tr ibut ions o f th e  h a d r o n  wave-  
fu n c tio n s  with x w  1  e v e n  a t very l a rge  m o m e n tu m  transfer.  H o w e v e r , 
r e c e n t work  by  B o tts, Li, a n d  S te r m a n  3 o  h a s  n o w  s h o w n  th a t such  soft 
physics c o n tr ibut ions a r e  e ffect ively e l im ina ted  d u e  to  S u d a k o v  suppres -  
s ion. I wil l  br ief ly rev iew th is work  b e l o w . In  a d d i tio n , K r o n fe ld  a n d  
Nizic 3 1  *have  s h o w n  h o w  o n e  c a n  consistent ly in tegrate  over  on-she l l  
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singularities in the hard-scattering amplitude for Compton processes 
involving baryons. Thus the QCD predictions based on the factoriza- 
tion of long and short distance physics are reliable and should be valid 
for momentum transfers in the experimentally accessible domain be- 
yond a few GeV. It is clearly important to test these predictions as 
precisely as possible. 

Given the factorized structure of exclusive amplitudes at large mo- 
mentum transfer, one can read off a number of general features of the 
PQCD predictions; e.g. the dimensional counting rules, hadron helicity 

24 conservation, color transparency, etc. In addition, the scaling behavior 
of the exclusive amplitude is modified by the logarithmic dependence 
of the distribution amplitudes in Q2 which is in turn determined by 
QCD evolution equations.8 

Because of asymptotic freedom, the nominal power-law fall-off M - 
Q4-” of an exclusive amplitude at large momentum transfer reflects the 
elementary scaling of the lowest-order connected quark and gluon tree 
graphs obtained by replacing each of the external hadrons by its respec- 
tive collinear quarks. Here n is the total number of initial state and final 
state lepton, photon, or quark fields entering or leaving the hard scat- 

--. tering subprocess. The empirical success of the dimensional counting 
rules for the power-law fall-off of form factors and general fixed center- 
of-mass angle scattering amplitudes has given important evidence for 
scale-invariant quark and gluon interactions at short distances. 32 QCD 
also predicts calculable corrections to the nominal dimensional counting 
power-law behavior due to the running of the strong coupling constant, 
higher order corrections to the hard scattering amplitude, Sudakov ef- 
fects, pinch singularities, as well as the evolution of the hadron distri- 
bution amplitudes, $H(Xi, Q), the basic factorizable non-perturbative 

24,s 
wavefunctions needed to compute exclusive amplitudes. 

The fundamental non-perturbative quantities which control large 
momentum transfer exclusive reactions in quantum chromodynamics 
are the hadron distribution amplitudes’: $B(xi, Xi, Q), for the baryons 
with x1 +x2+53 = 1, and $M(zi, Ai, Q), for the mesons with x1 +x2 = 
1. The distribution amplitudes are the hadron wavefunctions which 
interpolate between the QCD bound state and their valence quarks. 
The constituents have longitudinal light-cone momentum fractions xi = 
(k”+k”)i/(po+pz), h e ICI ies Xi, and transverse separation bi N l/Q. If 1’ ‘t 
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one can calculate the distribution amplitude at an initial scale Qo, then 
one can determine +(zi, Q) at higher momentum scales via evolution 
equations in log Q2 or equivalently, the operator product expansion. 
Thus far the most important experimental constraints on the hadron 
distribution amplitudes has come from the normalization and scaling 
of form factors at large momentum transfer. 

The data for hadron form factors is consistent with the onset of 
PQCD scaling at a momentum transfers of a few GeV, as expected 
from the parameters which determine the mass scales of &CD. Recently 
Stoler33 h as s h own that the measurements of the transition form factors 
of the proton to the iV(1535) and N(1680) resonances are consistent 
with the predicted PQCD Qv4 scaling to beyond Q2 = 20 GeV2. The 
normalization is also in reasonable agreement with that predicted from 
QCD sum rule constraints on the nucleon distribution amplitudes, al- 
lowing for uncertainties from higher order QCD corrections. In the 
case of the proton to A(1232) transition, the form factor falls faster 
that Qm4. This anomalous behavior is in fact predicted by the QCD 
sum rule analysis since unlike the proton, the A has a highly sym- 
metric distribution amplitude with a small coupling to the QCD hard 
scattering amplitude. The observed scaling pattern of the transition 

-,form factors gives strong support to the QCD sum rule predictions and 
PQCD factorization. 

The hadron distribution amplitudes can also be used for calculat- 
ing weak decay transitions, structure functions at x N 1, fragmentation 
distributions at large z, and higher twist correlations.34 For example, 
strong higher twist effects are observed in the angular and Q2 depen- 
dence of Drell-Yan processes and deep inelastic scattering at x w 1.35 
In each of these applications, one can use factorization theorems to sep- 
arate the perturbative quark and gluon dynamics which involves mo- 
mentum transfer higher than Q from the non-perturbative long-distance 
physics contained in $(xi, Q). Th ese analyses parallel the developments 
in leading-twist inclusive reactions, where one factorizes hard-scattering 
quark-gluon subprocess cross sections from the long-distance physics 
contained in the hadron structure functions. However, in the case of 
exclusive processes at large momentum transfer, the scale-separation 
and factorization are done at the amplitude level. 

Exclusive reactions involving two real or virtual photons provide 
a particularly interesting testing ground for QCD because of the rela- 
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tive simplicity of the couplings of the photons to the underlying quark 
currents and the absence of significant initial state interactions-any 
remnant of vector-meson dominance contributions is suppressed at large 
momentum transfer. The angular distributions for the hadron pair pro- 
duction processy r+y + Hz are sensitive to the shapes of the hadron 
wavefunctions. Lowest order predictions for meson pair production in 
two photon collisions using this formalism are given in Refs. 36 and 5; 
the analysis of the yr to meson pair process has been carried out to 
next to leading order in oS(Q2) by 37 

Nizic. 

The simplest example of two-photon exclusive reactions is the 
-y*(q)7 + M” process which is measurable in tagged e+e- --+ e+e-M” 
reactions. The photon to neutral meson transition form factor Fyh~o(Q2) 
is predicted to fall as l/Q2-modulo calculable logarithmic corrections 
from the evolution of the meson distribution amplitude. The QCD 
prediction reflects the scale invariance of the quark propagator at high 
momentum transfer, the same scale-invariance which gives Bjorken scal- 
ing of the deep inelastic lepton-nucleon cross sections. The existing 

- data from the TPC/ yy experiment are consistent with the predicted 
scaling and normalization of the transition form factors for the rr”, 70, 
and $. The Mark II and TPC/yy measurements of yy + w+r- and 

. --rr-+ K+K- reactions are also consistent with PQCD expectations. 
A review of this work is given in Ref. 38. 

Compton Scattering in Perturbative QCD 

Compton scattering yp + yp at large momentum transfer and the 
s-channel crossed reactions yy + pp and pp + yy are classic tests of 
the perturbative QCD formalism for exclusive reactions. At leading 
twist each helicity amplitude has the factorized formf4 (see Fig. 4) 

Mii:(s,t) = C J[dxJ[dyl~i(x~,x2,x3; a) 
d,i 

x Tid’(x, h, A; Y, h’, A’; ~1 t)di(yl, Y2, ~3; a) a 

The index i labels the three contributing valence Fock amplitudes at the 
renormalization scale Q. The index d labels the 378 connected Feynman 
diagrams which contribute to the eight-point hard scattering amplitude 
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qqq-y + qqqy at the tree level; i.e. at order crcri (G). The arguments 0 
of the QCD running coupling constant can be evaluated amplitude by 
amplitude using the method of Ref. 39. The evaluation of the hard 
scattering amplitudes 7’{d’(z, h, X; y, h’, A’; s, t) has now been done by 

40,41,31,42 
several groups. 

. .-, .-. -Figure 4. Factorization of the Compton amplitude in &CD. 

An important simplification of Compton scattering in PQCD is the 
fact that pinch singularities are readily integrable and do not change 

,the nominal power-law behavior of the basic amplitudes.31 Physically, 
the pinch singularities correspond to the existence of potentially on- 
shell intermediate states in the hard scattering amplitudes, leading to 
a non-trivial phase structure of the Compton amplitudes. Such phases 
can in principle be measured by interfering the virtual Compton process 
in e*p + e*py with the purely real Bethe-Heitler bremmstrahlung 

43 
amplitude. A careful analytic treatment of the integration over the 

on-shell intermediate states is given by Kronfeld and 
31 

Nizic. 

The most characteristic feature of the PQCD predictions is the 
scaling of the differential Compton cross section at fixed t/s or OCM. 

The power s6 reflects the fact that 8 elementary fields enter or leave 
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Figure 5. Comparison of the QCD prediction for the scaled unpolarized proton 
. Compton scattering differential cross section ssda/dt(yp + yp) with experiment. 

The experimental data44 are at s = 4.63 GeV (circles) s = 6.51 GeV (triangles), 
s = 8.38 GeV (squares) and s = 10.26 GeV (asterisk). The QCD prediction is from 
the calculation of Kronfeld and Nizica’ The QCD sum rule distribution amplitudes 
are listed in Ref. 5. 

the hard scattering subprocess3’ The scaling of the existing data44 
as shown in F ig. 5  is remarkably consistent with the PQCD power- 
law prediction, but measurements at higher energies and momentum 
transfer are needed to test the predicted logarithmic corrections to this 
scaling behavior and determine the angular distribution of the scaled 
cross section over as large a  range as possible. 

The predictions for the normalization of the Compton cross section 
and the shape of its angular distribution are sensitive to the shape 
of the proton distribution amplitude &(xi,Q). The forms predicted 
for the proton distribution amplitude by QCD sum-rules by Chernyak, 
Og lobin, and Zhitnitskii, and also King and Sachrajda, shown in F ig. 1, 
appear to give a  reasonable representation of the existing data. These 

. 

21 



distributions, which predict that 65% of the proton’s momentum is 
carried by the u quark with helicity parallel to the proton’s helicity 
also provide reasonable predictions for the normalization of the proton’s 
form factor and the J/lc, -+ pjj decay rate. Kronfeld and Nizic have 
also given detailed predictions for the helicity and phase structure of 
the PQCD predictions for both proton and neutrons. The crossing 
behavior from the Compton scattering to the annihilation channels will 
also provide important tests and constraints on the PQCD formalism 
and the shape of the proton distribution amplitudes. Predictions for 

.the timelike processes have been made by Farrar et al.:’ Millers and 

Gunion41, and Hyer.42 

It should be emphasized that the theoretical uncertainties from 
finite nucleon mass corrections, the magnitude of the QCD running 
coupling constant, and the normalization of the proton distribution 
amplitude largely cancel out in the ratio of differential cross sections 

. -which is predicted by QCD to be essentially independent of s at large 
momentum transfer. (See Fig. 6.) If this scaling is confirmed, then the 
center-of-mass angular dependence of RYYiete- (s, 8,,) will be one of 
the best ways to determine the shape of +p(zi, Q). The measurement of 
this ratio appears to well-suited to the Fermilab antiproton accumulator 
experiment E760 and SuperLear. 

Another important characteristic of the leading-twist QCD predic- 
tions for exclusive processes is hadron-helicity conservation.45 Because 
of chiral invariance, the hard-scattering amplitude is non-zero only for 
amplitudes that conserve quark helicity. Since the distribution am- 
plitude projects only L, = 0, this implies that the proton helicity is 
conserved in 7p -+ 7p. Similarly, the baryon and anti-baryon helicities 
must be opposite in the crossed reactions 77 + BB and jip -t 77 at 
large momentum transfer. Detailed predictions for each of the lead- 
ing power Compton scattering helicity amplitudes are also given by 
Kronfeld and 

31 
Nizic. 
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Figure 6. PQCD predictions for the ratio of the timelike Compton cross sec- 
tion for j?p + yy to the cross section for ijp + ete- annihilation assuming different 
model forms for the proton distribution amplitude at s = 25 GeV2.42 The pre- 
dictions include the effect of Sudakov suppression in the endpoint region using the 
Li-Sterman formalism. 

._- 

The Domain of Validity of PQCD Predictions for Exclusive 
Processes . -, -. - 

The factorized predictions for the Compton amplitude are rigor- 
ous predictions of QCD at large momentum transfer. However, it 
is important to understand the kinematic domain where the leading 
twist predictions become valid. As emphasized by Isgur and Llewellyn 
SmithT8 this question is non-trivial because of the possibility of signifi- 
cant contributions to the scattering amplitude at the endpoint regions 
xi -+ 1  where the PQCD factorization could break down. Because 
of the denominator structure of the hard scattering amplitudes, e.g., 
TH cx a,/[(1 - x)(1 - y)Q2] for th e  meson form factor, the endpoint 
integration region at x N 1  and y N 1  will be  enhanced.  O f more con- 
cern is the fact that such endpoint regions are further emphasized when 

- one assumes the strongly asymmetric forms for the nucleon distribution 
amplitude derived from QCD sum rules. 

_  It is important to note that the end-point regime corresponds to 
scattering processes where one quark carries nearly all of the proton’s 
momentum and is at a  fixed transverse separation bl from the specta- 
tor quarks. However, if a  quark which is isolated in space receives a  . 
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large momentum transfer xi&, it will normally strongly radiate gluons 
into the final state due to the displacement of both its initial and fi- 
nal self-field, contrary to the requirements of exclusive scattering. 3o For 
example, in QED the radiation from the initial and final state charged 
lines is controlled by the coherent sum Ci zqiqi where qi and pi are 
the charges four-momenta of the charged lines, c and Ic are polarization 
and four-momentum of the radiation, and vi = fl for initial and final 
state particles, respectively. Radiation will occur for any finite momen- 
tum transfer scattering as long as the photon’s wavelength is less than 
the size of the initial and final neutral bound states. 

The radiation from the colored lines in QCD have similar coher- 
ence properties: 

46 
because of the destructive color interference of the 

radiators, the momentum of the radiated gluon in a QCD hard scat- 
tering process only ranges from Ic of order l/bl, where color screening 
occurs, up to the momentum transfer xi& of the scattered quarks. The 
one-gluon correction to the wavefunction is thus proportional to 

This result 30942 and unitarity allows one to compute the probability that 
.no radiation occurs during the hard scattering. It is given by a rapidly 
falling exponentiated Sudakov form factor S = S(xiQ, bl,, AQC~); thus 
at large Q and fixed impact separation, the Sudakov factor strongly 
suppresses the endpoint contribution. On the other hand, when bl = 
O(xiQ)-‘, th e S d k f u a ov orm factor is of order 1, and the radiation leads 
to logarithmic evolution and contributions of higher order in 09(Q2) 
corrections already contained in the PQCD predictions. 8’47’48 This is the 
starting point of the detailed analysis of the suppression of endpoint 
contributions to meson and baryon form factors and its quantitative 
effect on the PQCD predictions recently presented by Li and 

30 Sterman. 
This analysis has now also been applied to two-photon reactions and 
the timelike proton form factor by Hyer.42 

_ 
It should be emphasized that the standard PQCD contributions to 

large momentum transfer exclusive reactions derive from wavefunction 
configurations where the valence quarks are at small transverse separa- 
tion bl ;= W/Q), th e re g ime where there is no Sudakov suppression. 
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However, as noted by Li and Sterman, the hard scattering amplitude 
loses its singular end-point structure if one retains the valence quark 
transverse momenta in the denominators. For example, in the case of 
the pion form factor, the hard scattering amplitude is effectively mod- 
ified to the form 

TH Oc (1 - X)( 1 - y );; + (kf + k+)2 * 
(12) 

Li and Sterman thus find that the pion form factor becomes rela- 
tively insensitive to soft gluon exchange at momentum transfers beyond 
20 AQCD. In the case of the proton Dirac form factor, the corresponding 

.30 
analysis by LI is in good agreement with experiment at momentum 
transfers greater than 3 GeV. 

The Botts, Li, and Sterman analysis of the Sudakov suppression of 
endpoint contributions makes it understandable why PQCD factoriza- 
tion and its predictions for exclusive processes are already applicable 

- at momentum transfers of a few GeV, thus accounting for the empiri- 
cal success of quark counting rules in exclusive process phenomenology. 

The Sudakov effect suppression also enhances “color transparency” phe- 
nomena, since only small color singlet wavefunction configurations can 

25 scatter at large momentum transfer. Color transparency in Compton 
scattering can be tested by checking for the absence of final state ab- 
sorption in quasi-elastic yp --f yp scattering in heavy nuclei. QCD 
color transparency also implies that there will be diminished initial 
state absorption of the antiproton for large-angle quasi-elastic jjp + 77 
annihilation in .heavy nuclear targets. 

In the case of large angle proton-proton scattering, the perturbative 
predictions for color transparency and the spin-spin correlation ANN 
appear to fail at ECM - 5 Gel/; this effect has been attributed to the 

49 
effect of the threshold for charm production in intermediate states. 
A similar breakdown of the perturbative predictions may also occur at 
the corresponding energy threshold in jip --t 77 at large angles due to 
charmed hadron intermediate states. 

