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Abstract 

It is claimed here that by 1936 Bridgman had developed severe criticisms of 

orthodox quantum mechanics from the point of view of his operational philosophy. 

We try to meet these criticisms by a radical analysis of the measurement of the 

finite and discrete length and time intervals between particulate events. We show 

that a scale invariant counter paradigm based on two arbitrary finite and discrete 

measurement intervals A& At offers an alternative starting point for constructing 

relativistic particle mechanics. Using the scale invariant definitions 

AllcAt = 1; Ae=/KAt = 21r 

for the Einstein limiting velocity c and for “Kepler’s constant” K- proportional 

to the area per unit time swept out by a particle moving with constant velocity 

past a center - we derive the finite and discrete Lorentz invariant bracket expres- 

sion [xi, 5j] = KcSij for rectangular coordinates and velocities in three dimensions. 

Defining field per unit charge as the force per unit mass acting on a test parti- 

cle with this constraint, we find that these fields satisfy the free field Maxwell 

equations provided only charge per unit mass for this test particle is a Lorentz 

invariant, generalizing the Feynman-Dyson-Tanimura proof. This scale invariant 

theory for classical relativistic fields is broken by any measurement of length with 

measurement accuracy Al < A/2 m,c because electron-positron pairs are produced 

with finite probability, violating the single test particle postulate. This allows us 

to recover our new fundamental theory based on the combinatorial hierarchy and 

bit-string discrimination. Recent mass ratios, coupling constants and cosmological 

parameters obtained by bit-string dynamics are quoted. 
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. ..the ultimately important thing about any theory is what it actually does, not 

what it says it does or what its author thinks it does, for these are often very 

diferent things indeed. 

- P.W.Bridgman, The Nature of Physical Theory 

1. INTRODUCTION 

This paper is dedicated to the hope that we now know enough to start re- 

casting modern elementary particle physics and physical cosmology in a form that 

would come closer to Bridgman’s vision of physics. Although Bridgman’s opera- 

tional philosophy”’ contributed a great deal to the early discussions of the meaning 

of relativity and quantum theories, the “orthodox” Copenhagen interpretation of 

quantum mechanics as evolved by Bohr departs widely from what - in my opinion 

- Bridgman had in mind. He wished to base physical concepts on laboratory op- 

erations, actually carried out, or as a minimum on paradigms which are consistent 

as thought experiments suggested by actual laboratory practice. In later reflections 

he was prepared to extend his “operationalism” to sufficiently clear mathematical 

operations PI ; I suspect that the term “computable” would have found favor in his 

eyes. 

In his earlier work (LMP) Bridgman criticized the concept of “light traveling”. 

In NPT he grants that operational meaning might eventually be given to the con- 

cept of “light traveling” by measuring the scattering of light by light. Presumably 

he had in mind Furry’s successful calculation of the finite cross section for this 

scattering process using the then available formulation of quantum electrodynam- 

ics (QED). But this calculation produces a finite result in QED only because of 

specific symmetries. Most processes predicted by the second quantized relativistic 

field theories are infinite, and therefore not related to experiment in any obvious 

way. It would be hard to give an operational gloss to such theories even after they 

are “renormalized”, or restricted to the class of “non-Abelian gauge theories”. I 

doubt that Bridgman would have found any of the theories currently used in high 
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energy particle physics palatable. He also dismissed cosmology as operationally 

meaningless, a judgment that the rich body of data now available to the observa- 

tional astronomer could have led him to revise. 

We believe it is proving fruitful to revive Bridgman’s dream using a finite and 

discrete reconstruction of relativistic quantum mechanics and physical cosmology. 

This new fundamental theory has taken shape gradually. The most easily identified 

starting point is the work by B&in and Kilmister on the “Concept of Order”!-91 

The research program had its first dramatic success in the discovery of the com- 

binatorial hierarchy by A.F.Parker-Rhodes in 1961!“] An adequate, if somewhat 

unsystematic, survey of subsequent developments is available in the proceedings 

of some of the annual meetings of the Alternative Natural Philosophy Association 

(founded in 1979)[“] and of its western [12’ chapter. We will not review this history 

here. Two up-to-date and systematic presentations of the theory from very dif- 

ferent perspectives are in preparation!13’1*1 The specific approach followed in this 

paper is adequately introduced by a short description”” and three more technical 
[lS-181 

papers. Some additional recent work will be referenced below. 

2. EXAMPLES of BRIDGMAN’S APPROACH 

As an experimentalist, and a critic of the practice.of theoretical physics, Bridg- 

man had a healthy distrust of mathematics: 

“[Mathematics] begins by being a most useful servant when dealing with phe- 

nomena of the ordinary scale of magnitude, but ends by dragging us by the scruff 

of the neck willy nilly into the inside of an electron where it forces us to repeat 

meaningless gibberish.” (LMP, p. 149) 

It is claimed in FDP[“l that McGoveran’s ordering operator caZcuZus provides a 

mathematics which could meet Bridgman’s challenge. In fact, any formalism re- 

stricted to computability in McGoveran’s sense might be utilized to meet that goal. 

For our purposes we adopt the following definition: 

A physicist who claims that a problem is computable must - if challenged - be 
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able to produce an integer answer to that problem within a year using the compu- 

tational facilities and research budget available to him. 

If we could succeed in getting this requirement adopted in the discussions of the- 

oretical physics, it could eliminate a lot of fruitless argument. Bridgman tried to 

meet basically the same difficulty by pleading with physicists to stop discussing 

“meaningless problems”. His failure leaves me little hope that the current genera- 

tion of physicists - or the next - will prove to be that rational. Of course he did 

not intend, nor do I, to hobble speculation once it is properly identified as such. 

Initially, Bridgman hoped that his criticism had taken root in the Unew” quan- 

tum mechanics: 

“This section was written early in 1926 without access to the recent literature. 

Our attitude toward quantum phenomena has been so much changed since then 

by the “new” quantum mechanics, that a number of the following statements are 

superseded as a statement of present opinion. However it has seemed worth while 

to let the section stand as written, because many of the developments actually 

taken in the new mechanics follow the lines that it is here urged they ought to 

take, and so far afford interesting confirmation of the point of view of this essay.” 

(LMP, p. 186, footnote 1) 

But he was not satisfied with the shape that quantum mechanics actually took. 

“I think there-is significance in the difficulty which my theoretical friends find 

in suggesting what sort of apparatus they would set up in the laboratory in order to 

answer such questions as: ‘Can e, or m, or h be measured separately with unlimited 

precision by a single experiment, or may they be measured simultaneously in a 

single experiment ?’ Or what is the apparatus in terms of which any arbitrary 

‘observable’ of Dirac acquires its physical meaning? I think it will be granted by 

most theoretical physicists that there are situations of this sort which have not 

yet been thought completely through. Since we are now prepared to admit that 

the correspondence between mathematics and experience is never a one to one 

correspondence, so that because a mathematical theory accomplishes successfully 

one-half of what we would like to have it [accomplish] there is no certainty or even 

a high probability that it will accomplish the other half, I think we are justified 

in a certain amount of disquietude in the face of any situation that has not been 

thought through completely. 

“The mere fact that such a debate is possible as that carried out on the one 

hand by Einstein, Podolsky and Rosen ’ [=A.Einstein, B.Podolsky and N. Rosen, , 
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Phys. Rev., 47,777,1935.] and on the other hand by Bohr,3 [3N.Bohr, Phys. 

Rev.,48,696,1935.] increases our disquietude....” (NPT, p.118) 

With regard to this specific difficulty in orthodox quantum mechanics, we can 

claim that our computational point of view has much to offer. In any finite and 

discrete theory, there is necessarily a limiting velocity for the transfer of infor- 

mation, and also a finite and discrete meaning for the “Lorentz transformations” 

(FDP, ch. 4 pp 48-54.). At th e same time, this implies ‘supraluminal” correlations 

without supraluminal signaling!1D’201 We have also claimed that the new approach 

goes far toward resolving the quantum mechanical “measurement problem”,[21’221 a 

claim which we hope is strengthened by the preliminary abstract provided as the 

appendix to this paper. The basic fact which make this resolution possible is that 

at a deep level, which is explored further in this paper, we claim to have achieved 

a successful reconciliation of quantum mechanics with relativityp’ 

We hope to give further evidence for the usefulness of criticizing the current 

practice of theoretical physics by presenting this paper. When we speak of “criti- 

cism”, we follow Bridgman’s usage: 

“The material for the physicist as critic is the body of physical theory, just as 

the material of the physicist as theorist is the body of experimental knowledge.” 

W’T p.2) 

In contrast to the open ended and rapidly expanding task of the theorist, he saw 

the task of the physicist as critic as one that could be accomplished, simply because 

it depended on the finite mind of the critic: 

“In so far as we may assume that the human mind has approximately fixed 

and definite properties and is not in such a rapid state of evolution that it runs 

away with us during the discussion, we are not here confronted with unlimited 

possibilities of complexity, but the field is an essentially closed one.” (NPT, p.2) 

Unless or until we encounter extraterrestrial species, or the claims of strong AI 

are convincingly demonstrated in practice, I have no quarrel with this statement. 

However, I find his optimistic conclusion: 

“...having acquired this amount of understanding we may then pass on, leaving 

criticism behind us as a well rounded and more or less definite discipline.” (NPT, 

P-3) 
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less convincing, simply because the task has to be undertaken again in our gener- 

ation. 

As already noted, the task itself has become possible because of the work of 

a large number of people, starting with the critique of Eddington’s fundamental 

theory in the 50’s by Bastin and Kilmister. I do not discuss here - let alone 

evaluate the significance of - the subsequent contributions by Fredrick Parker- 

Rhodes, Irving Stein, Michael Manthey, and David McGoveran all of which were 

vital to the process which led to the current state of our new fundamental theory. 

Instead, I will concentrate on a recent development that - in my opinion - 

can revolutionize our way of thinking about the connection between relativistic 

quantum mechanics and classical relativistic field theory. 

3. MEASUREMENT ACCURACY and SCALE 

INVARIANT BRACKET EXPRESSIONS 

3.1 THE COUNTER PARADIGM AND THE DEFINITION OF “c” 

In McGoveran’s fundamental approach to finite and discrete theories based on 

the ordering operator calculus and attribute distance one is restricted to derivates 

(i.e. finite and discrete differences) and never encounters the limiting processes or 

the derivatives used in continuum mathematics. The exponentiation of the derivate 

operator allows him to construct a generalized commutation relation which can be 

given a discrete geometrical interpretation (FDP, Sec. 4.2, pp 63-69). This con- 

struction provides the bracket expressions needed to derive classical relativistic 

field theory from measurement accuracy, a derivation we present in the next chap- 

ter. Rather than follow McGoveran’s rigorous discussion we provide a somewhat 

heuristic argument in the spirit of Bridgman. 