Recently Luke, Manohar,. and Savage 5o have shown that the QCD 
trace anomaly leads to a strong, attractive, scalar potential which dom- 
inates the interaction of heavy quarkonium states with ordinary matter 
at low relative velocity. The scalar attraction is sufficiently strong to 
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produce nuclear-bound quarkonium.51 Thus it will be interesting to look 
for strong threshold enhancements for charm production near thresh- 
old in two-photon reactions, particularly in exclusive channels such 
as p’J/$ as well as DB. Predictions for the threshold production of 
charmed mesons has also been given in Ref. 52. Evidence for excess 
inclusive production of charmed mesons in photon-photon collisions has 
been reported by the JADE collaboration.53 

Exclusive processes, particularly two-photon reactions, thus pro- 
vide one of the most important, but least explored frontiers in particle 
physics. The recent analyses by Botts, Li, and Sterman and by Kronfeld 
and Nizic have shown that the predictions based on QCD factorization 
theorems are applicable to measurements at present-day accelerators. 
It is clearly crucial for a fundamental understanding of both the per- 
turbative and non-perturbative aspects of QCD that the predictions for 
exclusive amplitudes be tested as carefully as possible. 

Exclusive Weak Decays of Heavy Hadrons 
.-- 

An important application of PQCD factorization is to exclusive de- 
cays.of heavy hadrons to light hadrons, such as B” + rrT+~-, I(+, Ii’-. 54 

. ---To-a good approximation, the decay amplitude M= (BJHw,I7r+x-) is 
caused by the transition 5 -t W+B; thus M = f,&~x (a-IJpIBo) 

where Jp is the 8 + ii weak current. The problem is then to recouple 
the spectator d quark and the other gluon and possible quark pairs in 
each B” Fook state to the corresponding Fock state of the final state 
7~~. (See Fig. 7.) Th e k inematic constraint that ‘(pi - P,)~ = mz de- 
mands that at least one quark line is far off shell: & = (yp~ - pX)2 N 
-PmB N -1.5 GeV2, where we have noted that the light quark takes 

only a fraction (1 - Y) - all mg of the heavy meson’s mo- 

mentum since all of the valence quarks must have nearly equal velocity 
in a bound state. In view of the successful applications ” of PQCD 

-a factorization to form factors at momentum transfers in the few GeV2 
range, it is reasonable to assume that (/&I) is sufficiently large that 

_ we can begin to apply perturbative QCD methods. 

The analysis of the exclusive weak decay amplitude can be carried 
out in parallel to the PQCD analysis of electroweak form factors 

56 at 
large Qt. The first step is to iterate the wavefunction equations of 
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Figure 7. Calculation of the weak decay B -+ AK in the PQCD formalism of 
Ref. 54. The gluon exchange kernel of the hadron wavefunction is exposed wherever 
a hard momentum transfer is required. 

motion so that the large momentum transfer through the gluon ex- 
change potential is exposed. The heavy quark decay amplitude can 

- then be written as a convolution of the hard scattering amplitude for 
Qq + W+q?j convoluted with the B and x distribution amplitudes. The 
minimum number valence Fock state of each hadron gives the leading . .-, -. - 
power law contribution. Thus TH contains all perturbative virtual loop 
corrections of order ~~(12~). The result is the factorized form: 

1 1 

M(B --f m) = 
/J 

dx dYh(y, A)Twbr(x, A> - (13) 
0 0 

All of the non-perturbative corrections with momenta lk21 < A2 are 
summed in the distribution amplitudes. 

An interesting example of this analysis is “atomic alchemy”57 i.e., 
the exclusive decays of muonic atoms to electronic atoms plus neutrinos. 
In this case the calculation requires the very high momentum tail of the 
atomic wavefunctions, which in turn can be obtained via the iteration 
of the relativistic atomic bound-state equations. Again one obtains a 
factorization theorem for exclusive atomic transitions where the atomic 
wavefunction at the origin plays the role of the distribution amplitude. 
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Discretized Light-cone Quantization: Applications to QCD 

QCD dynamics takes a rather simple form when quantized at equal 
light-cone “time” r = t + z/c. In light-cone gauge A+ = 0, the QCD 
light-cone Hamiltonian 

HQCD =Ho+ gH1 +g2H2 (14) 

contains the usual S-point and 4-point interactions plus induced terms 
from instantaneous gluon exchange and instantaneous quark exchange 
diagrams. The perturbative vacuum serves as the lowest state in con- 
structing a complete basis set of color-singlet Fock states of Ho in mo- 
mentum space. Solving QCD is then equivalent to solving the eigen- 
value problem: 

HQCJJ[~ >= Al219 > (15) 

as a matrix equation on the free Fock basis. The set of eigenvalues { M2} 
represents the spectrum of the color-singlet states in QCD. The Fock ._- 

- projections of the eigenfunction corresponding to each hadron eigen- 
value gives the quark and gluon Fock state wavefunctions $J~(x~, Icli, Xi) 

. -,-required to compute structure functions, distribution amplitudes, de- 
cay amplitudes, etc. For example, the e+e- annihilation cross section 
into a given J = 1 hadronic channel can be computed directly from its 
T+$T Fock state wavefunction. 

The key step in obtaining a discrete representation of the light- 
cone Hamiltonian in a form amenable to numerical diagonalization, is 
the construction of a complete, countable, Fock state basis, 

This can be explicitly done in QCD by constructing a complete set 
of color-singlet eigenstates of the free Hamiltonian as products of rep- 
resentations of free quark and gluon fields. The states are chosen as 

eigenstates of the constants of the motion, P+, 31, J,, and the con- 
served charges. In addition, one can pre-diagonalize the Fock represen- 
tation by classifying the states according to their discrete symmetries, 
as described in the previous section. This step alone reduces the size 
of the matrix representations by as much as a factor of 16. 
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T h e  l igh t -cone Fock r e p r e s e n ta tio n  c a n  b e  m a d e  discrete by  choos-  
i ng  per iod ic  (or,  in  th e  case  o f fe rm ions , a n t i -per iodic)  b o u n d a r y  con-  
d i t ions o n  th e  fie lds:  $(z- )  =  f$(z-  -  L ) , a n d  + (x~ )  =  $J (z~  -  Ll).  
Thus  in  e a c h  Fock sta te , P +  =  F K , a n d  e a c h  const i tuent  Ic+  =  Fni,  

w h e r e  th e  posi t ive in tegers  n i  satisfy Ci  n ; =  K . S imila: ly Zli =  

&  i;li, w h e r e  th e  vector  in tegers  s u m  to  $ 1  in  th e  sta n d a r d  f rame.  

T h e  posi t ive in teger  K  is ca l led  th e  “h a r m o n i c  resolut ion.” For  a  
g i ven  cho ice  o f K , th e r e  a r e  on ly  a  fin i te n u m b e r  o f p a r titio n s  o f th e  
.p lus  m o m e n ta ; th u s  on ly  a  fin i te set o f ra tio n a l  va lues  o f xi =  kr/P +  =  
ni/K  a p p e a r : xi =  + , g , K - ’ Thus  e igenso lu tio n s  o b ta i n e d  by  . . . --R--.  
d iagona l i z ing  H L C  o n  th is bas is  d e te r m i n e  th e  d e e p  inelast ic structure 
fu n c tio n s  F’(x) on ly  a t th e  set o f ra tio n a l  d iscrete p o i n ts xi. T h e  con-  
tin u u m  lim it th u s  requ i res  ex t rapo la t ion to  I( +  0 0 . N o te  th a t th e  
va lue  o f L  is i r re levant,  s ince it c a n  a lways b e  sca led  a w a y  by  a  L o r e n tz 

b o o s t. S ince H L C , P + , 7  I, a n d  th e  conserved  charges  al l  c o m m u te , 
H L C  is b lock d i a g o n a l . 

_  .-- T h e  D L C Q  p  ro  g  r a m  b e c o m e s  especia l ly  sim p le fo r  g a u g e  th e o r y  in  
o n e - s p a c e  o n e - tim e  d imens ions  n o t on ly  b e c a u s e  o f th e  a b s e n c e  o f t rans-  
ve rse .momen ta , b u t a lso  b e c a u s e  th e r e  a r e  n o  g l u o n  d e g r e e s  o f f r e e d o m . 

. --,In a d d i tio n , fo r  a  g i ven  va lue  o f th e  h a r m o n i c  reso lu t ion I<  th e  Fock 
bas is  b e c o m e s  restr icted to  fin i te d imens iona l  r e p r e s e n ta tio n s . T h e  d i -  
m e n s i o n  o f th e  r e p r e s e n ta tio n  co r responds  to  th e  n u m b e r  o f p a r titio n s  
o f th e  in teger  I( as  a  s u m  o f posi t ive in tegers  n . T h e  e ig e n v a lu e  p r o b -  
l e m  th u s  reduces  to  th e  d iagona l i za t ion  o f a  fin i te Herm i tia n  m a trix. 
T h e  c o n tin u u m  lim it is c lear ly  I( +  0 0 . 

S ince c o n tin u u m  scat ter ing sta tes  as  wel l  as  s ing le  h a d r o n  co lor -  
s inglet  had ron i c  w a v e fu n c tio n s  a r e  o b ta i n e d  by  th e  d iagona l i za t ion  o f 
H L C , o n e  c a n  a lso  calculate scat ter ing a m p litu d e s  as  wel l  as  decay  ra tes  
f rom over lap  m a trix e l e m e n ts o f th e  in teract ion Hami l ton ian  fo r  th e  
w e a k  o r  e lec t romagne tic interact ions.  In  pr inc ip le,  al l  h i g h e r  Fock a m -  
pl i tudes,  inc lud ing  spectator  g luons , c a n  b e  k e p t in  th e  l igh t -cone q u a n -  

-  tiza tid n  a p p r o a c h ; such  c o n tr ibut ions c a n n o t genera l l y  b e  neg lec te d  in  
decay  a m p litu d e s  invo lv ing l ight quarks.  

_  D L C Q  h a s  b e e n  u s e d  to  successful ly o b ta in  th e  c o m p l e te  co lor -  
s inglet  spec t rum o f Q C D  in  o n e - s p a c e  a n d  o n e - tim e  d imens ion  fo r  N C  =  
2 ,3 ,4 . l7  T h e  hadron i c  spect ra  a r e  o b ta i n e d  as  a  fu n c tio n  o f q u a r k  mass  
a n d  Q C D  coup l ing  constant  ( see  Fig. 8 ) . W h e r e  th e y  a r e  avai lab le ,  th e  
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Figure 8. T&e baryon and meson spectrum in QCD(l+l) computed in DLCQ 
for NC = 2,3,4 as a function of quark mass and coupling constant. 

spectra agree with results obtained earlier; in particular, the lowest 
meson mass in SU(2) agrees within errors with lattice Hamiltonian 
results. The meson mass at NC = 4 is close to the value predicted by 
‘t Hooft in the large NC lim it. The DLCQ method also provides the 
first results for the baryon spectrum in a non-Abelian gauge theory. 
The lowest baryon mass is shown in Fig. 8 as a function of coupling 
constant. The ratio of meson to baryon mass as a function of NC 
also agrees at strong coupling with results obtained by bosonization . 
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58 
methods. Precise values for the mass eigenvalue can be obtained by 
extrapolation to large I< by fitting to forms with the correct functional 
dependence in 1 /K. 

When the light-cone Hamiltonian is diagonalized at a finite reso- 
lution K, one gets a complete set of eigenvalues corresponding to the 
total dimension of the Fock state basis. A representative example of 
the spectrum is shown in Fig. 9 for baryon states (B = 1) as a function 
of the dimensionless variable X = l/( 1 +7rm2/g2). Notice that spectrum 
automatically includes continuum states with B = 1. 

The structure functions for the lowest meson and baryon states 
in SU(3) at two different coupling strengths m /g = 1.6 and m /g = 
0.1 are shown in Figs. 10 and 11. Higher Fock states have a very 
small probability; representative contributions to the baryon structure 
functions are shown in Fig. 12. Although these results are for one-time 
one-space theory they do suggest that the sea quark distributions in 
physical hadrons may be highly structured. 

_ The Heavy Quark Content of the Proton 

The, DLCQ results for sea quark distributions in QCD(l+l) may 
-- -have implications for the heavy quark content of physical hadrons. One 

of the most intriguing unknowns in nucleon structure is the strange and 
charm quark structure of the nucleon wavefunction. 5g The EMC spin 
crisis measurements indicate a significant ss content of the proton, with 
the strange quark spin strongly anti-correlated with the proton spin. 
Just as striking, the EMC measurements6’ of the charm structure func- 
tion of the Fe nucleus at large Xbj N 0.4 appear to be considerably larger 
than that predicted by the conventional photon-gluon fusion model, in- 
dicating an anomalous charm content of the nucleon at large values of 
x. The probability of intrinsic charm has been estimated 6o to be 0.3%. 

Figure 13 shows recent results obtained by Hornbostel 61 for the 
structure functions of the lowest mass meson in QCD(l+l) wavefunc- 
tions for NC = 3 and two quark flavors. As seen in the figure, the 
heavy quark distribution arising from the qqQs Fock component has a 
two-hump character. The second maximum is expected since the con- 
stituents in a bound state tend to have equal velocities. The result is 
insensitive to the value of the Q2 of the deep inelastic probe. Thus 
intrinsiccharm is a feature of exact solutions to QCD( l+l). Note that 
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Figure 13. The heavy quark structure function Q(z) = GQIM(I) of the lightest 
meson in QCD(l+l) with N, = 3 and g/mp = 10. Two flavors are assumed with 
(a) mg/m, = 1.001 and (b) mQ/m, = 5. The curves are normalized to unit area. 
The probability of the qqQQ state is 0.56 x 10m2 and 0.11 x 10S4, respectively. 
The DLCQ method for diagonalizing the light-cone Hamiltonian is used with anti- 
periodic boundary conditions. The harmonic resolution is taken at A’ = 10/2. 

- (From Ref. 17.) 

. -,the-integrated probability for the Fock states containing heavy quarks 
falls nominally as g2/m6 in this super-renormalizable theory, compared 

to g2/mg dependence expected in renormalizable theories. 

In the case of QCD(3+1), we also expect a  two-component struc- 
ture for heavy-quark structure functions of the light hadrons. The low 
XF enhancement  reflects the fact that the gluon-splitting matrix ele- 
ments of heavy quark production favor low x. On  the other hand, the 
Qgqij wavefunction also favors equal velocity of the constituents in or- 
der to m inimize the off-shell l ight-cone energy and the invariant mass 
of the Fock state constituents. In addition, the non-Abelian effective 
Lagrangian analysis discussed above allows a  heavy quark fluctuation 
in the bound state wavefunction to draw momentum from all of the 
hadron’s valence quarks at order l/m Q . 2  This implies a  significant con- 
tribution to heavy quark structure functions at med ium to large mo- 
mentum fraction x. The EMC measurements of the charm structure 
function of the nucleon appear to support this picture.60 

It is thus useful to distinguish e&&sic and intrinsic contributions 
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to structure functions. The extrinsic contributions are associated with 
the substructure of a single quark and gluon of the hadron. Such con- 
tributions lead to the logarithmic evolution of the structure functions 
and depend on the momentum transfer scale of the probe. The intrin- 
sic contributions involve at least two constituents and are associated 
with the bound state dynamics independent of the probe. The intrinsic 
gluon distributions 62 are closely related to the retarded mass-dependent 

part of the bound-state potential of the valence quarks.63 In addition, 
because of asymptotic freedom, the hadron wavefunction has only an 
inverse power MS2 suppression for high mass fluctuations, whether one 
is considering heavy quark pairs or light quark pairs at high invariant 
mass M. This “intrinsic hardness” of QCD wavefunctions leads to a 
number of interesting phenomena, including a possible explanation for 
“cumulative production,” high momentum components of the nuclear 
fragments in nuclear collisions. This is discussed in detail in Ref. 64. 

Renormalization and Ultra-violet Regulation of Light-cone- 
_ quantized Gauge Theory 

An important element in the light-cone Hamiltonian formulation 
-.&quantum field theories is the regulation of the ultraviolet region. In 
order to define a renormalizable theory, a covariant and gauge invari- 
ant procedure is required to eliminate states of high virtuality. The 
physics beyond the scale A is contained in the normalization of the 
mass m(A) and coupling constant g(A) parameters of the theory, mod- 
ulo negligible corrections of order l/An from the effective Lagrangian. 
The logarithmic dependence of these input parameters is determined by 
the renormalization group equations. In Lagrangian field theories the 
ultraviolet cut-off is usually introduced via a spectrum of Pauli-Villars 
particles or dimensional regulation. 

In the case of QCD (3+1), th e renormalization of the light-cone 
Hamiltonian in light-cone gauge is not yet completely understood, but 
a number of methods are now under consideration. In Ref. 8 Lep- 
age and I showed that by using invariant cutoffs for both the inter- 
actions in the light-cone Hamiltonian and the Fock space, one could 
verify the renormalization group behavior of the gauge-invariant distri- 
bution amplitude. The result is consistent with results obtained from 
the Bethe-Salpeter equation or the operator product expansion. Thus 
one has a reason to believe that a properly regulated and truncated 
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l igh t -cone Hami l ton ian  c a n  b e  constructed consistent  wi th th e  k n o w n  
renormal i za t ion  g r o u p  structure o f Q C D . 