We start our more limited discussion from the measurement of finite and dis- 

crete length and time intervals using methods whose accuracy is specified by some 

relevant technology. In the past we sometimes started our discussion of the new 
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fundamental theory from what we called the counter paradigm, We had in mind 

the devices used in elementary physics which record whether or not some discrete 

“event” takes place within a finite and discrete spatial volume during a finite time 

interval. When tied to finite and discrete laboratory coordinates and a finite and 

discrete laboratory clock, we can then introduce the coupled concepts of particle 

and event by the informal descriptions: 

A particle is a conceptual carrier of conserved quantum numbers between 

events. 

An event is a region which particles carring conserved quantum numbers enter 

and leave during a finite time interval. These quantum numbers can be iether 

positive or negative. The algebraic sum of the entering quantum numbers of a 

given type is equal to the algebraic sum of the quantum numbers of the same type 

which leave the region. In that sense quantum numbers are conserved across an 

event. However the number of particles need not be conserved across an event. 

Here the undefined term “region” can be given some content by requiring that its 

effective volume can be specified by three independent lengths whose magnitudes 

are three independent integers times a common finite and fixed “shortest length” 

AL The event occurs during some well specified time interval which is again an 

integer times a “shortest time” At. We postulate standard laboratory protocol 

for measuring these finite length and time intervals. The event itself is a NO- 

YES event, i.e. “NO” if it does not happen in the specified space-time volume, 

and “YES” if it does. The event is made manifest by the non-firing or firing of 

a recording counter activating some type of discrete “memory”. In general it will 

take several such counter firings, and a fair amount of theory, to give precision to 

the concept of “conservation laws”. We will refine earlier attempts to do so in the 

context of bit-string dynamics on another occasion. 

What we have sometimes called the “counter paradigm” is two such YES events 

separated by a spatial interval L and a time interval T neither of which can be 

known to better accuracy that At and At respectively. In high energy particle 
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physics, this would be called a “counter telescope”. It takes the physical real- 

ization of at least four such counter telescopes and considerable calibration and 

experimentation to start giving precision to the “energy-momentum” conservation 

laws. Other particulate conservation laws can be constructed from and tested using 

data so measured?’ 

Consider a counter telescope consistent with this definition, and a variety of 

“particle sourcesn with adjustable parameters more or less under our control. We 

pick those situations which consist of two sequential counts in the two detectors 

and which provide an approximately constant value for the measured ratio L/T. 

We find that all sources of “particles” so far explored in this way give a value which 

is less than or indistinguishable from a universal constant called “9, unique for 

any fixed units of length and time measurement. This fact has led the appropriate 

international committee to fix this ratio - by definition the velocity standard for 

SI units - as the integer 

c E 299 792 458 m set-l (34 

If there were any demonstrable situations in which this definition of c as a di- 
. 

mensional standard led to contradictions between the way “c” is used in theoretical 

formulae and the way these formulae are used to interpret experimental results, 

the committee would not have introduced this integer definition of c. For histori- 

cal reasons this conventional constant is still sometimes called “the speed of light” 

despite the fact that is now simply a definitional dimensional standard. A better 

phrase from a modern point of view would be “the limiting speed for the transfer of 

information”. Of course “supraluminal velocities” that describe correlations which 

cannot be used to transfer information - such as phase velocities - have a well 

defined meaning in both classical and quantum physics. In a finite and discrete 

theory they are in no way paradoxical, as we noted in Chapter 2. 

Since we do not wish to specify our units of measurement in advance, we will 

build this fact into our approach by relating our minimum measurable distance 
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and time intervals by the dimensionless constraint 

ALI 
cAt - (3.2) 

3.2 FINITE AND DISCRETE LORENTZ BOOSTS 

In a theory that depends on finite measurement accuracy, the measurement 

of the velocity of a particle - as in the counter paradigm - requires both the 

measurement of a finite space interval and the measurement of an ordered, finite 

time interval together with a discussion of the accuracy to which the ratio of these 

two intervals is determined by these separate measurements. We consider two YES 

events such as the sequential firing of the two counters in a counter telescope of 

length L with a time interval T, defining a velocity which we attribute to a particle. 

We call this a quasi-local measurement. 

In this section we will use the two events at the ends of a counter telescope 

of length L with time interval 7’ as a paradigm for the discrete measurement of 

the quasi-local coordinates z, t of a particle. In the next section we will “embed” 

this counter telescope measurement in a larger finite and discrete space-time in a 

way that allows us to represent finite and discrete rotations consistently with finite 

and discrete Lorentz boosts. In order to make that .extension, it is convenient to 

pick some small reference region in the laboratory, which also has a standard clock 

associated with it and make the relation to the laboratory measurements explicit. 

We specify the two spatial positions for the two events relative to this “origin” 

by z1 = nrA.!, 52 = n2Ae where we assume in this example that the event at x2 

follows the event at zl. Then, clearly L = In2-nl [Al. Since we have already intro- 

duced the limiting velocity for information transfer, the Einstein synchronization 

convention allows us to specify the times at which the two events occur, according 

to a clock located at the “origin”, as tl = nlAe/c and t2 = naAe/c. Clearly, 

T = (nl + n,)Ae/c. Note that tl + t2 is also the time it would take a light signal 
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emitted in coincidence with event 1 in the direction of the “origin” and reflected 

there to arrive at position x2 in coincidence with the second event. We have, in 

effect, assumed that t2 > tl and hence that n2 > nl. Note that if we interpret 

these two events as “caused by a single particle”, its velocity as measured by the 

counter telescope is 

_ : 

012 G p12c = 
n2 - nl 

C 
nl + n2 

(3.3) 

Note further that the square of the invariant interval I between the two events 

isgiven by 

12Ae2 = c2(tl + tg)2 - (x1 - 2~)~ = 4nln2Ae2 (3.4) 

One point to note here is that the maximum accuracy to which we can know the 

two distances is fixed by requiring nl and n2 to be positive definite integers. If there 

were some way we could (even by indirect or statistical means) produce a set of 

reliable non-integral data for any such situation, this would violate the hypothesis 

that A! is the shortest interval to which we can give well defined experimental 

meaning. In other words our modern operational hypothesis about length and time 

measurements is that THERE IS ALWAYS A SYSTEM OF UNITS IN TERMS 

OF WHICH LENGTHS AND TIMES ARE INTEGERS. 

Our means of relating the counter telescope - our paradigm for an “x, t” 

measurement - to the laboratory coordinate system makes use of the exchange 

of light signals in such a way that the standard Einstein clock synchronization 

convention can be used in our integer environment. This allows us to separate 

the problem of “quasi-local” Lorentz invariance from “event horizon limited” or 

“coherence limited” Lorentz invariance by the following construction. First note 

that our velocity 012 = (n2 - nl)c/(nl + n2) is invariant under the transformation 

n; + NTki with NT a positive definite integer if kl and k2 are positive, definite 

integers. Clearly this downward scale transformation is allowed only if nl, n2 have 

NT as a common factor. For any particular empirical situation, measurement 

accuracy will limit such downward scale transformations by the quasi-local velocity 
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resolution we can achieve. We call this Au which, as a function of (ICI + k2) is given 

by c/(h +h), and the resulting limitation “scale invariance bounded from below”. 

For example, in high energy particle physics, we measure the momentum p = 

(h - kl)Amc/4klk2 of a charged track by its radius of curvature in a magnetic 

field and its energy E = (ICI + k2)A mc2/4kl k2 calorimetrically defining the velocity 

as v = v/E = (k2 - h)/(h t h), in situations where we cannot measure the 

distance between two counters (n2-nl)Ae to better than many orders of magnitude 

(i.e. (n2 - nl) = L/At = NL f ANL, ANL >> 1). We have discussed on other 

occasions how the periodicity NT implied by our finite and discrete measurement 

accuracy paradigm can lead to observable interference phenomena which break scale 

invariance. With this understood, we see that for fixed velocity resolution, (i.e., 

ICI + k2 = K, E positive definite integer) we also can define a maximum coherence 

length Lc = NF Ku A& with Ng the maximum number of coherent velocity periods 

we can show to interfere. In a “wave theory” this would be called a “coherent wave 

pulse”. 

In a finite and discrete theory, straight line motion cannot continue forever. 

As just discussed, we can bound it by defining the coherence length in terms of 

the velocity resolution K, and the number of periods at that velocity resolution 

NE as Lc = NT, KV. When we reach this limit, we can continue our coherent 

discussion to larger spaces by the trick of using periodic boundary conditions, 

or by breaking our trajectory into straight line segments and bending it around 

to form a closed “orbit” of length 27rLc. Taking this to be the perimeter of an 

orbit with discrete rotational symmetry will be discussed in the next section. The 

extension to elliptical orbits is straightforward (See Ref. 22). 

We now return to our quasi-local position-time measurement by saying that 

the counter telescope measures a position x = (k2 - kr)Ae, a time t = (ICI + kz)Ae/c 

and hence a velocity i = (k2 - kl)c/(kz + ICI). Cl early this places x = 0 half-way 

between the two counters in the counter telescope and t = 0 at a time $(kl + k2)At 

after the firing of counter 1. This language implies that in a much larger context 
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we can measure both x1 and 52 to an accuracy Ae, or in other words measure 

the discrete phase of this combined pair of events within the 22 - x1 length of the 

telescope. But this still does not allow us to assign an absolute meaning to both x 

and i. Where ever we place x within this interval, we still cannot know its value 

to better than A.& The best we can do is to assign it to some position which is 

ambiguous between x- E [xl, xr + Al, . . . x2-Ae] and x+ = x- + Ae. Between these 

two locations the velocity is, as measured locally, -l-c. Thus, using only quasi-local 

information, the product ‘XC?’ is ambiguous depending on whether we use x- or 

x+. Defining the difference as the bracket expression, and using c for 5, we have 

that, for local measurements, 

[x, i] G x+i!(t) - x-i(t) = cae = -[i!, x] (3.5) . 

‘: 

It might be thought that by using a longer lever arm to improve our velocity 

resolution, we could improve on this limit. As we discuss in the next section, using 

periodic phenomena does allow us to reduce this constant to K = cAe/2rr, but no 

further. 