In  D L C Q , o n e  n e e d s  to  p rov ide  a  pr ior i  s o m e  typ e  o f t runcat ion 
o f th e  Fock sta te  basis.  S ince w a v e fu n c tio n s  a n d  G r e e n ’s fu n c tio n s  
d e c r e a s e  with virtuality, o n e  expec ts th a t sta tes  very fa r  o ff th e  l ight-  
c o n e  e n e r g y  shel l  wil l  h a v e  n o  physical  e ffect o n  a  system, excep t fo r  
renormal i za t ion  o f th e  coup l ing  constant  a n d  mass  p a r a m e ters. Thus  
it is n a tura l  to  in t roduce a  “g loba l” cut-off such  th a t a  Fock sta te  In )  
is re ta i n e d  on ly  if 

c 
C ji +  7 7 2 : 

- M 2 < A 2 . 
icn X i  

(17 )  

H e r e  M  is th e  mass  o f th e  system in  th e  case  o f th e  b o u n d  sta te  p r o b l e m , 
o r  th e  to ta l  invar iant  mass  fi o f th e  init ial sta te  in  scat ter ing th e o r y . 
@ e  c a n  a lso  r e g u l a te  th e  ul traviolet  r e g i o n  by  in t roduc ing  a  “local” 

-  cutoff o n  e a c h  m a trix e l e m e n t (n [Hrcjm) by  requ i r ing  th a t th e  c h a n g e  
in  invar iant  mass  s q u a r e d  

c 

Zji +  m f 
c  

Zi i  +  m a  
X i  -  

<  A 2  . 
icn i cm X i  

(18)  

This  avo ids  spec ta to r -dependen t renormal i za t ion  c o u n te r te rms . 2 o  S im-  
i larly, o n e  c a n  u s e  a  lower  cutoff o n  th e  invar iant  mass  d i f ference to  
r e g u l a te  th e  in f rared 6 5  r e g i o n . G loba l  a n d  local  cutoff m e th o d s  w e r e  
u s e d  in  R e f. 8  to  der i ve  factor izat ion th e o r e m s  fo r  exclus ive a n d  inc lu-  
s ive processes  a t l a rge  m o m e n tu m  transfer  in  Q C D . In  p a r ticular ,  th e  
g loba l  cut-off d e fin e s  th e  Fock-state w a v e fu n c tio n s  @ (x, $ 1 , X )  a n d  dis-  

_  t r ibut ion a m p litu d e  4(x, A ) , th  e  n o n - p e r tu r b a tive  i n p u t fo r  c o m p u tin g  
had ron i c  scat ter ing a m p litu d e s . T h e  renormal i za t ion  g r o u p  p r o p e r ties  
o f th e  l igh t -cone w a v e fu n c tio n s  a n d  th e  resul t ing evo lu t ion  e q u a tio n s  fo r  
th e  structure fu n c tio n s  a n d . d istr ibut ion a m p litu d e s  a r e  a lso  d iscussed*  
in  R e f. 8 . T h e  ca lcu la ted a n o m a l o u s  d imens ions  Y n  fo r  th e  m o m e n ts o f 
th e s e  q u a n tities  a g r e e  with resul ts o b ta i n e d  us ing  th e  o p e r a to r  p r o d u c t 

6 6  expans ion . 
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In general, light-cone quantization using the global or local cutoff 
can lead to terms in H-& of the form 6m&&b. Such terms arise in 
order g2 as a result of normal-ordering of the four-point interaction 
terms. Although such a term is invariant under the large class of light- 
cone Lorentz transformations, it is not totally invariant. Burkardt and 
Langnau 67 have suggested that the extra counterterms can be fixed by 
a posterioriimposing rotational symmetry on the bound state solutions, 
so that all Lorentz symmetries are restored. 

The Zero-mode Problem in Light-cone-quantized Gauge The- 
ory 

The role of zero modes in the light-cone quantization of l+l gauge 
theories has now been greatly clarified by the work of Heinzl, Kruschke, 
and Werner,68 McCartor and Robertson,6’ Griffin7’ and Hornbostel.7’ 
In general, zero mode (field excitations with k+ = 0) must be retained 
consistent with the constraints imposed by the field equations of mo- 

- tion and the imposed boundary conditions. In the case of massless 
QED (l+l) (th e c wm S h ’ g er model), one needs to retain the zero mode 
at the A+ field, since this degree of freedom leads to the labeling of -, .-. - 
the degenerate &vacua of the theory and the corresponding fermion 
condensates. In the case of theories such as $4( 1 + l), the zero mode of 

-the 4 field provides the degree of freedom usually associated with the 
spontaneous breaking of the vacuum. It is also clear that zero modes 
play an important role in implementing the correct degrees of freedom 
in the effective light-cone Hamiltonian for quantum field theories in 
3+1 dimensions. Again, one must allow for quantum excitations with 
k+ = 0 and any value of il so that the equations of motion and the 
boundary conditions are fulfilled. In the case of DLCQ, the assumed 
anti-periodic boundary conditions automatically exclude zero modes for 
the fermion fields, but zero modes are generally needed to describe the 
boson fields. Hiller and Wivoda 

72 
have shown that in the X@,!$ theory, 

the convergence of the DLCQ solutions to the known Wick-Cutkowsky 
solutions is greatly increased by the inclusion of the $(k+ = 0) modes. 

Zero modes are also required for the implementation of the light- 
cone gauge (A+ = 0) in gauge theories in l+l dimensions. One of the 
most serious complications of the light-cone gauge quantization of QED 
(3+1) is&he appearance of an apparently unregulated l/k+ singularity 
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in the expression for electron-electron scattering due to the l/(k . 77) 
terms in the photon propagator. Although this singularity vanishes 
for on-shell scattering, it confounds the proper interpretation of the 
effective potential for positronium in the effective light-cone potential. 
However, Soper 73 has now shown that the Leibbrandt-Mandelstam pre- 
scription for the light-cone propagator with 

;=+ 
k- 

k+k- + it 

automatically generates a subtraction term in the QED effective Hamil- 
tonian which eliminates the gauge singularity at k+ = 0. This solu- 
tion corresponds to a ghost zero mode, first identified by Bassetto74 to 
be necessary for the consistent implementation of the light-cone gauge 
with periodic boundary conditions. A similar subtraction at k+ = 0 
also occurs in the definition of the evolution kernel for the distribution 
amplitude.’ 

Advantages of Light-cone Quantization 

As I have discussed in this chapter the method of discretized light- 
cone quantization provides a relativistic, frame-independent discrete 
representation of quantum field theory amenable to computer simula- 
tion. In principle, the method reduces the light-cone Hamiltonian to 
diagonal form and has the remarkable feature of generating the com- 
plete spectrum of the theory: bound states and continuum states alike. 
DLCQ is also useful for studying relativistic many-body problems in 
relativistic nuclear and atomic physics. In the nonrelativistic limit the 
theory is equivalent to the many-body Schrodinger theory. DLCQ has 
been successfully applied to a number of field theories in one-space 
and one-time dimension, providing not only the bound-state spectrum 
of these theories, but also the light-cone wavefunctions needed to com- 
pute structure functions, intrinsic sea-quark distributions, and the e+e- 
annihilation cross section. 

Although the primary goal has been to apply light-cone methods to 
non-perturbative problems in QCD in physical space-time, it is impor- 
tant to validate these techniques for the much simpler Abelian theory 
of QED: The discretized quantization of quantum electrodynamics on 
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the light-cone in principle allows practical numerical solutions for ob- 
taining its spectrum and wavefunctions at arbitrary coupling strength 
cr. We also have discussed a frame-independent and approximately 
gauge-invariant particle number truncation of the Fock basis which is 
useful both for computational purposes and physical approximations. 
In this method2’ ultraviolet and infrared regularizations are kept in- 
dependent of the discretization procedure, and are identical to that of 
the continuum theory. One thus obtains a finite discrete representation 
of the gauge theory which is faithful to the continuum theory and is 
completely independent of the choice of Lorentz frame. 

Light-cone quantization appears to have the potential for solving 
important non-perturbative problems in gauge theories. It has a num- 
ber of intrinsic advantages: 

l The formalism is independent of the Lorentz frame---only relative 
momentum coordinates appear. The computer does not know the 
Lorentz frame! 

. _ .-- 
l Fermions and derivatives are treated exactly; there is no fermion- 

doubling problem. 
. .- -. - l The ultraviolet and infrared regulators can be introduced as frame 

independent momentum space cut-offs of the continuum theory, 
independent of the discretization. 

l The field theoretic and renormalization properties of the dis- 
cretized theory are faithful to the continuum theory. No non- 
linear terms are introduced by the discretization. 

l One can use the exact global symmetries of the continuum La- 
grangian to pre-diagonalize the Fock sectors. 

l The discretization is denumerable; there is no over-counting. The 
minimum number of physical degrees of freedom are used because 
of the light-cone gauge. No Gupta-Bleuler or Faddeev-Popov 
ghosts occur and unitarity is explicit. 

l Gauge invariance is lost in a Hamiltonian theory. However, the 
truncation can be introduced in such a way as to minimize explicit 
breaking of the gauge symmetries.20 

l The output of HLC matrix diagonalization is the full color-singlet 
spectrum of the theory, both bound states and continuum, to- 
gether with their respective light-cone wavefunctions. 
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There are, however, a number of difficulties that need to be resolved: ! 

l The number of degrees of freedom in the representation of the 
light-cone Hamiltonian increases rapidly with the maximum num- 
ber of particles in the Fock state. Although heavy quark bound 
states probably only involve a minimal number of gluons in flight, 
this is most likely not true for light hadrons. 

l Some problems of ultraviolet and infrared regulation remain. Al- 
though Pauli-Villars ghost states and finite photon mass can be 
used to regulate Abelian theories, it is not suitable method in 

65 
non-Abelian theories. 

l The renormalization procedure is not completely understood in 
the context of non-perturbative problems. However, a non-pertur- 
bative recursive representation for electron mass renormalization 
has been successfully tested in QED( 3+1).20 

l The Coulomb singularity in the effective gluon-exchange potential 
is poorly approximated in the discrete form. An analytic trick ._- 
must be used. to speed convergence. Such a method has been 
tested successfully in the case of the positronium spectrum in 

._, .-. _ . QED(3+1).22 
l The vacuum in QCD is not likely to be trivial since the four- 

point interaction term in g2Gz, can introduce new zero-mode 
color-singlet states which mix with the free vacuum state. Thus 
a special treatment of the QCD vacuum is required. In the case 
of zero mass quarks, there may be additional mixing of the per- 
turbative vacuum with fermion zero-modes. 

In addition to its potential for solving the problems of the hadronic 
spectrum and wavefunctions of QCD, light-cone quantization has al- 
ready led to many new insights into the quantization of gauge theories. 
It has also brought a refocus of both theory and experiment to the novel 
features of QCD phenomena at the amplitude level. 

3. NOVEL SPIN, HEAVY QUARK, AND SPIN EFFECTS 
IN QCD 

In this section I will discuss a number of interesting hadronic spin ef- 
fects which test fundamental features of perturbative and non-pertur- 
bative QCD. These include constraints on the shape and normalization 
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of the polarized quark and gluon structure functions of the proton; the 
principle of hadron helicity retention in high XF inclusive reactions; 
predictions based on total hadron helicity conservation in high momen- 
tum transfer exclusive reactions; the dependence of nuclear structure 
functions and shadowing on virtual photon polarization; and general 
constraints on the magnetic moment of hadrons. I also will discuss the 
implications of several measurements which are in striking conflict with 
leading-twist perturbative QCD predictions, such as the extraordinarily 
large spin correlation ANN observed in large angle proton-proton scat- 
tering, the anomalously large pn branching ratio of the J/G, and the 
rapidly changing polarization dependence of both J/v) and continuum 
lepton pair hadroproduction observed at large XF. 

Polarization effects and spin correlations often provide the most 
sensitive tests of the underlying structure and dynamics of hadrons. 
The basic measures of the spin structure of the proton are its magnetic 
moment, which gives a global measure of the quark spin content of the 
proton, and the spin-dependent structure functions, which register the 

- local distribution of- the quark helicity currents as a function of their 
light-cone momentum fraction x.‘~ The SLAC-Yale and EMC measure- 
ments show a strong positive helicity correlation between the helicity . .-, .-. - 
of the u- and ?i quarks with that of the proton; the helicity of the d- 
and s-quark and antiquarks are negatively correlated. Most remark- 

-ably, the net correlation of the quark plus antiquark helicity with that 
of the proton Aq is consistent with zero. Since the total spin projec- 
tion a Aq + Ag + L, = $ , there must be a significant fraction of Fock 
states in the proton containing gluons, and there must be a non-trivial 
correlation of the gluon helicity with that of the proton. 

Although the net correlation of the quark helicity with the proton 
helicity in inclusive reactions is small, the spin correlations of large an- 
gle elastic pp scattering nevertheless display a dramatic structure at the 
highest measured energies fi N 5 GeV.76 These measurements are in 
strong conflict with the expectations of perturbative QCD which pre- 
dicts a smooth power-law fall-off for exclusive helicity amplitude with 

77 increasing momentum transfer. The strong polarization correlations 
observed in pp scattering are clearly of fundamental interest, since the 
microscopic QCD mechanisms that underlie the spin correlations be- 
tween the incident and final hadrons must involve the coherent transfer 
of helicity information through their common quark and gluon con- 
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stituents. The implications of the spin correlation measurements will 
be discussed below. I 

In this chapter I shall emphasize a basic but non-trivial prediction 
of the gauge couplings of PQCD, “hadron helicity retention”: a projec- 
tile hadron tends to transfer its helicity to its leading particle fragments. 
A particularly interesting consequence is the prediction that the J/t+b 
and the continuum lepton pairs produced in pion-nucleus collisions will 
be longitudinally polarized at large XF. Helicity retention also provides 
important constraints on the shape of the gluon and quark helicity dis- 
tributions. In the large XF domain, with Q2(1 - x) fixed, leading twist 

and multi-parton higher twist processes can be of equal importance. 7a In 
the case of large momentum transfer exclusive reactions, the underlying 
chiral structure of perturbative QCD predicts that sum of hadron he- 
licities in the initial state must equal that of the final stateP5 Although 
hadron helicity conservation appears to be empirically satisfied in most 
reactions, the most interesting cases are its dramatic failures such as 
the large branching. ratio for J/tj+pr. I will discuss these predictions 

- and their-experimental tests below. 

Although most of the topics discussed in this chapter are concerned 
. --‘-with quark or gluon helicity, there are also interesting linear polariza- 

tion predicted by the theory, such as in Y decays, or in the planar 
correlations of four-jet events in e+e- annihilation. In addition, the 
oblateness 

79 
of a gluon jet can be used to determine its axis of linear 

polarization. 

The Magnetic Moment of Hadrons in QCD 

Much of our understanding of the helicity structure of hadrons 
comes from rigorous constraints, such as the Bjorken Sum Rule for the 
integral of the spin dependent structure functions, and the Drell-Hearn- 
Gerasimov sum rule, which relates the anomalous magnetic moment of 
a composite system to an integral over the photoabsorption cross sec- 
tion. In fact Burkert and Ioffe” have shown that the DHG and Bjorken 
sum rules can be regarded as low and high Q2 limits of the same sum 
rule. 

One of the most interesting consequences of the DHG sum rule 
occurs if we take a point-like limit such that the threshold for inelastic 
excitation becomes infinite while the mass of the system is kept finite. 
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Since the integral over the photoabsorption cross section vanishes in 
this limit, the DHG sum rule implies that the anomalous moment must 
also vanish. Thus in the point-like limit, the magnetic moment of a 
spin-half system must approach the Dirac value p+j.LD = e/2M up to 
structure corrections of order M/A, [or ( M/A)2 if the underlying theory 
is chiral].81 Hiller and I have recently derived a generalization of the 
DHG sum rule for spin-one composite systems. In the point-like limit, 
both the magnetic moment and quadrupole moment of any spin-one 
system must approach the canonical values predicted by electroweak 
theory for the IV.“2 

The Drell-Hearn sum rule also has important consequences for 
the computation of the magnetic moments of baryons in &CD. Mag- 
netic moments are often computed using the quark model formula 
ji = Cf=, rz; . Th’ f is ormula is correct in the case of atoms where the 
mass of the nucleus can be taken as infinite. However, magnetic mo- 
ment additivity cannot be correct in general: the DHG sum rule shows 
that in the limit of strong binding where the constituents become very 
massive and the hadron becomes point-like, its magnetic moment must 
equal the Dirac value, not zero as predicted by quark moment additiv- 

--.-ity; The flaw in the conventional quark model formula is that it does 
not take into account the fact that the moment of a system H is derived 
from the electron scattering amplitude eH+e’H’ at non-zero momen- 
tum transfer q. The Dirac value in the point-like limit actually arises 
from the Wigner boost of the wavefunction from p to p + q. A detailed 
discussion of this and the resulting relativistic corrections to the mo- 
ment are given Ref. 83. On the other hand, the overlap of light-cone 
Fock wavefunctions does provide a general method for the evaluation 

81 
of hadronic magnetic moments and form factors. 

The Gluon Helicity Distribution 

One of the most interesting questions in QCD spin physics is the 
distribution of gluon polarization in the proton. The gluon distribu- 
tion of a hadron is usually assumed to be radiatively generated from the 
QCD evolution of the quark structure functions beginning at an initial 
scale Qi. The evolution is. incoherent; i.e. each quark in the hadron 
radiates gluons independently. However, as can be seen in the light- 
cone Hamiltonian approach, the higher Fock components of a bound 
state in *QCD contain gluons at any resolution scale. Furthermore, the 
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exchange of gluon quanta between the bound-state constituents pro- 
vides an interaction potential whose energy-dependent part generates 
a non-trivial non-additive contribution to the full gluon distribution 
QH (x,9;>. The PRY sits of gluon helicity distributions clearly involves 
the nonperturbative structure of the proton. Nevertheless, there are 
constraints which we can use to limit the possible form of the helicity- 
aligned and anti-aligned gluon distributions: G+(x) = Gst,Nt(x) and 

G-(x) = Ggl,~l(~)84: 

1. In order to insure positivity of fragmentation functions, the dis- 
tribution functions G=,*(x) must behave as an odd or even power 

of (1 - x) at x+1 according to the relative statistics of a and b.85 
Thus the gluon distribution of a nucleon must have the behavior: 

Go/~(") - (1 - x)2k at x+1 to ensure correct crossing to the 
fragmentation function DN,~ (2). 

2. In the x+1 limit, a gluon constituent of the proton is far off- 
shell and the leading behavior in the hadron wavefunctions is 
dominated by perturbative QCD contributions to the interaction 
kernel. We thus may use the minimally connected tree-graphs 

. .-, -. . . to characterize the threshold dependence of the structure func- 
tions. We find for a three quark plus one gluon Fock state, 
lim,,l G+(x)-C(1-x)2Nq-2 = C( 1 -x)~. The gauge theory cou- 
plings of gluons to quarks also imply lim,,l G-(x)/G+(x)+(l - 
x)~. Thus G-(x) N (1 - x)~ at x N 1. QCD evolution does not 
change these powers appreciably since the available phase-space 
for secondary gluon emission is limited to k: < (1 - x)Q2. 

3. In the low x domain the quarks in the hadron radiate gluons 
coherently. Define AG(x) = G+(x)-G-(x) and G(x) = G+(x)+ 
G-(x). One then finds that the asymmetry ratio AG(x)/G(x) 
vanishes linearly with x. 

4. In a simplest three quark plus one-gluon Fock state model the 
generated gluon distribution in the nucleon at low x has the nor- 
malization 84 AG(x)/G(x) = (x/3) (l/y), where y is the quark 
momentum fraction in the three quark state. The factor of l/3 
is due to the fact that all of the quarks contribute positively to 
G(x), but are proportional to the sign of their helicity in AG(x). 

If we assume equal quark momentum partition (l/y) = 3, then the 
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above constraints are satisfied by the simple form 84. . 

AG(x) = (N/x)[l - (1 - ~)~](l - x)~, 

G(x) = (N/x)[l + (1 - x)~](I - x)~ . 
(20) 

This gives AG/ (x9) = 77/72 = 1.07 for the ratio of the gluon helicity 
to its momentum fraction in the nucleon. Since the gluon momen- 
tum fraction is N 0.5, we predict the total gluon helicity correlation 
AG = 0.54, which by itself saturates the proton spin sum rule. It is ex- 
pected that these results should provide a good characterization of the 
gluon distribution at the resolution scale Qi N Mi. Clearly the model 
could be improved by taking into account higher Fock states and QCD 
evolution. 

A determination of the unpolarized gluon distribution of the proton 
at Q2 N 2 GeV2 using direct photon and deep inelastic data has been 
given in Ref. 86. The best fit over the interval 0.05 5 x < 0.75 
assuming the form zG(x, Q2 = 2 GeV2) = A(1 - x)99 gives qs = 3.9 f 

- 0.11(+0.8’- O.S), h w ere the errors in parenthesis allow for systematic 
uncertainties. This result is compatible with the prediction qs = 4 for 

. .-.-the gluon distribution at the bound-state scale, allowing for the small 
effects due to QCD evolution. 

Quark Helicity Distributions and Hadron Helicity Retention 
in Inclusive Reactions at Large ZF 

Consider a general inclusive reaction AB+CX at large x,c where 
the helicities Xc and XA are measured. To be precise, we shall use the 

boost-invariant light-cone momentum fraction xc = 3 = m. 

Hadron helicity retention implies that the difference between AC and 
AA tends to a minimum at xc+l. Hadron helicity retention follows 
from the helicity structure of the gauge theory interactions, and it is 
applicable to hadrons, quarks, gluons, leptons, or photons. For exam- 
ple, in QED photon radiation in lepton scattering has the well-known 
distribution dN/d x 0; [l + (1 - z)~]/x. The first term corresponds to 
the case where the photon helicity has the same sign as the lepton helic- 
ity; opposite sign helicity production is suppressed by a factor (1 - x)~ 

atx-+l 87: the projectile helicity tends to be transferred by the lead- 
ing fragment at each step in perturbation theory. It is a nontrivial step 
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to show that hadron helicity also holds for hadrons in QCD; e.g.: the 
structure functions of the leading quarks in the proton have the nominal 
power behavior: Gqip(x) N (1 - x)~ for X, = X, and Gqlp(x) N (1 - x)~ 
if X, = -X,. This result follows from the fact that at x+1 the struck 
quark is far off-shell and spacelike: k2 - -p2/(1 - x) where p is a 
typical hadron mass scale; the leading fall-off of structure functions at 
x+1 can thus be computed from the minimally-connected tree-graphs. 

These considerations have the immediate consequence that the down 
and anti-down quark distribution Ad(x) has a zero as a function of x. 
At large x PQCD predicts that the helicity-antiparallel distribution 
d+(x) is suppressed relative to the helicity-parallel distribution d+(x) 
by two powers of (1 - x). At very small x the two distributions must 
have equal magnitude to ensure convergence of sum rules. However, 
measurements imply that the integral Ad = Jt dx[d+(x) - d-(x)] is 
negative. Th us one expects that Ad(x) changes sign as a function of 
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Figured4. The TV dependence of the polarizationstarameter X for (a) ,I/+ 
production and (b) continuum lepton pair production in 7r - N collisions as a 
function 4f IF. 
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One of the most important testing grounds for hadron helicity re- 
tention is J/T) production in 7~ - N collisions. The helicity of the J/1c, 
can be measured from the angular distribution 1 + X cos2 0, of one of 
the muons in the leptonic decay of the J/$. At low to medium values 
of XF the Chicago-Iowa-Princeton Collaboration 88 finds that X N 0, 
which is consistent with expectations from the gluon-gluon fusion sub- 
process. However, at large XF > 0.9 the angular distribution changes 
markedly to sin2 6,; i.e., the J/lc, is produced with longitudinal polar- 
ization. [See Fig. 14(a).] Note that the expectation of quark anti-quark 
fusion is 1 + cos2 8, (X = +l), as in the Drell-Yan process. The sudden 
change to longitudinal polarization must mean that a new heavy quark 
production mechanism is present at large XF.” In fact, it is easy to 
guess the relevant process which can produce high momentum charm 
quark pairs. [See Fig. 15(a).] S ince nearly all of the pion’s momen- 
tum is transferred to the charmonium system, one needs to consider 
diagrams where each valence quark in the incoming pion emits a fast 
gluon. The two gluons then fuse to make a fast CE pair. At large mo- 
mentum fraction x5 each gluon’s helicity tends to be parallel to the 
helicity of its parent quark. Thus the angular momentum J, of the 
g1uo.n pair is transferred to the ci? pair. The angular momentum tends 

. --‘- to-be preserved by any subsequent gluon radiation or gluon interaction 
from the heavy quarks. The J/lc, then tends to have the same helicity 
as the projectile at high light-cone momentum fraction. 

(4 

Figure 15. Higher twist mechanisms for producing (a) J/$ and (b) massive 
lepton pairs at high TV in meson-nucleon collisions. 

Thus there is a natural mechanism in QCD which produces the 
J/lc, in the same helicity as the incoming beam hadron; the essential 
feature is the involvement of all of the valence quarks of the incoming 
hadron directly in the heavy quark production subprocess. Since such 
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diagrams involve the correlation between the partons of the hadron, 
it can be classified as a higher-twist “intrinsic charm” amplitude; the 
production cross section is suppressed by powers of fX/MQg relative to 
conventional fusion processes. Although nominally higher twist, such 
diagrams provide an efficient way to transfer the beam momentum to 
the heavy quark system while stopping the valence quarks. 

The intrinsic charm mechanism also can explain other features of 
the J/$ hadroproduction.g”g2’93 The observed cross section persists to 
high XF in excess of what is predicted from gluon fusion or quark anti- 
quark annihilation subprocesses; furthermore the cross section at high 
XF has a strongly suppressed nuclear dependence, AatzF) - 0.7. The 
nuclear dependence actually depends on SF not 22 which rules out lead- 
ing twist mechanisms. The higher-twist intrinsic charm e.g. ]zludci?) 
Fock state wavefunctions have maximum probability when all of the 

quarks have equal velocities, i.e. when x; o( J&q.. This implies 

that the charm and anti-charm quarks have the majority’of the momen- 
tum of the proton when they are present in the hadronic wavefunction. 
In a high energy proton-nucleus collision, the small transverse size, 
high-x intrinsic cz system can penetrate the nucleus, with minimal ab- 

-. sorption and can coalesce to produce a charmonium state at large SF. 
Since the soft quarks expand rapidly in impact space, the main inter- 
action in the target of the intrinsic charm Fock state is with the slow 
valence quarks rather than the compact CC system. 78 Thus at large XF 

the interaction in the nucleus should have the A-dependence of nor- 
mal hadron nucleus cross sections: w .A”.7. Note that at high energies, 
the formation of the charmonium state occurs far outside the nucleus. 
Thus one predicts similar A a(ZF)-dependence of the J/lc, and $’ cross 
sections. These predictions are in agreement with the results reported 
by the E-772 experiment at FermilabP2 

In the case of continuum pair production, the lepton pair produced 
via the leading-twist Drell-Yan fusion mechanism q7j+p+p- has trans- 
verse polarization (X = 1). However, at large XF the muon angular 

distribution is observed to change to sin2 B,.8g [See Fig. 14(b).] This 

result was predicted34 from the dominance of higher twist wq+p+p-q 
subprocess contributions at high SF. A detailed calculation shows sub- 
process amplitude can be normalized to the same integral over the pion 
distribution amplitude J dx~$(s, Q)/( 1 - x) that controls the pion form 
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In the higher-twist subprocess diagram, Fig. 15(b), the lepton pair 
tends to have the same helicity as the beam hadron at large XF. For 
example, consider a-N-+/.~+p-x at high XF. The valence d quark 
emits a fast gluon which in turn makes a fast-u, slow-8 pair. Because 
of the QCD couplings, the fast u then carries the helicity of the d. The 
valence E then annihilates with the fast u to make the lepton pair at 
XF N 1. The lepton pair thus tends to have the helicity (Jz = 0) of the 
pion, in agreement with hadron helicity retention. 

Hadron Helicity Conservation in Hard Exclusive Reactions 

There are also strong helicity constraints on form factors and other 
exclusive amplitudes which follow from perturbative QCD.77 At large 
momentum transfer, each helicity amplitude contributing to an exclu- 
sive process at large momentum transfer can be written as a convolution 
of a hard quark-gluon scattering amplitude TH which conserves quark 

- helicity with the hadron distribution amplitudes $(xi, Q), which are the 
LZ = 0 projections of the hadron’s valence Fock state wavefunction: 

-. .-.Cp(xi; Xi, Q) = j[d”kl] $(zi, Zliy Xi)8(k~i < Q2) where $(xi, Zli, Xi) 
is the valence wavefunction. Since 4 only depends logarithmically on 
Q2, the main dynamical dependence of J’B(&~) is the power behavior 
(Q2)-2 derived from the scaling behavior of the elementary propagators 
in TH. 

As shown by Botts, Li, and Stermana5 the virtual Sudakov form 
factor suppresses long distance contributions from Landshoff multiple 
scattering and x w 1 integration regions, so that the leading high mo- 
mentum transfer behavior of hard exclusive amplitudes are generally 
controlled by short-distance physics. Thus quark helicity conservation 
of the basic QCD interactions leads to a general rule concerning the 
spin structure of exclusive amplitudes 45: to leading order in l/Q, the 
total helicity of hadrons in the initial state must equal the total helicity 
of hadrons in the final state. This selection rule is independent of any 
photon or lepton spin appearing in the process. The result follows from 
(a) neglecting quark mass terms, (b) the vector coupling of gauge par- 
ticles, and (c) the dominance of valence Fock states with zero angular 
momentum projection. The result is true in each order of perturbation 
theory in 09. 
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For example, PQCD predicts that the Pauli Form factor F2( Q2) of a 
baryon is suppressed relative to the helicity-conserving Dirac form fac- 
tor E’l(Q2). A recent experiment at SLAC carried out by the American- 
University/SLAG collaboration is in fact consistent with the prediction 

Q2f’2(Q2)/Fl(Q2)-+ constg6 Helicity conservation holds for any baryon 
to baryon vector or axial vector transition amplitude at large spacelike 
or timelike momentum. Helicity non-conserving form factors should 

fall as an additional power of 1/Q2.45 Measurementsg7 of the transition 
form factor to the J = 3/2 N(1520) nucleon resonance are consistent 
with J, = &l/2 dominance, as predicted by the helicity conservation 

rule.45 One of the most beautiful tests of perturbative QCD is in proton 
Compton scattering, where there are now detailed predictions available 
for each hadron helicity-conserving amplitude for both the spacelike 

g8 and timelike processes. In the case of spin-one systems such as the p 
or the deuteron, PQCD predicts that the ratio of the three form factors 
have the same behavior at large momentum transfer as that of the W 

82 
in the electroweak theory. 

.._,.__ Hd. hl t a ron e ici y conservation in large momentum transfer exclusive 
reactions is a general principle of leading twist QCD. In fact, in several 
outstanding cases, it does not work at all, particularly in single spin 
asymmetries such as AN in pp scattering, and most spectacularly in 
the two-body hadronic decays of the J/4. The inference from these 
failures is that non-perturbative or higher twist effects must be playing 
a crucial role in the kinematic range of these experiments. 

The J/T) decays into isospin-zero final states through the interme- 
diate three-gluon channel. If PQCD is applicable, then the leading 
contributions to the decay amplitudes preserve hadron helicity. In the 
case of e+e- annihilation into vector plus pseudoscalar mesons, Lorentz 
invariance requires that the vector meson will be produced transversely 
polarized. Since this amplitude does not conserve hadron helicity, 
PQCD predicts that it will be dynamically suppressed at high mo- 
mentum transfer. Hadron .helicity conservation appears to be severely 
violated if one compares the exclusive decays J/t,b and ?,l~’ + pi, K*f7 
and other vector-pseudoscalar combinations. The predominant two- 
body hadronic decays of the J/lc, h ave the measured branching ratios 
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BR(J/$+li’+K-) = 2.37 f 0.31 x 1O-4 

BR(J/+-+px) = 1.28 f 0.10 x 1O-2 

BR(J/&+I~+K-*) = 5.0 f 0.4 x 1O-3 . 
(21) 

Thus the vector-pseudoscalar decays are not suppressed, in striking 
contrast to the PQCD predictions. On the other hand, for the $‘: 

BR(t&+I~+Is--) = 1.0 f 0.7 x 1o-4 

BR(+pT) < 8.3 x 1o-5 (90% CL) (22) 
BR(l$+I~+Ir*) < 1.8 x 1o-5 (90% CL) . 

From the standpoint of perturbative QCD, the observed suppression 
of $’ to vector-pseudoscalar mesons is expected; it is the J/lc, that is 
anomalous.gg What can account for the apparently strong violation of 
hadron helicity conservation ? One possibility is that the overlap of the 
CE system with the wavefunctions of the p and a is an extremely steep 
function of the pair mass, as discussed by Chaichian and Tornqvist.lOO 
However, this seems unnatural in view of the similar size of the J/lc, 

.-a&l +’ branching ratios to KsK-. Pinsky”’ has suggested that the +’ 
decays predominantly to final states with excited vector mesons such 
as p’n, in analogy to the absence of configuration mixing in nuclear 
decays. However, this long-distance decay mechanism would not be 
expected to be important if the charmonium state decays through cz 
annihilation at the Compton scale l/m,. 

Another way in which hadron helicity conservation might fail for 
J/lc, + gluons + 7rp is if the intermediate gluons resonate to form 
a gluonium state 0. If such a state exists, has a mass near that of 
the J/4, and is relatively stable, then the subprocess for J/lc, + np 
occurs over large distances and the helicity conservation theorem need 
no longer apply. This would also explain why the J/lc, decays into rnp 
and not the $‘. Tuan, Lepage, and 1” have thus proposed, following 

Hou and lo2 Soni, that the enhancement of Jllc, + K*r and Jjlc, -+ pr 
decay modes is caused by a quantum mechanical mixing of the J/t+h with 
a Jpc = l-- vector gluonium state 0 which causes the breakdown 
of the QCD helicity theorem. The decay width for J/t,h + pr via 
the sequence J/+ + 0 + pr must be substantially larger than the 
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decay width for the (non-pole) continuum process J/lc, + 3 gluons 
+ pr. In the other channels the branching ratios of the 0 must be so 
small that the continuum contribution governed by the QCD theorem 
dominates over that of the 0 pole. A gluonium state of this type was 
first postulated by Freund and Nambulo3 based on 021 dynamics soon 
after the discovery of the J/lc, and $’ mesons. The most direct way to 
search for the 0 is to scan j5p or e+e- annihilation at fi within w 100 
MeV of the J/$, trigg ering on vector/pseudoscalar decays such as r’p 
or KK* and look for enhancements relative to K+K-. Such a search 
has recently been proposed for the BEPC by Chen Yu, Gu Yifan, and 
Wang Ping. 