It remains to show that our definition of position and velocity in the larger space 

allows us to define finite and discrete Lorentz transformations in the single direction 

“3 we have so far considered. For rational fraction velocities, this amounts to 

showing that transformation from v = (k2 - kl)c/(kz + ICI) to v’ = (ki - ki)c/(kk + 

ki) can be obtained from the usual velocity addition law 

v’ = 
v + v” 

1 + vu”/3 P-6) 

with some rational fraction velocity v” = (ki - ky)c/(ky + ki). It is trivial to 

show[251 that, in the case k; = k2, 

satisfies this requirement. The problem of showing that any Lorentz transformation 

needed in an experimental context can always be constructed in this way without 
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producing contradiction with experiment will be discussed in detail elsewhere (eg 

Ref. 12). 

3.3 FINITE AND DISCRETE LORENTZ ROTATIONS 

In order to extend our analysis from one to two spatial dimensions, it suffices 

initially to consider three counter firings Fl, F2, F3 at three fixed locations which 

form a triangle. 1231 We assume that the three counters are at rest in the laboratory 

frame, and that the laboratory clock (using the usual Einstein synchronization 

convention) records the firings in the order 1,2,3. In order to insure that the three 

distances sijAe satisfy the triangle inequalities lsij - Sjkl 5 ski 5 sij + Sjk it 

suffices to pick three positive definite times &Al/c with all three ti integers. We 

then define the sums sij Ae E (ti + tj) Al/c with the consequence that 

ISij - Sjkl = Iti - tkl I Ski = i!i t tk 5 sij t sjk = ti t tk t 2tj (3.8) 

We now take the counter at position 2 as the origin of coordinates, and assume 

that a light signal 1 + 2 + 3 emitted in coincidence with Fr arrives in coincidence 

with F3. Then a counter telescope 1 - 3 measures a velocity 

013 = 
(t1 tt3)c - pc 

t1t2t2 tt3 = 
(3.9) 

Noting that the radial distance to Cl (i.e. to counter 1, where the first event, Fl, 

occurs) is sl2Ae and that the radial distance to C3 is s23Ae, the radial velocity or 

is given by 

vr = 
(t3 - td 

t1tt3 t2t2 

- prc 

The square of the area of the triangle is given by 

(3.10) 

A2 = (tl t t2 t t3)t&t3Ae = ;(tl + 2t2 t t3)4(1 - p2)(p2 - B,2)Ae4 (3.11) 

We now assume that if we make additional velocity measurements anywhere 

along the line defined by the counter telescope we obtain the same constant velocity 
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v. Of course the shape of the triangle and the radial velocity change with time, 

but the area per unit time is constant, as we now prove. This is, of course just 

Kepler’s Second Law for straight line motion past a center which exerts negligible 

force on the particle. Consider first the symmetric case rl(-t) = rg(+t) = r(t) for 

which vr = 0. The distance of closest approach to the center on this straight line, 

constant velocity trajectory is called the impact parameter. With F2 the origin of 

rectangular coordinates, we take the impact parameter to have magnitude xAe in 

the positive x direction. Then v = $ is perpendicular to it and ItI = r(t)/c. Since 

the area swept out by r(t) in time 2ltl is A(t) = xA&ltl, we have that 

A(t)/ltl = ,&xAe = const. (3.12) 

If we now consider the general case with 913 in the y direction, the area of the 

triangle formed when the particle moves from Fl to F3 in time tl3At = (512 + 

saa)Ae/c with velocity v = y = s13c/t13 divided by trsAe, using the half-base 

times altitude rule, is again ,&xAe. This proves Kepler’s Second Law for straight 

line motion with constant velocity past a center in our discrete, relativistic model. 

We have seen that we can construct our integer version of Kepler’s Second 

Law from an arbitrary integer triangle. To demonstrate rotational invariance, 

all we need to do is to define transformations which keep the three sides fixed. 

If our triangle is to return to the same position after a finite number of planar 

rotations, we must use some care. For instance, we can start by fixing the impact 

parameter as a constant xAe and the line from the origin we have called r(t) to 

a constant RAe in a particular, symmetric case for which the distance from Cl 

to C3 is 2yAe = $tAt > 0. Then, taking the x-axis outward from C2 along the 

impact parameter, in terms of dimensionless coordinates x, y, t we see that Fl has 

coordinates (x, -y; -t), F2 has (0,O; 0) and F3 has (x, y; t). If we require that 

R2 = x2 + y2, we must face the dilemma encountered by Pythagoras two and a 

half millennia ago that we cannot in general satisfy this relation in integers, and 

must make some decision if our theory is to remain finite and discrete. We choose 
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to take R and y integer, and then have two choices for x, namely xk = Rf y which 

insure that x+x- = R2 - y2!ay 

We now pick our length scale in such a way that R/y E 2j is integer and note 

that this allows us to construct a regular polygon with 2(2j + 1) sides composed 

of isosceles triangles with base 2y, slant height R and x2 = R2 - y2 = 4y2(j2 - a) 

Clearly this construction insures rotational invariance under 2(2j + 1) finite and 

discrete rotations. The circle circumscribing this polygon has perimeter 2?rRAe = 

j( 2y), and we find that our requirement of rotational invariance in our finite and 

discrete context allows us to conclude that we can always pick units such that 

(xzi)2 = (j2 - $2 = l@(l@ + l)? (3.13) . 

with 

1 Ae2 
r,sj--; ICE- 

2 2nAt 
(3.14) 

and 2j odd. 

It may seem peculiar that we have arrived at the “quantum mechanical” result 

e,(e, •l- 1) for the quantum numbers for the square of circular orbital angular mo- 

mentum correctly related to “spin l/2” by this essentially classical construction. 