Anomalous Spin Correlations and Color Transparency Effects 
in Proton-Proton Scattering 

The perturbative QCD analysis of exclusive amplitudes assumes 
that large momentum transfer exclusive scattering reactions are con- 
trolled by short distance quark-gluon subprocesses, and that corrections 
rom quark masses -and intrinsic transverse momenta can be ignored. 

.- f-- 
Since hard scattering exclusive processes are dominated by valence Fock 
state wavefunctions of the hadrons with small impact separation and . .-, .-. - 
small color dipole moments, one predicts that initial and final state 
interactions are generally suppressed at high momentum transfer. In 
particular, since the formation time is long at high energies, one predicts 

’ that the attenuation of quasi-elastic processes due to Glauber inelastic 
scattering in a nucleus will be reduced. This is the color transparency 
prediction of perturbative QCD. 25 A test of color transparency in large 
momentum transfer quasielastic pp scattering at 8,, z n/2 has been 

carried out at BNL using several nuclear targets (C, Al, Pb).lo4 The 
attenuation at pl& = 10 GeV/c in the various nuclear targets was 
observed to be in fact much less than that predicted by traditional 
Glauber theory. The expectation from perturbative QCD is that the 
transparency effect should become even more apparent as the momen- 
tum transfer rises. However, the data at nab = 12 GeV/c shows normal 
nuclear attenuation and thus a violation of color transparency. 

An even more serious challenge to the PQCD predictions for exclu- 
sive scattering is the observed behavior of the normal spin-spin correla- 
tion asymmetry ANN = [do(Tf) - da(Tl)]/[da(TT) + do(Tl)] measured 
in large momentum transfer pp elastic scattering. At plab = 11.75 
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GeV/c and 6,, = 7r/2, ANN rises to N SO%, corresponding to four 
times more probability for protons to scatter with their incident spins 
both normal to the scattering plane and parallel, rather than normal 

76 
and opposite. In contrast, the unpolarized data is to first approxima- 
tion ,consistent with the fixed angle scaling law s”do/dt(pp -+ pp) = 
f(0c~) expected from  the perturbative analysis. The onset of new 
structure at s N 23 GeV2 suggests new degrees of freedom in the two- 
baryon system. 

Guy De Teramond and 14’ have noted that the onset of strong spin- 
spin correlations, as well as the breakdown of color transparency, can 
be explained as the consequence of a strong threshold enhancement at 
the open-charm threshold for pp+A,Dp at fi = 5.08 GeV or nab N 
12 GeV/c. At this energy the charm quarks are produced at rest in 
the center of mass. Since all eight quarks have zero relative velocity, 
they can resonate to give a strong threshold effect in the J = L = 
S’-= 1 partial wave.. (The orbital angular momentum of the pp state 

- must be odd since the charm and anti-charm  quarks have opposite 
parity.) The J = L = 5’ = 1 partial wave has maximal spin correlation 

-. -&V-N‘ = 1. A charm production cross section of the order of 1 pb in 
the threshold region can have, by unitarity, a large effect on the large 
angle elastic pp+pp amplitude since the competing perturbative QCD 
.hard-scattering amplitude at large momentum transfer is very small 
at fi = 5 GeV. In fact as recently shown by Manohar, Luke, and 

Savage,5 the QCD trace anomaly predicts that the scalar charmonium- 
nucleus interaction is strongly amplified at low velocities and can lead 
to nuclear-bound charmonium.51 

An analytic model which contains all of these features is given in 
Ref. 49. The background component of the model is the perturbative 
QCD amplitude with se4 scaling of the pp + pp amplitude at fixed 
8,, and the dominance of those amplitudes that conserve hadron helic- 

45 
ity. A comparison 

105 of the magnitude of cross sections for different 
exclusive two-body scattering channels indicate that quark, interchange 
amplitudes 106 dominate quark annihilation or gluon exchange contri- 
butions. The most striking test of the model is its prediction for the 
spin correlation ANN shown in Fig. 16. The rise of ANN to 21 60% 
at mat, 7 11.75 GeV/c is correctly reproduced by the high energy J=l 
resonance interfering with 4(PQCD). The narrow peak which appears 
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Figure 16. ANN as a function of pi& at 8,, = ~12. The data76 are 
from Crosbie et al. (solid dots), Lin el al. (open squares) and Bhatia et 

.-- al. (open triangles). The peak at pi& = 1.26 GeV/c corresponds to the 
pA threshold. The data are well reproduced by the interference of the 
broad resonant structures at the strange (PI& = 2.35 GeV/c) and charm 
(Piab = 12.8 GeV/c) thresholds, interfering with a PQCD background. 

. .-, -_ - The value of ANN from PQCD alone is l/3. 

in the data of Fig. 16 corresponds to the onset of the pp ---f pA(1232) 
channel which can be interpreted as a uuuuddqij 3F3 resonance. The 
heavy quark threshold model also provides a good description of the 
s and t dependence of the differential cross section, including its “os- 
cillatory” dependence lo7 in s at fixed &,, and the broadening of the 
angular distribution near the resonances. Most important, it gives a 
consistent explanation for the striking behavior of both the spin-spin 
correlations and the anomalous energy dependence of the attenuation 

’ of quasielastic pp scattering in nuclei. A threshold enhancement or 
resonance couples to hadrons of conventional size. Unlike the pertur- 
bative amplitude, the protons coupling to the resonant amplitude will 
have normal absorption in the nucleus. Thus the nucleus acts as a 
filter, absorbing the non-perturbative contribution to elastic pp scat- 
tering, while allowing the hard-scattering perturbative QCD processes 

108 
to occur additively throughout the nuclear volume. Conversely, in 
the momentum range && = 5 to 10 GeV/c one predicts that the per- 
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turbative hard-scattering amplitude will be dominant at large angles. 
It is thus predicted that color transparency should reappear at higher 
energies (mat, 2 16 GeV/c), and also at smaller angles (&, x 60’) at 

nab = 12 GeV/c where the perturbative QCD amplitude dominates. 
If the resonance structures in ANN are indeed associated with heavy 
quark degrees of fr&dom, then the model predicts inelastic pp cross 
sections of the order of 1 mb and lpb for the production of strange and 
charmed hadrons near their respective thresholds. In fact, the neu- 
tral strange inclusive pp cross section measured at nab = 5.5 GeV/c is 

0.45 f 0.04 mb.log Thus the crucial test of the heavy quark hypothe- 
sis for explaining ANN is the observation of significant charm hadron 
production at nab 2 12 GeV/c. 

Ralston and Pire 
108 

have suggested that the oscillations of the pp 
elastic cross section and the apparent breakdown of color transparency 
are associated with the dominance of the Landshoff pinch contribu- 
tions at Js - 5 GeV. The oscillating behavior of da/& is then due . 

_ to the energy dependence of the relative phase between the pinch and 
hard-scattering contributions. They assume color transparency will dis- 
appear whenever the pinch contributions are dominant since such con- 

. ---tributions could couple to wavefunctions of large transverse size. How- 
ever, the large spin correlation in ANN is not readily explained in the 
Ralston-Pire model unless the Landshoff diagram itself has ANN - 1. 

Polarization-Dependent Nu’clear Shadowing 

Another interesting spin effect in QCD is the prediction that nu- 
clear shadowing depends on the virtual photon polarization. In models 
where shadowing is due to the deformation of nucleon structure func- 
tions in the nucleus, one would not expect such any dependence on 
photon polarization. In Refs. 110 and 111 one sees that nuclear shad- 
,owing (in the target rest frame) arises from the destructive interference 
of the multiple scattering of a quark (or antiquark) in the nucleus. The 
quark comes from the upstream dissociation of the virtual photon. The 
c@ pair is formed at a formation time (coherence length) r o( I/XbjM 
before the target. In order to get significant multiple scattering and in- 
terference one needs a coherence length comparable to the nuclear size. 
However, Hoyer, Del Duca and I foundrrr that the coherence length is 
significantly shorter (by a factor of l/d) for the longitudinally polar- . 
ized photon than the transverse case. The reason for this is that the 
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internal transverse momentum and hence the virtual mass and energy 
of the gij pair is larger by a nearly constant factor in the longitudi- 
nal case, thus shortening its lifetime. Thus the nuclear attenuation is 
delayed to smaller values of Sbj in the longitudinal compared to the 

transverse cross section. Nikolaev”2 has also recently discussed the 
possibility of smaller nuclear shadowing of OL on the grounds that the 
@j system has a smaller transverse size in the case of a longitudinally 
polarized photon, and it is thus more color transparent. In this case 
diminished longitudinal shadowing would persist for all xbj. 

4. THE SCALE AND SCHEME DEPENDENCE OF PER- 
TURBATIVE QCD 

One of the most difficult problems in perturbative QCD is how to re- 
liably estimate the theoretical error due to the choice of the renormal- 
jzation scale and scheme.113’114’3g Although all physical predictions in _ 

- QCD should in principle be invariant under the change of both scale 
and scheme, in practice this invariance is only approximate due to the 
truncation of the perturbative series. 

The ambiguities due to renormalization scale and scheme choice will 
be alleviated as one computes higher order 

115,116,117,118 
contributions. In 

the cases where there are large disparate scales in the problem, resum- 
mation techniques also promise to reduce the theoretical uncertainties. 
However, two questions still remain: 

1. How can we give a reliable error estimate which correctly assesses 
the validity of high order PQCD predictions? 

2. Is there a reliable way to choose the renormalization scale in re- 
lation to the physical scales ? This problem is particularly im- 
portant in the case of processes in which only low order calcula- 

’ tions are available, and in processes with multiple physical scales. 
Commonly used scale-setting strategies include the Principle of 
Minimum Sensitivity (PMS) ‘I3 (which also optimizes the choice 

of scheme), the Fastest Apparent Convergence (FAC) criterion!14 

and the “automatic scale-fixing method” (BLM). 3g 

It has been traditional to consider the scale-scheme ambiguity as 
intrinsically unavoidable and to interpret the numerical fluctuations 
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coming from different scale and scheme choices as the error in the the- 
oretical prediction. This point of view, aside from being overly pes- 
simistic, is also very unsatisfactory. First of all, in general we do not 
know how wide a range the scale and scheme parameters should vary in 
order to give a correct error estimate. Secondly, besides the error due 
to scale-scheme uncertainties there is also the error from the omitted 
higher-order terms. In such an approach, it is not clear whether these 
errors are independent or correlated. The error analysis in this context 
can become quite arbitrary and unreliable. 

For example, in their recent analysis of PQCD predictions for bot- 
tom quark production at hadron colliders, Berger, Meng, and 

119 
Tung, 

found that the predicted inclusive cross section c(pj%bX) at fi = 1.8 
TeV for central rapidities 1~1 < 1 and pr > pFin = 30 GeV actu- 
ally varies by more than a factor of 10 within the arbitrary range 
0.1M~ < p < ~MT. Since there is no a priori range for ~1, the un- 
certainty due to the scale choice is actually even worse. 

Recently Hung Jung Lu and I have shown that reliable error esti- 
- mates in PQCD can be obtained from an analysis of the Stiickelberg- 

Peterman extended renormalization group equations in perturbative 

-.Qw~ h h P w ic ex ress the invariance of physical observables under re- 
normalization-scale and scheme-parameter transformations. In this 
general framework, one can introduce a universal coupling function 
that covers all possible choices of scale and scheme. In fact any pertur- 
bative series in QCD is equivalent to a particular point in this function. 
The universal coupling function can be computed from a set of first- 
order differential equations involving extended beta functions. By using 
these evolution equations for the numerical evaluation of physical ob- 
servables, we obtain a formalism that is free of scale-scheme ambiguity 
and a reliable error analysis of higher-order corrections. This method 
also leads to a precise definition for Am as the pole in the associated 
‘t Hooft scheme. 

Consider the N-th order expansion series of a physical observable 
- R in terms of a coupling constant as(p) given in scheme S and at a 

scale ~1: 

The infinite series R, is renormalization scale-scheme invariant. How- 



ever, at any finite order, the scale and scheme dependencies from the 
coupling constant cys(p) and from the coefficient functions r;(p) do not 
exactly cancel, which leads to a remnant dependence in the finite series. 
Different choices of scale and scheme then lead to different theoretical 
predictions. 

In the extended renormalization group method, a perturbative se- 
ries only serves as an intermediate device for the identification of scale 
and scheme parameters. The ultimate prediction is obtained through 
.evolution equations in the scale- and scheme-parameter space. This 
approach provides both a reliable error analysis a precise definition for 

h Renormalization scheme invariant methods have been previously 

studied by Grunberg, Dhar and 114,120 
Gupta, and our approach is es- 

sentially a reformulation of these methods in the language of a universal 
coupling function by using the Stiickelberg-Peterman equations. 

Power Series vs. Renormalization Group 

- .-- It is important to emphasize that the goal of PQCD predictions 
is to relate measured observables. The most natural procedure would 
be to use.one canonical process such as the annihilation cross section 

. Yr&io Ret,- or the heavy quark potential to define (rs(Q2), an1d4then 
express other observables in terms of that “effective charge. For 
-example, in QED, Coulomb scattering is used to define the on-shell 
scheme and to normalize a(O). In the case of QCD it is more convenient 
to calculate using dimensional regularization, and to use the MS scheme 
as an intermediate coupling; but at any stage, it should be possible to 
eliminate the dependence on GYMS in favor of a couplng based on an 
observable. 

To be more definite, let us consider the case of QCD with nf mass- 
less quarks. We will limit ourselves to perturbative quantities that allow 
series expansion in the strong coupling constant. Given this premise, a 
physical observable R in QCD can be expanded in a power series like: 

where crO is the bare coupling constant. In general, R can depend on 
several momentum scales: R = R({ Ici}). We will consider the { Ici} to 
be fixed-for the moment. In the above equation, rs is the tree-level 
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coefficient and N is the tree-level exponent. It is well-known that for 
a renormalizable theory like QCD, all higher-order coefficients {ri}i>r 
are divergent and ill-defined, hence the power series in bare coupling 
constant should be considered purely formal. In other words, QCD 
alone does not give a direct prediction for R. 

Consider now another physical quantity: 

(25) 

As in the case of R, QCD does not provide a direct prediction for S 
since the coefficients {si}i>r are also divergent. However, QCD does 
allow us to relate S to R. The procedure is simple. We first invert Eq. 
(24) to obtain cyO in terms of R, 

Qo= (gN+.-(;) 

. -Y-then we substitute this last equation into Eq. (25) to obtain: 

s=so @IN + [sl - $q] ($)(“+l”N +... . (27) 

For a renormalizable theory like QCD, the expansion coefficients in 
this new series are expected to be finite and well-defined. That is, the 
infinities in the divergent coefficients like rr and sr will conspire to 
cancel each other, yielding a finite result. 

Given a third physical quantity I 

we can similarly expand it in terms of R or S, or vice versa. We do 
not have a direct prediction for R, S or 2’. However, if one of them is 
measured, QCD allow us to predict the other two. 

59 



Notice that in Eq. (27), the quantity (R/r~)~j~ appears repeatedly. 
It is convenient to give a symbol to this quantity: 

R l/N 
CYR= - 

0 
. 

r0 
(29) 

This quantity is known as the effective charge 114 or the effective cou- 
pling in the scheme R at the scales { Ici}. If R is a single scale process, 

.then CrR will depend on only one scale, but in general R and OR can 
depend on more than one scale. 

Similarly, we can define the effective charges of S and T (or effective 
coupling in the schemes S and T) as 

Since the tree-level coefficients (rs, so, to) and exponents (M, N, P) are 
finite and well-defined, the effective charges CXR, as and CYT are therefore 
.also well-defined. 

QCD allows us to relate one effective charge to another. For in- 
stance, Eq. (27) in terms of effective charges will have the form 

where the expansion coefficients f,g, . . . are expected to be finite. 

More conventional coupling constants like am@) can also be re- 
garded as effective charges. In fact, in dimensional regularization we 
have 

(32) 

(Where l/i = l/c+y,+!n4r, E = (O-4)/2, /?o = 11-2nf/3. The bare 
coupling constant cr, is dimension-full in dimensional regularization. In 
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this formula, cyo and ~1 have been expressed in a pre-established mass 
unit.) We can regard this last equation as describing an “observable” 
with unit tree-level coefficient and exponent. We can expand om in 
terms of cry, OS or a~, or vice versa. In this context, there is no 
distinction between effective charges coming from physical observables 
or effective charges coming from more conventional coupling constants. 
Stretching this language, one can in fact refer to om as the effective 
charge of the “MS process”. 

Our discussion so far is valid to all orders. Realistically, we can only 
compute a finite number of terms in an expansion series. The direct 
evaluation by using a truncated series may not be the best strategy 
under these circumstances. Suppose we have a physical process R with 

a~@) = 0.2 at Q = 3 GeV, and we wish to evaluate the effective 
charge crs( P) f o another single-scale process S(P) at some large scale, 
say, P = lo5 GeV. The truncated series 

w(P) =~~(&)+.f(~,Qk&(&) (33) 

will have a large value of f( P, Q) and higher-order contributions cannot 
. ---be neglected. In fact, it is known that for large enough value of P, this 

truncated series will give a negative value for as(P). 
What if S = R in the above discussion? That is, what if we want to 

evaluate cr~(lO’ GeV) f rom CYR(~ GeV)? The answer is clear: we can 
the renormalization group equation to evolve CYR(Q) from Q = 3 GeV 
to Q = 10’ GeV. More specifically, given the beta function: 

@Rhd = denQ2 L(~)z+o(E!J2+... , (34) 

we can use it for the evolution of a~. To first order we obtain 

OR(p)= 
QR@) 

1+ $+R(&)en(p2/Q2) - 
(35) 

This result is much more reliable than the one given by the truncated 
series. In fact, &R(P) now remains positive for arbitrarily large values 
OfP. * 
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Why is the renormalization group method better than the direct 
evaluation of the truncated series ? The answer is that along the evo- 
lution trajectory the scale is changed in a continuous fashion, thus 
avoiding the presence of dissimilar scales and large coefficients. 

Let us return to the case of two different processes. Given two effec- 
tive charges CXR(Q) and as(P). E ac h one of them can be characterized 
by its respective beta function: 

MAR) = S(Z) =-Po(~)2-Pl(~)3-Piy~)4+*.. , 

P&Q) = &(~)=-Po(~)2-Pl(~)3-Bz”(~)4+-.. * 
(36) 

The universality of the first two beta function coefficients PO and /?I 
is a well-known fact. Stevenson ‘13 has shown that a scheme can be 
parametrized by its higher-order beta coefficients. Therefore, the R- 
scheme is characterized by {/?f}n>2, and the S-scheme by {p”},rz. In 
the expansion series of as(Q) in terms of OR(P): 

.----. - -w(P)= (~R(Q)+~(P,Q)CU~R(Q)+~(P,Q)(~~R(Q) +.+a , (37) 

we know that we need a scale P - Q to have a reasonable expansion 
coefficient f( P, Q). H owever, this may not be enough to guarantee 
a good convergence if S and R are very different schemes. That is, 
if the beta function coefficients @ and @ are very different, then 
the expansion. coefficients like g( P, Q) can still be large, rendering the 
truncated series useless. 

The strategy to follow is now clear. We should evolve QR(P) “adi- 
abatically” into OR(&), not only in scale but also in scheme. Along the 
evolution trajectory, no dissimilar scales or schemes are involved, thus 
we can expect the result to be more reliable. We need new equations 
and beta functions that allow us to evolve the scheme parameters {ro,“} 
into {@}. Th is will be the subject of the next section. 

Let us conclude this section with a comment on error estimation. 
Conventionally one can estimate the error of a finite series by esti- 
mating the next-order coefficient. However, when the power series is 
unreliable due to largely mismatched scales and schemes, so will be the 
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corresponding error estimate. We will see that in the extended renor- 
malization group method, we can first estimate the next-order scheme 
parameter, and then translate the scheme uncertainty into the error 
estimate for the physical observable. 

The Universal Coupling Function in QCD 

In this section we will set up the appropriate notation and define the 
universal coupling function. Given an effective charge cry = oR({~i}), 
we define its fundamental beta function (or scale beta function) to be 

PR(~R) = dlodgX2 (aR(iikiJ)) 

(38) 
= -PO (z)2 - p*(Z)” - pf (2)” + . . . . 

- The first two coefficients ,&J and ,8r are universal, whereas all higher- 
order coefficients {/?f},>, are process dependent. It will be very con- 

. --.-venient to use the first two coefficients of the beta functions to rescale 
the coupling constant and the scale parameter 4%x2. (The quantity X 
effectively parametrizes the overall scale of a process. For single scale 
processes, the derivative with respect to the scale parameter can be 
replaced by the derivative with respect to the scale of the process, as 
given in Eq. (36).) 

Let us define the resealed coupling constant and the resealed scale 
parameter as. 

The resealed beta function takes the canonical form: 

/?R(UR) = 2 = -a;(1 + aR + $a; + cfai + - - -) , 

with ct = ,f?~/?~-‘/&’ for n = 2,3,. . . . This resealing process serves to 
“unitarize” the expansion coefficients. 
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For a well-behaved scheme in QCD, we would expect its beta- 
function expansion to roughly resemble a geometrical series, at least 
for the first few coefficients. In fact, for the MS scheme we have 
CF = ~~,f?o/# , where121 

A=ll-$j, 

p* = 102 - fnj , (41) 

and for nf = 0, 1,2,3,4,5,6 we have respectively cp = 1.5103,1.4954, 
1.4692,1.4147,1.2851,0.92766, -0.33654. We can clearly see that in- 
deed cp is of order of magnitude unity. 

The universal coupling function a(T, {ci}) is the extension of an 
ordinary coupling constant to include the dependence on scheme pa- 

- rameters. It is required to satisfy the scale evolution equation: 

PC% {Gil) = $ = -a2(1 + a + c2a2 + c3a3 + . . .) (42) 

-for all values Of {C;}. 

The scheme beta functions are defined as: 

6a 
P(n)(a~ icil) E SC, * (43) 

As shown by ‘13 Stevenson, these extended beta functions can be defined 
in terms of the fundamental beta function. Indeed, the commutativity 
of second partial derivatives 

S2a S2a -=- 
6TSCn SCJiT 

(44) 

implies 

6&n, SP -=- 67 6c, ’ (45) 
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P&l) = /?(,$3 - unS2 , 

where $,, = a&,)/&z and /?’ = ap/aa. From here 

4) 

2 &I ‘- - --a n+2 . 
9 

(46) 

(47) 

therefore 

a 

&)(a, {cd) = & = 
p+2 

-Ray icil) J dsp2(z, icij) ’ (48) 

0 

where the lower limit of the integral has been set to satisfy the boundary 
condition 

P(n) rv W”+l) * (49) 

That is, a change in the scheme parameter cn can only affect terms 
. .- 01 &der un+l and higher in the evolution of the universal coupling 

113 
function. 

We define the universal coupling function ~(7, {ci}) as the solution 
to the evolution Eqs. (42) and (48) with the boundary condition 

u(0, (0)) = 00. (50) 

Notice that the evolution equations contain no explicit reference to 
QCD parameters such as the numbers of colors or the number of flavors. 
Therefore, aside from its infinite dimensional character, u(r, {ci}) is 
just a mathematical function like, say, Bessel functions or any other 
special function. Truncation of the fundamental beta function simply 
corresponds to evaluating U(T, { ci}) in a subspace where higher order 
Ci are zero. 

Any physical quantity R and hence any given effective charge UR 
can be expressed in terms of the universal coupling function. The in- 
variance-of R with respect to change of scale and scheme parameters is 
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described by the equations: 

6R 0 -= ) 67 
ljR  0 

(51) 
-= ik, - 

These equations were first proposed and studied by Stiickelberg and 
Peterman. 

Since any two effective charges, e.g., UR({ki}) and ~(7, {CR}), Sat- 
isfy the same scale evolution equation (compare Eq. (40) to Eq. (42)), 
there exists a value of r = TR for which 

UR = a(%, {c;“}) . (52) 

We will call 7~ the scale parameter of R. Notice that, although the 
scheme parameters {c,“} can be obtained from  QCD by computing the 
coefficients in the fundamental beta function, the value of the scale 
parameter TR is not.provided by the theory. This is expected since we 

- know QCD alone does not give a prediction for UR. A measurement of 
UR Will d!OW us t0 obtain 7~. 

.-, -. - Once UR (and therefore 7~) is measured, QCD allows us to predict 
the value of other effective charges. In order to evolve the universal 
coupling function from  UR to, say, US, we need to know the scale and 

.scheme parameters (rs, {cf}) of US. As we know, the expansion series 

is unreliable for evaluating US directly. However, this series will allow 
us to obtain the scale and scheme parameters of US from  those of aR. 

To make this contact transparent, let us expand the universal cou- 
pling function in Taylor series around the point (r~, {CR}): 

as = U(TS, {c:}) = a(TR + 7, {Cf + -Ei}) 

+; [(g),++...] +... , 
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where 

7 = 7s - TR , 

S R En = c, - c, ) 
(55) 

and the subscript R next to the partial derivatives means they are eval- 
uated at the point (r~, {CR}). To order a4, we only need the following 
partial derivatives: 

=phu2 - a3 - c2u4 + O(u5) , 

= 42) = a3 + O(a5) , 

= P(3) = $4 + O(u5), 

= 2U3 +5U4 +O(U') , 

-= -6a4 + O(a5) . 

(56) 

After grouping all the terms in powers of a = aR, we obtain: 

-us = aR+&+ (1p-‘51-f2)u3R 

+ $3 - (C; + %?2)7+ ;T2 -$ (57) 

+ w4l) 7 

where f and zn are as given in Eq. (55). The coefficients of this 
formula have been previously obtained by Maxwell and Stevenson in 
a slightly different 123J24 notation. Notice the occurrence of 7 and Zi in 
all higher order coefficients. By using the evolution equations, we are 
effectively performing a partial resummation of the perturbative series 
to all orders. By matching this last equation with Eq. (53), we can 
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identify the scale and scheme parameters of as order by order. For 
instance, 

TS =rR -f2 , 

c; = 4 - f2 - f; + f3 , 

cf = Cf - 2f2%R + j; + 4j; - 6j2 j3 + 2j4 . 

(58) 

Let us summarize here the necessary steps to evolve UR to US. 

1, 1) Obtain the scheme parameters of UR by calculating the coef- 
ficients of its fundamental beta equation. (In the case of MS 
scheme these parameters are known. See Eq. (41).) 

2) By Feynman diagram calculation, obtain the expansion series of 
as in terms of CLR. (See Eq. (53).) 

3) Identify the scale and scheme parameters of US in terms of those 
of a.R. (See Eq. (58).) 

4) Evolve UR to US by using the Stiickelberg-Peterman evolution 
. Eqs. (42) and (48). The fi na result will not depend on the 1 . .- -. - 

choice of the evolution path. 

The application of this procedure to R( ese-+hadrons) will be pre- 
sented later. But first, let us explain the meaning of the ‘t Hooft scheme 
and the ‘t Hooft scale. . 

The t’ Hooft Scheme and Scale 

The universal coupling function adopts a particularly simple form 
when all the scheme parameters are zero. In fact, the ‘t Hooft scheme 

125 

coupling constant a#tH (7) z a(r, (0)) is exactly given by the solution 
Of: 

1 
- + log =7. (59) 
a'tH 

(The optimization of QCD perturbative series in this scheme has been 
studied by C. J. Maxwe11.123) Notice that due to the boundary condition 

40, @I) = 00, the ‘t Hooft coupling constant presents a singularity at 
7=0. * 

68 



For any single-scale effective charge U&L) there exists a scale ~1 = 
AiH for which the scale parameter TR = 2@&-1 log(p/hzH) vanishes. 
We will call AiH the ‘t Hooft scale of the R-scheme. To understand the 
meaning of the ‘t Hooft scale, let us consider the MS scheme coupling 
constant as an example: 

q&4 = a ( 
g log(jL/A$$, {cF,) . (60) 

Notice that a priori we do not know the behavior of u=(p) at ~1 = 
A’tH. * MS’ it could be infinite, finite, or simply not well-defined. However, 

/J = A$ is the pole in the ‘t Hooft scheme associated with the MS 
scheme: 

‘,,H-MS d = -( - a (F log(dA~), IO}) , (61) 

- because o(O, (0)) = 00 by boundary condition. Since the ‘t Hooft 
scheme is completely free of higher-order corrections, this provides a 

. . ._ .precise definition for Am ( There are an infinite number of ‘t Hooft 
schemes, differing only by the value of the ‘t Hooft scale AitH. The word 
“associated” here means we are choosing the particular ‘t Hooft scheme 
that shares the same ‘t Hooft scale with the MS scheme: A’tH = As.) 

As stated before, an experimental measurement of UR leads us to 
the measurement of TR, which in turn gives a value for AzH. In Fig. 
17 we show the various experimental and theoretical errors involved 
in the analysis. For the measurement of AiH, the input experimental 
error must be combined with the scheme uncertainty to give the error 
estimate for AiH. Similarly, for the prediction of UR(T) the error from 
AiH must be combined with the scheme uncertainty in order to give 
the prediction error. 
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Figure 17. Graphical representation of the various errors involved. For the 
- iiieasurement of A$ (br equivalently Ai”) the input experimental error must be 

combined with the scheme uncertainty. For the prediction of OR(T), the error in 
As must be combined with the scheme uncertainty. 

. .- -. - 

Application to R(e+e- + Hadrons) 

In this section we present the application to the total hadronic 
cross section in e+e- annihilation R(Q) = R( e+e--thadrons) recently 
calculated to order cr3 in Refs. 115, and 117. (See also the recent 
analyses in Refs. 126 and 1271. From Refs. 115, and 117, for five 
light-quark flavors we have 

By resealing the effective charges appropriately (see Eq. (39)), we 
obtain the relation: 

UR(Q) = u&Q) + 1.1176 “k(Q) - 8.05426 u&&Q) . . (63) 
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Notice that in the right-hand side the scale argument of am(p) has 
been set to be ~1 = Q. In general, this needs not to be the case. When 
~1 is left to be free, the relation between UR(Q) and u=(p) is given by: 

a~&?)= am(p) + (1.1176 - 3-0402~n(Q/~)) &(P) 

+ (-8.05426 - 9.8358ln(Q/p) + 9.24304h2(Q/p)) u&(p) . 

(64) 
Applying the formulas in Eq. (58) and knowing that TR = 2#/?;’ x 

Pn(Q/AzH) and 5 = 2@@;‘Pn(p/A$), we arrive at the relations: 

A;H = I.4443 Ag , cf = -9.4932 . (65) 

Notice that, as one would expect, these results are independent of the 
scales Q and ~1 that we started with. In fact, we could use any scale 
and scheme in the right-hand side of Eq. (64), and always arrive to the 

_ same values of scale parameters for a~ and a consistent ratio of the ‘t 
Hooft scales. 

Experimentally 128 we have . .- -. - 

AR(31.6 GeV) = 1.0527 f 0.0050 , (66) 

which gives 

~~(31.6 GeV) = 0.0665 f 0.0063 . (67) 

We will now use this information to obtain values for As. We have to 
take into account the scheme uncertainty in addition to the experimen- 
tal error in order to quote a correct error estimate for A% (see Fig. 
18). The scheme uncertainty of R can be quantified by a reasonable 

estimate of its next scheme parameter: cf. G. B. West 
129 

has put an 
estimate 7-4 = -158.6 for the coefficient of (a=(&)/~)~ in Eq. (62). 

After resealing, this leads to a value & = cf - cp = -99.474. As- 

suming c3 MS is of order unity, we conclude that Ic$I N 100. Although 
we have some reservation on West’s estimate (see Ref. 130), we shall . 
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Figurk 18. Measurement of Am ‘tH from the experimental result of aR(31.6 GeV). 

We have parametrized the scheme uncertainty with a value cf = 100. The scheme, 
--. -.exp&imental and total errors are respectively given by Asct, = (~5 - 7s)/2, Aexp = 

(76 - 72)/2 and Atot = (71 - q)/2. There is a one-to-one relationship between r 
and Ag given by T = 2/?2/3;’ log(31.6 GeVl1.4443 A$$. 

nonetheless use it to illustrate our procedure. A better estimate of cf 
will lead to a better error estimate for A$$ 

In Fig. 18 we show the universal charge for us(r) = ~(7, (~2 = 
c&c3 = cq= . . . = 0)) and its evolution under a scheme uncertainty 

c3 = flO0 to u*(7) = U(T,{C2 = cf,c3 = flOO,C~ = c5 = . . . = O}). 

The evolution in the scheme parameters are dictated by: 

&IL 
- = P(2) = 
6c2 

-/? p dz$ - u3 + O(u5) , 

0 

6U 
- = P(.3) = -8jds; l 4 
SC3 

- yju +O(u5) ) 

0 

(6% 

For. our region of interest (u N 0.07) the first term in each expansion 
series suffices. But we should use the full integro-differential equation 
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whenever we want to evolve a to a higher-value region. This will not 
only improve the accuracy of our result, but also will respect the com- 
mutativity of the second-order partial derivatives of a and thus ensure 
the independence of the result on the choice of integration path. 