:- This has a deep significance which we will pursue on another occasion. Note that 

our derivation of “angular momentum per unit mass” with K E h/m requires only 

that space and time measurement accuracy be scale invariant but bounded from be- 

low. Physically, this is an obvious move. The single particle assumption built into 

our analysis breaks down if we try to measure any linear distance to an accuracy 

Ae < h/2m,c because at that point we produce electron-positron pairs with finite 

probability. That we get a “classical” version of “spin” in units of ~/2 should not 

be too startling if one studies our treatment of the fine structure of hydrogen (Ref. 

16) and consults the discussion by L.C.Biedenharn on the “Sommerfeld Paradox” 

which we cite in that paper. 
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The extension from two to three dimensions is straightforward in terms of the 

finite rotations implied in our regular polygon paradigm used above. We define 

a “pseudovector” perpendicular to the rotational plane to represent the orbital 

angular momentum per unit mass with a chirality convention that (for counter- 

clockwise rotations and a right-handed coordinate system) makes it the z axis. 

Then we can make the sign convention and definition 

1, = xi - y3i: (3.15) 

invariant for rotations in the x - y plane under any choice of axes in that plane 

consistent with our polygonal symmetry. Since there are only 2(2j + 1) finite 

rotations defined, only this number of choices is allowed, without further injection 

of information into the model. As in the case of position-velocity measurement, if 

we include a larger system which allows us to go down to the 2y possible positions 

along the chord by measuring interference phenomena, we can define relative phases 

down to S4 M Al/R,,, but, as in conventional quantum mechanics, absolute phase 

refers to no known experimental phenomena and still eludes us. 

. 
The further articulation of the commutation relations for these finite rotations 

need not detain us long here. For instance, with orbital angular momenta per unit 

mass measured in units of K, we can define 

I+- - I;@@, 1, - l)ZE(l@, It) = Z@(l@ + 1) - 1; + I, 

I-+ - rp,, 1, + 1)1;(1@, I*) = Z@(l@ + 1) - 1,” - I, 

< z;, 1" >s ;(I+- + r-+) = l@(Z@ + 1) - z; 

[ii, I”] E &+- - I-+) = 1, 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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and insure rotational invariance by the invariance of 

(3.21) 

With 

I, = yi - qj; I, = yi - z$ (3.22) 

the commutation relation for finite rotations is fully consistent with the commu- 

tation relation for rational fraction Lorentz boosts, (3.5) derived above. In fact, 

given either, the other follows (cf FDP, pp 85-86, and the reference to T.F.Jordan 

there cited). We conclude that the bracket expression (3.5) can be extended to the 

three dimensional result we need: 

(3.23) 

where i, j, k E 1,2,3. 

. - 
Since any Lorentz transformation is equivalent to a rotation and a boost, and 

we have now constructed integer rotations and integer boosts, we can now put the 

two together by the scale invariant definition of two constants c and K, 

ne 1 cne 2n -= .-= 
cAt - ’ K. 

(3.24) 

3.4 CONSEQUENCES OF OUR BRACKET EXPRESSIONS 

As already noted, the fundamental development in FDP derives general com- 

mutation relations from attribute distance and the exponentiation of the derivate 

operator. These bracket expressions can easily be shown to have the properties 

used in the next chapter to generalize the Feynman proof of the Maxwell Equa- 

tions in our finite measurement accuracy context. Since we have not invoked that 

background, this section is devoted to showing that our more physical way of view- 

ing the bracket expressions has the needed algebraic consequences which go beyond 

(3.23). 
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In the derivations given above we have in effect assumed that positions and 

velocities of a single particle in three orthogonal directions can be specified inde- 

pendently, subject to the constraints of invariance under finite and discrete Lorentz 

boosts and rotations. These constraints can be summarized by the bracket expres- 

sion (3.23), where the anti-symmetry is explicitly noted. We did not explicitly 

record the independence of the three coordinate positions, corresponding to our 

free choice of counter positions in the laboratory: 

[Xi, Xj] = 0 (3.25) 

Subject to our requirement of not going beyond the finite limits to which our 

measurements can refer, the fact that the xi can be represented by integers, and 

the ii by rational fractions, allows us to assume that, for A, p constants subject to 

the same restrictions and A, B, C E zi,ii, i E 1,2,3, the bracket expression has 

the properties 

[AA t pB, C] = A[A, C] t p[B, C] 

[A, LB t pC] = A[A, B] t p[A, C] (3.26) 

. 

Lhl=0 

In the next chapter we will be concerned with functions g(x, t) which are not 

functions of i and accelerations 2(x, 2, t) which are functions of velocity as well as 

position, but of no “higher derivatives”. Since these are also subject to our finite 

integer and rational fraction restrictions, we can assume that they are polynomials 

whose powers have context sensitive restrictions. If n is the highest power of x 

which is allowed to occur, then for any component 

[Lii, X3] = Sij[i;;i, Xl] = Sij(-KXY-l + Xi[ii, X:-l]) = -nKXywlSij (3.27) 

This allows us to identify the usual symbol dg(x, t)/ax, for all such functions we 
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consider by the equality 

Note also that 

[kk, 9(x, t>] = -‘&/ax, (3.28) 

[xi, g(x, t)] = 0 + g(x, t) independent of k (3.29) 