To obtain the various scale parameters in Fig. 18, we can evolve 
their corresponding values of UR to the ‘t Hooft scheme (switching off 
all scheme parameters) and then use Eq. (59) to get the value for the 
particular 7. Let us illustrate the procedure for q. If we denote 

a+ = u(q,&&O, * * a) = 0.06016 , 

a0 = u(q,c~,O,O,-) ) ’ w-9 

U’tH = +&o, o,o, ’ ’ ‘) , 

then the solutions to the evolution equations in (68) are given by: 

a+ . uo= 
(1+ ; cf u$) 

l/3 ’ 

a0 
fZ#tH = 

. .- -. . (1 + 2 c; uo”) 1’2 * 

(70) 

Using these equations and Eq. (59), we obtain a value of 77 = 13.379. 
Other scale parameters can be calculated in a similar way. In Fig. 18 
we show the various errors involved in this analysis. Numerically we 
find the experimental, scheme, and total errors for T to be: 

Akp = (76 - 72)/2 = 1.41 ) 

A&h = (75 - ~3)/2 = 0.22 ) 

ATtot = (T.I - r1)/2 = 1.63 . 
(71) 

These errors can be translated into uncertainties in A$$ since there 

is a one-to-one correspondence between r and A%. (The ratio be- 

tween AiH and AZ is given in Eq. (65).) We can see that most error 
comes from the experimental error in a~. We can also see that the 
experimental error and the scheme error are highly uncorrelated since 
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ATtot - hxp + f&h- Numerically we obtain q = 10.129,74 = 11.666 
and 77 = 13.379. Knowing that 

we arrive at the following result for A$$-: 

A’tH = 472+310 MeV 
MS -204 ' 

(72) 

(73) 

If there were no experimental error, the estimated scheme uncertainty 
would lead to Ag = 472-3, +35 MeV . (In terms of the definition of Am as 

given in the Review of Particle Properties13r, the corresponding values 
+.e Am = 411fiii MeV and Am = 411:;: MeV.) 

As a second application of our formalism, we will show next how 
to use the experimental result of ~~(31.6 GeV) to predict other ef- 

. -- fective charges. Specifically, we will give a prediction for am(Mz), 
where Mz = 91.173 GeV is the mass of the Z-boson. The evolution 

.of ~~(31.6 GeV) t o am(Mz) is illustrated in Fig. 19. Notice that 
the experimental and the scheme uncertainties confine the correct re- 
sult for UR into an approximate parallelogram ABCD. We can then 
evolve this parallelogram into any other scheme and scale. We will use 
cf = flO0 and cp = fl to estimate the scheme uncertainties in UR 
and am For- um(Mz), the parallelogram ABCD is evolved into the 
parallelogram A’B’C’D’. Notice the inversion of the orientation of the 
new parallelogram due to the opposite signs of cf and CF. Notice also 
the absence of scheme uncertainty in the ‘t Hooft scheme. 

From TA = 10.129 and TC = 13.379 and knowing that m = TR - ?; 

with f = W;B;’ [log&z/@ - log(31.6 GeV/A2H)] = 4.339, we 

find T,q = 14.468 and rcl = 17.718. To evaluate UA’ = U(TA',c2 
MS= 

0.92766,cp = l,O,. . .) and UC’ = u(rc~,cp = 0.92766,cp = -l,O,. . .) 
we can use the following steps. We will show the procedure for UA’. 

1 .- Generate the ‘t Hooft scheme coupling urtH = u(TAI, 0,. . .) by 
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Figure 19. Prediction of aE;iSMz) from the experimental result of aR(31.6 GeV). 
By using the extended renormalization group equations, the quasi-parallelogram 
&3CD is evolved into the quasi-parallelogram A’B’C’D’. Notice the inversion of 
the orientation of the parallelograms due to the opposite signs of cf and cp. Notice 
also the absence of scheme uncertainty in the ‘t Hooft scheme. 

. .- -. _ 

solving iteratively 

1 

u’tH = TAg + log (1 + l/U,& ’ 

2 .- Evolve a!tH to a0 = U(TA~, cp, 0, . . .) by displacing in ~2. 

U’tH a0 = 
1 - 2 cp a,tH2 lJ2 

> 

3.- Evolve au to UA’ = U(TAf, %=I cp = 1, 0, . . .) by displacing in ~3. 

UA’ = 
l/3 ’ 

1 > 

(74) 

(75) 

(76) 

From here we obtain aA’ = 0.05772 and UC’ = 0.04818. Hence, 
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z- 
- - . . - .- 

JI 

we arrive at the prediction 

q#fz) = 0.0530 f 0.0048 , (77) 

or equivalently, 

crm(Mz) = 0.132 f 0.012 . (78) 

This value is higher than the world average am(Mz) = 0.1134 f 

0.0035 quoted in the Review of Particle Properties13r but is still 
consistent with other quoted values for crm(Mz). 

We can also apply the extended renormalization group technique 
to the effective BLM charge 3g defined in the following manner. Given 
two physical quantities R and R’ computed in a particular scheme 

R(Q) = ro(Q)ap(p) + ho(Q) + rll(Q, MO) ap+‘(p) + . -. t 
.J’(Q’) y r;(Q’)c@(d) + (&(Q’) + r:,(Q’, p’)Po) aP’+l(d) + - - - , 

(79) 
where/30=11-3 f 2n is the first beta function coefficient, we can define 

. .-.. their “effective BLM charges” by 

with ~YR-BLM(Q) = a(~*) where CL* is the solution of 1’11 (Q, p*) = 
0, and similarly ~uR’-BLM(Q’) = a(~‘*) where $* is the solution of 

r',,<Q', P’*) =- 0. With this choice of scale, vacuum polarization con- 
tributions are associated with the charge rather than the expansion 
coefficients, and the scale tends to reflect the mass of the virtual glu- 
ons. The BLM method is particularly advantageous for setting the scale 
when one only has low order calculations available since it automati- 
cally resums the higher order contributions associated with vacuum 
polarization insertions. 

We can now apply the evolution equations to (~R-BLM(Q) and 
evolve it to CXR’-BLM(Q’); Th e evolution in the scheme parameters 
maintains the BLM condition that the next-to-leading order coefficient 
is flavor-independent. In fact, both the FAC and BLM definitions are 
consistent with evolution in the scheme and scale parameters. 

l 
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Finally, let us obtain the relation between A% and a commonly 
used definition of A,,. The expansion of crm(p) can be obtained by 
inverting the above formula iteratively by using the scale and scheme 
parameters of am(p). Noting that m = 2@~;‘&(~/A$$, we ob- 
tain: 

(81) 
This 
erties 

t$ers from the definition as given in Review of Particle Prop- 
, where Am is defined so to make the coefficient inside the 

double logarithm unitary: 

PIen [eG2/A&)] 

pz&(p2/A&..-) 
I 

+ ** * ’ (82) 

The relation between Am and A$$ can be found to be: 

(33) 

For nf = 5 we have As = l.l477Am, thus, the difference between 
the two definitions is small in practice. 

The most distinctive feature of the universal coupling function ap- 
proach is that the perturbative series of a physical observable only 
serves to identify the scale and scheme parameters. The final predic- 
tion is obtained by the evolution of a universal coupling function. The 
prediction is scale-scheme independent in the sense that given the initial 
perturbative series in any scheme at any scale, we will always obtain its 
correct scale and scheme parameter and hence arrive at the same pre- 
diction. We have also shown that Am can be unambiguously defined 
as the pole in the associated ‘t Hooft scheme. 

In many practical problems it is useful to set the renormalization 
scale, particularly in physical processes that involve several invariant 
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mass scales, or in cases where only next-to-leading order calculations are 
available. As I shall discuss in the next section, it is essential that any 
scale-setting procedure be consistent with the extended renormalization 
group equations. 

Self-Consistency Conditions for Scale-Setting in QCD 

In practice any perturbative prediction in QCD has to be truncated 
to finite order in the coupling constant Q~(P). Given a specific renor- 
malization scheme which defines as, PQCD predictions for a physical 
observable R have the form 

Although, the infinite series is renormalization-scale independent, the 
scale dependences from Q(P) and ri(p) do not exactly cancel in finite 
series; thus, in practice, there is always a scale ambiguity. 

In this section, i will address the question of whether there a reliable 
way to choose the renormalization scale ~1 in relation to the physical 

. ._,. stalks. This problem is particularly important in the case of processes 
in which only low order calculations are available and in processes with 
multiple physical scales. 

The apparent freedom in the choice of the renormalization scale ~1 
can be a serious source of confusion in finite-order analyses. Indeed, 
when working to first order, one can set T-~(P) to any value simply 
by /.L. This coefficient thus seems meaningless here. In particular, it 
seems to give no indication of the convergence of the expansion. This 
question is of critical importance in testing &CD, since oS is rather 
large (W 0.1 - 0.3) at current energies. In fact for some processes, 
perturbation theory may not be convergent. 

The potential difficulties are well illustrated in low-energy quantum 
electrodynamics (QED), h w ere, for example, the electron anomaly has 
a very convergent expansion 

Se-2 .a c.2 
eye = ------=a .'- 

2 27r 
l-0.657; + 2.352 ,2 1 , (85) 

where*& the expansion for orthopositronium decay is much less conver- 
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gent: 

ro-P, = ro 
[ 
1 - 10.3; + ** *] . (86) 

It must be emphasized that the different in convergence rate is not an 
artifact due to a bad choice of scheme or scale; the first-order coefficients 
in these expansions should not be absorbed into a redefinition of (Y 
since the running coupling constant for QED does not run at these 
energies. This example shows that there is no general principle that 
the optimum choice of scale ~1 is one that best approximates the full 
answer or improves the convergence of the perturbative expansion. The 
10.3 coefficient in the orthopositronium decay rate reflects real physics, 
not scale choice. 

Three different scale-setting procedures have been proposed in the 
literature: 

1. Fastest Apparent Convergence (FAC).l14 This method chooses 
the renormalization scale p that makes the next-to-leading order 
coefficient vanish: 

n(p) = 0. (87) 

. .- -. - 

2. The Principle of Minimum Sensitivity (PMS)‘14 This method 
chooses ,Y at the stationary point of R: 

d&v o 
- = 

& * 
(88) 

(Beyond the next-to-leading order, PMS involves the optimiza- 
tion of scheme parameters in addition to the renormalization 
scale.) 

3. Brodsky-Lepage-Macken.zie3g In the BLM scale-fixing method, 
the scale is chosen such that the nf term does not appear in the 
next-to-leading order coefficient, where nf the number of light- 
quark flavors. That is, if 

f-lip) = no(p) + fll(/+f, (89) 

where no(p) and m(p) are nf independent, then BLM chooses 
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0.8 - S-jet - 

Figure 20. The scale IL/& according to the BLM (dashed-dotted), PMS (dashed), 
FAC (full) and fi (dotted) procedure for the three-jet rate in e+e- annihilation, as 
computed by Lampe and 13’ Kramer. Notice the strikingly different behavior of the 
BLM method from the PMS and FAC methods at low y. In particular, the latter 
two methods predict increasing values of p for small jet invariant mass cut. 

the scale ~1 given by the condition 

‘11(/J) = 0. (90) 
._ -. _ 

This prescription ensures that, as in quantum electrodynamics, 
vacuum polarization contributions due to fermion pairs are associ- 
ated with the coupling constant o(p) rather than the coefficients. 

These setting methods can give strikingly different results in prac- 
tical applications. In their study of jet production fractions in e+e- 
annihilation, Kramer and Lampe have analyzed 132 the application of 
the FAC, PMS and BLM methods. Jets are defined jets by clustering 
particles with invariant mass less than ,/@ , where y is the resolution 
parameter and fi is the total center-of-mass energy. Physically one 
expects the renormalization scale p to reflect the invariant mass of jets, 
that is, p2 of order ys. In particular, one expects p to decrease as the 
resolution parameter y+O. However, in practice FAC and PMS do not 
reproduce this behavior (see Fig. 20). On the other hand, BLM gives a 
decreasing p as y+O; thus, as expected, the perturbative QCD results 
cannot be used in the y <. 0.02 domain, as pointed out in Ref. 132. 
The scales chosen by PMS and FAC give no sign that the perturbative 
expressions break down in the soft region. 

. 

80 



I : 

In Ref. 133, Berger and Qiu have analyzed the application of the 
PMS method in their study of the prompt-photon production in QCD. 
They have shown that for some conditions on the factorization scale, 
PMS may not have a solution, or lead to unreasonable choices for the 
renormalization scale. 

The Physics of the BLM Scale-Setting Prescription 

In quantum electrodynamics, the running coupling constant a(Q) 
is defined to include all contributions due to vacuum-polarization in- 
sertions in the photon propagator. This is the only natural choice in 
any renormalization scheme since the variation of the effective coupling 
in QED is due to vacuum polarization alone. The coupling-constant 
scale Q* best suited to a particular process in a given order can be 
determined simply by computing the vacuum-polarization insertions in 
the diagrams of that order. Expansion (84) is then replaced by 

R = c&Q;) 1+ c; - 4&i) + c* a2(Q;) +. . . lr 2 .-- ?r2 1 , (91) 
where all photon self-energy corrections are absorbed into the effec- 

. .- tive coupling constants by an appropriate (and unique) choice of scales 

Q6, Qi, - - -- Since all dependence upon the number of light-fermion fla- 
vors (nf) usually enters through the photon self-energy in low orders, 

.both the coupling-constant scales &I and the low-order coefficients C,? 
are independent of nf. (Light-by-light scattering graphs leads to nf 
dependence in higher orders.) The light-fermion loop corrections serve 
mainly to renormalized o(Q), as expected. Note also, that in a general 
process, the scales Qi, Qi,. . . can depend on the ratio of invariants, 
e.g., center-of-mass angles. 

In QCD (i.e., non-Abelian theories), it again is natural to absorb 
all vacuum-polarization corrections into as(Q). In particular, all vac- 
uum polarization due to light fermions should be absorbed, leaving an 
expansion 

p = Cca(Q*) 1 + C; - ad&*) + . . . , 
7r I 

where C; and Q* are defined to be nf independent. (The calculation 
of Ci and Q* are unambiguous since the dependence of oS on nF is 
determined to this order by /?o = 11 - $ nf.) 
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The BLM procedure for fixing the scale is then straightforward, (at 
least for processes that do not have gluon-gluon interactions in lowest 
order.) For definiteness we assume the MS scheme. To first order the 
prediction for observables has an expansion in 

R = Co&Q) 
[ 
1+ amJQ) (Avpnf + B)] , (93) 

/ where the nf term is all due to quark vacuum polarization. As in QED, 
the sole function of these light-quark insertions is to renormalize the 
coupling. Thus all such terms should be completely absorbed into the 
leading-order coupling by redefining the scale 

Furthermore, the new scale Q* must be nf independent if it is to retain 
any physical significance in relation to the momenta circulating in the 
leading-order diagrams. Thus we replace 

. -.._ _ 

R=Coa&Q) &Q) 1 +O&P + yAvP+B +- 
> I 

(95) 
bY 

R = Coa&Q*) 
I 

, 

where 

Q* = Qexp(3Avp) , 

(96) 

33 
Ci=~Avp+B. (97) 

The term 33Avp/2 in CT serves to remove that part of the constant 
B which renormalizes the.leading-order coupling. The ratio of these 
gluonic corrections to the light-quark corrections is fixed by ,& = 11 - 
gaf. 

Several features of this procedure are worth noting. 
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(a) Two schemes that differ only by an nf-independent resealing give 
identical expansions in os(&*). Thus the differences between MS 
and MS, for example, are irrelevant in this approach. 

(b) If the MS h SC eme is replaced by another for which 

4Q) = q.&Q) [l+~(Dp,+E)+-] 
(98) 

=Q~(Q~-~~) 
[ 
l+=E+-] , 

7r 

where D and E are nf independent, then the first-order coeffi- 
cients for all processes are shifted by -E : C; -+ C; - E. Differ- 
ences between first-order coefficients are scheme independent. 

(c) Th 1 d g- d e ea in or er scale is determined solely by AI/P, which comes 
from quark vacuum-polarization insertions. This is usually all 
that need be computed to make a meaningful leading-order pre- 
diction. 

.-(d) Equation (96) is a natural and convenient way to present pertur- 
bative results since all flavor dependence is implicit in the defini- 

. tion of am. 
. - -. -In many physical problems, one must also allow for multiple scales. 

For processes involving extremely dissimilar scales (as in scattering pro- 
cesses where s >> -t), perturbative results are clearly not reliable and 
resummation techniques have to be used in order to resum an infinite set 
of contributions. Nonetheless, for processes involving relatively compa- 
rable scales (as in jet-fraction rates, where there are two scales: s and 
ys) perturbative calculations should be reliable, provided a reasonable 
treatment of the various scales. (As discussed by Kramer and Lampe, 
perturbative calculations for jet-rates using BLM are reliable down to 

- - 
Y N 0.02.) In the case of e e +e-e- it is clear that both u and t 
appear as scales. In the case of e-e++e-e+ the s channel annihilation 
amplitude has to have the correct scale (p2 = s) in on-shell scheme; i.e., 
d(s) so that the thresholds for lepton pair production occur exactly at 
the pair production threshold. The BLM prescription method is con- 
sistent with these principles and provides a direct method to analyze 
multiple scale problems. 