It remains to define the symbols [ii, 5j] and 5(x, &, t) in our context. Since 

(within the restriction to polynomials mentioned above) we are now talking about 

functions of x, 5, and t, we can introduce the concept of a path 

(3.30) 

for the single particle we are considering. Then the bracket expression we derived 

above is equivalent to the definitions 

xi(t t At) G xi(t) + ii(t)At 

[xi,ij] G [xi(t t At)ij(t) - ij(t + At)xi(t)] (3.31) 

. = [Xiii(t) -Xiii(t)] E Kbij 

Taking the obvious step of saying that if time changes by At, then 

ij(t + At) G ii(t) + jEAt (3.32) 

and defining 

we have that 

[ii, ij] - ii(t t At)ij(t) - ij(t + At)ii(t) 

[ki, ij] + [Xi, fij] = 0 (3.33) 

We could have derived this directly when we were discussing the polygons 

needed for rotational invariance in the last section by noting that if xi is the end 
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of the chord, where the direction but not the magnitude of the velocity changes, 

and the change is due to the reversal of the component along that direction, while 

the component perpendicular to that remains unchanged, the acceleration must lie 

along xj with the magnitude and sign given in the last equation above. 

Now that we know what we mean by [ii, ii] it is straightforward to establish 

the Jacobi identity 

[A, 14 Cl1 + P, K All •t [C, 14 Bll = 0 (3.34) 

for the symbols A,B, C E xi,ii. The same type of argument makes it easy to 

establish the fact that, in our context 

gk(x, t) = IE-‘Qjk[ii, kj] * 

a result which we will need in the next chapter. 

. 4. SCALE INVARIANT GENERALIZATION OF 

THE FEYNMAN-DYSON-TANIMURA PROOF 

4.1 HISTORICAL REMARKS 

(3.35) 

The development of a new fundamental theory is a tedious process, as the fact 

that the current effort started at least as early as 1951 clearly attests. Creating the 

climate of opinion which allows the professional community to make the requisite 

“paradigm shift” that leads to acceptance of the new theory can be even more 

tedious, and can be subject to various poorly understood historical delays. We 

discuss a possible example here. A long buried piece of work by Feynman created 

in 1948 (only three years earlier than Bastin and Kilmister’s first publication in 

1951) has recently come to light:” - thanks to its reconstruction by Dysor? Had 
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this been available in the 1950’s, physics might have taken a different course. We 

recognized as soon as we saw it that Feynman’s “paradoxical” proof of Maxwell’s 

Equations from Newton’s Second Law and the non-relativistic quantum mechan- 

ical commutation relations makes eminently good sense in our finite and discrete 

[“I reconstruction of relativistic quantum mechanics. Unfortunately, our attempt to 

spell this out in the regular literature failedpI 

Fortunately, an analysis of the proof which makes some of the same points I 

had already noted has now been published by Tanimura!l’ We hope that this will 

give us another chance to attempt to get our views before a larger audience!32’ Even 

without our proposed generalization, Tanimura’s claims are already quite startling. 

I quote his complete abstract: 

“R.P.Feynmun showed F. J.Dyson a proof of the Lorentz force law and the ho- 

mogeneous Maxwell equations, which he obtained starting from Newton’s law of 

motion and the commutation relations between position and velocity for a single 

nonrelativistic particle. We formulate both a special relativistic and a general relu- 

tivistic versions [sic] of Feynmun’s derivation. Especially in the general relativistic 

version we prove that the only possible fields that can consistently act on a quun- 

. turn mechanical particle are scalar, gauge and gravitational fields. We also extend 

Feynmun’s scheme to the case of non-Abelian gauge theory in the special relativistic 

context. ” 

In Tanimura’s notation, the formulation of the theorem is simple: 

Given 

A single particle trajectory x(t) in terms of three rectangular coordinates xi(t), 

i E 1,2,3 subject to the constraints 

[xi, xi] = 0; m[x;, kj] = ihbij; m?k = Fk(X, i; t) (4-l) 

then 
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the force components Fk(X, 5; t) can be expressed in terms of two functions 

E(x, t), B(x,t) which d p d e en only the coordinate components xi and the time 

t and not on the velocities 5j; these functions are related to the force by the 

component equations 

Fi(x,h; t) = Ei(X,t) + Cijk < kjBk(x,t) > V-2) 

div B = 0; aB/& + rot E = 0 (4.3) 

Here the Weyl ordering <> is defined by 

< ub >E k[ub -I- bu]; < ubc >E i[ubc + bcu + cub + ucb + cbu + but], etc. (4.4) 

and E, B satisfy the equations 

4.2 SCALE INVARIANT POSTULATES 

As was noted recently, the postulates can be made even simpler once one 

invokes scale invariance?’ The Feynman postulates are independent of or linear 

. in m. Therefore they can be replaced by the scale invariant postulates 

fk(x, k; t) = ?k; [Xi, Xj] = 0; [Xi, kj] = fdij V-5) 

where K is any fixed constant with dimensions of area over time [L2/T] and fk has 

the dimensions of acceleration [L/T2]. Th is step is suggested by Mach’s conclu- 

sion[341 that it is Newton’s Third Law which allows mass ratios to be measured, 

while Newton’s Second Law is simply a definition of force. Hence in a theory 

which contains only “mass points” and known mass ratios, the scale invariance of 

classical MLT physics reduces to a purely kinematical LT theory. Breaking scale 

invariance in such a theory requires not only some unique specification of a partic- 

ulate mass standard, but also the requirement that this particle have some absolute 

significance. 
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Relativity need not change this situation. Specify c in a scale invariant way as 