We emphasize that any prescription for setting the scale of the 
coupling constant in a non-Abelian theory must agree with the known 
results for QED when specialized to the Abelian case. 
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Examples of the BLM Procedure 

To illustrate our scale-fixing procedure and to explore its implica- 
tions, we examine briefly a number of well known predictions of QCD. 

e+e- + hadrons: The ratio of the total cross section into hadrons 
to the cross section for e+e- + p+p- is (s = Q2) 134 

,Z3e+e-(Q2) = 3x e: 1 + crW(Q) + * (1.98 - 0.115nf) t m-e 
7r 

Q 1 
4 L 

' (99) 
where from Eqs. (96) and (97), Q* = 0.708Q. Notice that CXR(Q) differs 
from a=(&*) by only 0.08 am/a, so that QR(Q) and crm(O.71 Q) are 
effectively-interchangeable (for any value of nf). 

Deep-inelastic scattering. The moments of the non-singlet structure 
--function F~(s, Q2) obey the evolution equation135 

AO’ + -,xq&Q:) l- I 
) 

(100) 
where, for example, 

, Q; = 0.48Q , C2 = 0.27 , 

Q;o = 0.21Q , Cl0 = 1.1 . (101) 

For n very large, the effective scale here becomes Qi m Q/Jn, which 
is exactly what was found in Ref. 136 by a detailed study of the kine- 
matics of deep-inelastic scattering. 
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=- 
- *, - .- 

1  

vC decay. The ratio of the qC width into hadrons to that into yy is 
137 

(nf = 3), 

I’(qC + hadrons 2 +&fhc> =- 
wlc -+ 77) 9e: “$ED 

1 t T(17.13 - inf)-..] 

where Q* = 0.26 M,,,. 
Y decay. The 

is (nf = 4),138 
ratio of the hadronic to the leptonic widths of the Y 

I’(Y + hadrons) 

v + P+P-) 

lO(G = - 9) +j+fY) 
81sei 42ED 

x 1 t T [2.770(7)po - 14.0(5)] •i- +..I 
[ 

+ 10(x2 - 9) +(Q*) 
817rei “&ED 

l$ q&M*) 
n- 

14.0(5) t *** , 
I 

(103) 
where Q* = 0.157M~. Thus the decay rate into gluons has a large 

\ negative correction with this physical definition of the coupling, just as 
do the rates for Y + yyy and for orthopositronium decay into three 
photons, both of which are scheme and scale independent to this order. 
Such a correction implies large, positive terms in higher orders, and, 
in fact, these are necessary if we are to fit the data. further study is 
clearly necessary before Y decay can be used as a reliable measure of 
a,. We do note, however that the large corrections cancel 

139 
almost 

completely in the branching ratio for producing a direct photon plus 
hadrons: 

140 

r(Y ---) 70 + hadrons) _ 36ei aQED 
I’(Y’ + hadrons) [ 

1 + adQ*) 2 z(6) + . . . 
5 a&Q*) ’ n- ’ I , (104) 

where again M* = 0.157 Mr. This cancellation occurs because the 
leadingorder amplitudes for Y + ggg and Y + ygg are identical in 
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structure. Thus the branching ratio for direct photons could be used 
to determine crm. 

Ezclzlsive processes. Exclusive processes involving large transverse 
momentum are given by the convolution of distribution amplitudes 
$(z, Q), representing the wave functions of each initial- and final-state 
hadrons, with (collinear irreducible) hard-scattering amplitudes Z’H(zi, Q) 
in which each hadron is replaced by collinear on-shell quarks (or glu- 
ens).” The procedure given above allows us trivially to include the 
vacuum-polarization corrections to the (skeleton) tree graphs contribut- 
ing to TH, and thus set the coupling-constant scale for the leading-order 
results. For example, the hard-scattering amplitude required for the 
form factor of helicity-zero mesons is 

64~ s(eB5/“[(1 - x)(1 - y)]li2Q) 
TH(z, Y, Q) = g-p 

(1 - 4(1 - Y> 
(105) 

since the gluon’s momentum transfer is -( 1-s)( l-y)Q2. If we estimate 

Cd - (Y> N 37 then the correct expansion parameter for TH is h* 

qg(QP.6) in agreement with the detailed analysis of Ref. 141. 

Qg potent$l. Th e interaction potential between two infinitely mas- 
---slve quarks is 

v(Q2) = - G479&Q) 
Q2 

[l ty &lo-2) +...I 
‘\ (106) 

+- Wy&Q*) 
Q2 [ 

1 _ ~rn(Q*)~~... , 
a I 

where Q* = -e-‘16, Q Z 0.43Q. This result shows that the effec- 
tive scale of the MS scheme should generally be about half of the true 
momentum transfer occurring in the interaction. In parallel to QED, 
the effective potential V(Q2) g ives a particularly intuitive scheme for 
defining the QCD coupling constant 

V(Q2) - - 
47GdQ) 

Q2 , (107) 

with cuV(Q) = aMS(e-5/6Q)(1 - 20~/7r.. .). The perturbative QCD 
prediction can be tested empirically-without scheme or scale ambigui- 
ties-if the prediction for two processes are consistent with experiment. 
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The automatic scale-fixing procedure can be summarized as fol- 
lows. Given a renormalization scheme for crS, the QCD perturbative 
expansion for the processes of interest takes the form 

p = Cocr,(Q*)( 1 t C;a,/r t . - .) . (108) 

The scale Q’ should then be chosen such that Q’ and C’; are indepen- 
dent of nf, the number of “light” fermions (i.e., with mq < Q*). Most 
importantly, this implies that the expansion is unchanged in low orders 
as the important momenta vary across a quark threshold-all vacuum- 
polarization effects due to a new quark are automatically absorbed into 
the effective coupling constant. Clearly this is where such effects be- 
long. For the processes of interest, the low-order expansions well below 
and well above such a threshold differ only by gluon self-energy correc- 
tions due to the new quark, provided, of course, the argument of cr, 
is resealed with the momenta. Such self-energy contributions are then 
correctly -absorbed into the coupling constant, leaving the expansion 
unchanged across the threshold. Whatever scheme is employed, this 
criterion of nf independence uniquely determines the scale appropriate . ._, ._ - 
to that scheme for both Abelian and non-Abelian theories. 

A striking feature of each of the perturbative QCD predictions dis- 
cussed here is that-except for Y decay-the first-order correction in 
m is only 10 to 20 percent of the leading term at typical Q2 after 
the scale has been fixed. [This is despite the fact that the coefficient 
Avpnf + B is replaced by 16.5Avp $ B, as in Eqs. (96) and (97).] 
Perturbation. theory seems to work rather well-the leading term in 
q&Q*) for th ese processes is by itself quite accurate. The main effect 
of the higher-order corrections is in setting the correct scale Q*, and 
for this only the fermionic vacuum-polarization corrections are needed. 
In effect, the BLM scale-fixing prescription uses the fermionic loops to 
probe the momentum flowing in the leading-order diagrams. The re- 
mainder of the higher-order corrections, i.e., the [(y)Avp + B]cr,/n 
correction, must of course be computed to obtain predictions with pre- _ 
cision better than 10 to 20. percent. 

For Y decay into three gluons [Eq. (103)], the higher-order correc- 
tions are quite large, calling into question the possibility of a perturba- 
tive analysis of this reaction. The fact that the higher-order corrections 
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for the corresponding decay of orthopositronium in QED are large in- 
dicates that this effect is not due to ambiguities in the renormalization 
scale. 

Self-Consistency of Scale-Setting Procedures 

. 

Recently, Hung Jung Lu and I have discussed additional criteria 
which bear on the self-consistency of the scale setting methods. 

1. Existence and Uniqueness of p. 

2. RefIexivity. Given a coupling constant (or an effective charge 

defined in terms of an observable”4) (Y(P) specified at a scale p, 
we can express it in terms of itself, but specified at another scale 
p’: 

.-- 
where ,f?s = 11 - 2nf/3 is the first coefficient of the QCD beta 
function. 

If a scale-setting prescription is self-consistent, it should choose 
. ._, ._ - 1 the unique value $ = ~1 on the right-hand side. Notice that 

when ~1’ is chosen to be ~1, the above equation reduces to a trivial 
identity. This is a very basic requirement, since if c@) is known 
(say, experimentally measured for a range of scale p), and then 

) we try to use the above equation to “predict” Q(P) from itself, 
any deviation of ~1’ from /I would lead to an inaccurate result due 
to the truncation of the expansion series. 

3. Symmetry. Given two different coupling constants (or effective 

charges, ‘14 or renormalization schemes) crr(pr) and (r2(/.4), we 
can express one of them in terms of the other: 

4Q) = 02(P2) t 7-12 (p1, p2)4(p2) •t * * f , 
(110) 

62) = 4-4 t 7-21 (p2, p1)&4) t * * * . 

If a scale-setting method gives 

. l-42 = x21 Pl (111) 
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for the first series and 

Pl = h2 P2 (112) 

for the second series, then this method is said to be symmetric if 

x*2 x21 = 1. (113) 

This feature is desirable since it gives us a unique ratio between ~1 
and ~2, irrelevant of which way we choose to expand the coupling 
constants. 

4. Transitivity. Given three different coupling constants c-rr(pr), 
02(~2), and crs(ps), we can establish the relation between ~1 and 
p3 in two ways: 

Going through the extra scheme (r2(~2). That is, we can fix the 
relative scales in the two series 

PI = a2(p2) t ri2hp2) &p2) t -, 

.-- (114) 

‘y2(p2) = Q3(/‘3) t “23(p2, p3) &‘3) t * “, cr 

. to obtain . -, -. - 
Pl = x12 p2, p2 = A23 p3, (115) 

and combine the last two expressions to get 

pl = x12x23 p3. (116) 

Directly setting ~1 in terms of ~3 in the series 

w(p1) = a3(p3) t Tl3(/w3)&43) t * * * (117) 

to get 

Pl = x13 p3. (118) 

A scale-setting method is transitive if the two paths of substitu- 
tion give the same result. That is, 

xl2 x23 = x13. (119) 

A scale-setting method that satisfies reflexivity, symmetry, and 
transitivity effectively establishes an equivalent relation among all the 
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effective charges. This is a necessary feature since it guarantees that 
no matter how we move from one effective charge to another, we will 
always keep a consistent choice of scale. 

It is straightforward to verify that the FAC and BLM criteria satisfy 
all the consistency requirements outlined above. 

Before analyzing the self-consistency relations for PMS, let us per- 
form first some preliminary calculations. In what follows we will con- 
sider the case of QCD with Nf massless quarks. 

Given the QCD beta function for an effective charge crl: 

P(m) = dlo;p; (2) = -Po (Z>‘-P*(Z)” - .“, (120) 

where ,& = 11 - $nf and ,& = 102 - Qnf. To the next-to-leading 
order, err is implicitly given by the following equation: 

.-- 
= 71 (121) 

where al = ,81&~cq/4 w, and 71 = /?~PT~ log(pT/Af). 

Two effective charges crl and a:! are related by the perturbative 
series 

> 
m(n) = a2(72) t (72 - 71)4(72) t * * * , ( 122) 

where a2 = &&l”2/4n, and 72 = @~~’ log(pi/Ai). This is an equa- 
tion of the form of Eq. (1) w h ere the scale ~2 is to be chosen. PMS 
proposes the choice of ~2 (or equivalently, 72) at the stationary point, 
i.e.: 

da1 -To= 
dT2 

From here we obtain the 

$ [a2@2) t (72 - 71)4(72)] * 

condition: 

(123) 

1 
14- a2 = 2(q - 72)’ (124) 

In order .to obtain 72 in terms of 71, we must solve the last equation in 

90 



conjunction with 

Notice that in the large momentum region (71,~~ >> 1) we have 

1 
72 - 71 - -. 

2 

In terms of ~1 and ~2, the relation becomes 

P2 - - Eexp(-Br/4p,2). 
A2 Al 

(126) 

(127) 

Let us now check the self-consistency relations for PMS. For simplicity 
we will consider the large momentum kinematic region where the above 
approximation holds, although none of our conclusions will rely on this 
approximation. 

.-- Reflexivity is violated in PMS. When the PMS method is applied 
to Eq. (log), from Eq. (127) we obtain: 

P’ rv clexp(-B1/4&) # P* (128) 

-Unlike the cases of FAC and BLM, when we apply PMS to predict an 
effective charge from itself, an inaccurate result is obtained. 

Symmetry and transitivity are also violated in PMS. Since 

Xij = z N 2 exp(-Pr/4&). 
3 

(129) 

This would mean that 

h2A21 - exp( -4 /&) # 1, 
w-9 

x12x23 - 

That is, PMS does not satisfy the symmetry and transitivity conditions 
Hence, when we successively express one effective charge or observable 
in terms-of others, PMS would lead to inconsistent scale choices.’ 
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The transitivity condition can be best illustrated in Fig. 21. Let A, 
B, C be three different physical observables or their effective charges. 
(For instance, A could represent the MS coupling constant, B the total 
hadronic rate in e+e- annihilation, and C the value of the Bjorken sum 
rule.) QCD allows one to relate these three quantities. One can obtain 
C directly in terms of A, or one can obtain C in terms of B, and then 
B in terms of A. The transitivity of the FAC and BLM methods means 
that one obtains the same prediction for C either way. A scale setting 
method that is non-transitive can lead to incompatible results. This 
is usually not noticed due to the biased preference for the MS scheme. 
That is, one often expresses perturbative QCD results only in terms of 
the MS scheme, hence bypassing the potential inconsistency that would 
be present when physical quantities are related. 

B 

\ 
\ 

\ 
#C-,----Z ---- & 

A C 
8-93 7508A17 

Figure 21. A triangle representing the transitivity condition. The quantity C 
can be obtained directly from A, or it can be obtained from B, and B obtained 
from A. 

The reason that PMS does not meet these self-consistency require- 
ments is that the minimization operations in general do not commute 

_ with the operations of reflexivity, symmetry and transitivity. The 
highly non-linear nature of the optimization method has been pointed 

143 out by Politzer. For the PMS method, the result obtained directly 
and the result obtained through the use of an intermediate scheme in . 
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: 

general will differ. This non-commutativity is contrary to the Peterman- 
Stiickelberg’s full renormalization group invariance,r22 which states that 
physical predictions should not depend on the intermediate renormal- 
ization procedure. In this formalism, the effective charges of two physi- 
cal observables can be related by an evolution path on the hypersurface 
defined by the QCD universal coupling function ~(7, {c;}),‘~~ where r 
is the scale parameter and {c;} are the scheme parameters. Given a 
initial effective charr3 ;.:;t at the point (Tinit, {c:“‘~}), we can use the 

evolution equations ’ 

X = @(a, {Ci}) = -a2(1 + a + c22 + c3a3 + * * -), 

6" = @(,)(a,{ci)) = -B(U,Ici))Qd"p2~~~~.)). 

(131) 
bt I 

0 

ti3 evolve- Uinit into a final effective charge of;,,/ at the point 

(rfinal, Icyna’ }). As long as we stay inside an analytical region where 
the second partial derivatives exist and commute, the predicted value . .- -. - 
of afinal will not depend on the path chosen for the evolution. 

In Fig. 22 we illustrate the paths that represent the operations of 
reflexivity, symmetry and transitivity. We can pictorially visualize that 
the evolution paths satisfy all these three self-consistency properties. A 
closed path starting and ending at the point A represents the operation 
of identity. Since the predicted value does not depend on the chosen 
path, if the effective charge at A is UA, after completing the path we will 
also end up with an effective charge UA. Similarly, if we evolve Ug at B 
to a value UC at C, we are guaranteed that when we evolve UC at C back 
to the point B, the result will be ug. Hence, the evolution equations 
also satisfy symmetry. Transitivity follows in a similar manner. Going 
directly from D to F gives the same result as going from D to F through 
a third point E. 

In conclusion, we have shown that the BLM procedure chooses a 
scale well matched to the physics of the process. The BLM scale also 
indicates the cases where perturbative QCD is inapplicable such as 
at very small jet invariant masses. Unlike BLM, the FAC and PMS 
methods give no indication of the convergence of perturbation theory; 
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a(z * iCi}> 
f 

Figure 22. Pictorial representation of the universal coupling function. The 
point A with a closed path represents the operation of reflexivity. The paths BC ._- - -- 
and CB represent the operation of symmetry, and the paths DE,EF and m 
represent the operation of transitivity. 

.-.-. - 
Cr(Q*) is by definition small and process independent for both of the 
methods mentioned above. Such methods will also be wrong when 
-applied to processes, like Y decay, for which the higher-order corrections 
are very large; worse, they give no warning of such situations. 

We have also discussed several self-consistency conditions for set- 
ting the scale in QCD perturbative expansions which follow from the full 
renormalization group invariance proposed by Peterman and Stiickelberg. 
We have shown that the FAC and BLM scale-setting procedures sat- 
isfy these self-consistency conditions, but that the scale-setting method 

I based on the principle of Minimum Sensitivity (PMS) does not satisfy 
these criteria. In particular, we have shown that PMS is not transitive, 
i.e., when one relates physical observables or coupling constants to each 
other, the predicted value of the physical quantity will depend on the 
path one uses to apply PMS. Wh en we relate many physical observ- 
ables or coupling constants.to each other, the application of PMS will 
thus lead to a chaotic situation, where the predicted value of a physical 
quantity depend on how we arrive to it. This danger is usually not 
fully appreciated because traditionally one obtains perturbative QCD 
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results only in the MS scheme, rather than relate physical observables 
directly to each other. 
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