both the maximum speed at which information can be transferred (limiting group 

velocity) and the minimum speed for supraluminal correlation without information 

transfer [limiting phase velocity =(coherence length)/(coherence time)]. If the unit 

of length is Ae and the unit of time is At, then the equation (Al/cat) = 1 has 

a scaZe invariant significance. Further, the interval I specified by the equation 

c2 AT2 - AL2 = I2 can be given a Lorentz invariant significance. We can extend 

this analysis to include the scale invariant definition AE/cAP = 1 and the Lorentz 

invariant interval in energy-momentum space ( AE2/c2) - AP2 = Am2 provided we 

APAL _ AEAT require that x - am. Then, given any arbitrary particulate mass standard, 

mass ratios can be measured using a Lorentz invariant and scale invariant LT 

theory. We trust that this dimensional analysis of the postulates used in the 

Feynman proof already removes part of the mystery about why it works. 

The remaining physical point that needs to be made clear is that the “fields” 

referred to in classical relativistic field theory are defined in terms of their action 

on a single test particle. Thus, if we measure the acceleration of that particle in a 

Lorentz invariant way (force per unit rest mass) and the force per unit charge is 

also defined by acceleration and the charge per unit rest mass of the test particle 

is also a Lorentz invariant our electromagnetic field theory itself becomes an LT 

scale invariant theory. That is, once we replace the,Feynman postulates by (4.5) 

and define E(x, t) = E/Q = FE/m and 23(x, t) = B/Q = Pg/m, we need only 

derive the scale invariant version of equations (4.2), (4.3) obtained by the obvious 

notational change Fi + fi, Ei + &i, Bi -+ Bi. We make a few remarks later on 

about the extension to gravitation, where the obvious physical postulate is that the 

ratio of gravitational to inertial mass of our test particle is also a Lorentz invariant. 
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4.3 THE PROOF 

Here we essentially repeat Tanimura’s version of the Feynman-Dyson proof of 

the Maxwell equations using our scale invariant results derived from measurement 

accuracy in the last chapter. There we proved that for any function g(x,t) we need 

consider in our finite and discrete theory (by which notation we mean that the 

function does not depend on i or higher derivates) 

[XC;, Xj] = 0 * [Xi,g(X, t)] = 0 (4.6) 

Hence, in order to prove that a function is in this class we need only prove that it 

commutes with all the components xi. For any acceleration 2 = f(x, ?, t) which 

depends only on position, velocity and time - which Newton’s second law defines 

as a “force per unit mass” - the result from finite measurement accuracy is that 

[ii, ij] + [Xi, fij] = 0 * [ii, ij] t [Xi, fj] = 0 (4.7) 

Hence for any scale invariant “force” which has the Lorentz form 

fi(X:,i;t) = &i t eijk < ijak > (4.8) 

the finite measurement accuracy result for the commutator has the implication 

[Xi, ij] = KcSij * [ ii?i, ij] = -[Xi, fj] = KCTijkBk (4.9) 

This, in turn, allows us to define the scale invariant field B by 

,133, = d cijk[ki, ijl (4.10) 

The field I3 could still depend on velocity as well as position and time, but the fact 

that our bracket expression for position and velocity satisfies the Jacobi identity 

[A, [B, Cl] + [B, [C, AlI + [C, [A, HII = 0 (4.11) 

and our central result in (4.1) 11 a ows us to show that the commutator of definition 

(4.10) with any coordinate vanishes, establishing the required property. Then the 
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fact that our formalism for measurement accuracy implies that 

[ik, i&t>] = -‘&/axk (4.12) 

with a/&k interpreted as the partial derivate (finite difference) rather than the 

partial derivative allows us to infer that 

[kik, a(x, t)] = -&?/dxk (4.13) 

But then our definition of 0 in (4.10) as proportional to the anti-symmetrized 

commutator together with the Jacobi identity establish the first Maxwell Equation 

&d&./dxk = divt3 = 0 (4.14) 

Now that we know what we mean by the magnetic field per unit charge, we 

can use the Lorentz “force” equation (4.8) as the definition of the electric field 

per unit charge. Then, taking the commutator with any component and using the 

definition of the Weyl ordering (4.4) together with the fact we proved above that 

[zi,ak] = 0 we find that [zi,Ek] = 0 establishing that the scale invariant electric 

field so defined is also only a function of x and t. The final step requires us to 

define what we mean by “partial and total derivatives” with respect to time in the 

finite measurement accuracy context in concert with the space connectivity given 

by (4.12). The necessary result we need is noted in the last chapter and is that 

gk(x, t) = K-'tZijk[ki, kj] =k' 

(d/dt)gk(X,t) = agk/at t [kj, agk/axj] = Kmleklm[il, zm] (4.15) 

Then a sequence of algebraic steps given in Dyson’s paper (Ref. 26) and summa- 

rized in Tanimura’s Eq. 2.18 lead to the second Maxwell Equation 

tlt?/at + rot & = 0 (4.16) 

We wish to emphasize that the essential formal work has already been ac- 

complished by Tanimura. This allows us to omit algebraic details in the above 
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rewriting of his proof, and refer the interested reader to his paper if he wishes to 

check them. The physical point that Tanimura does not mention is that the proof 

can be made scale invariant, and does not depend on either Planck’s constant or 

on the bracket expression having an imaginary value. Thus it is more general that 

its historical “quantum mechanical” genesis might suggest. 

Again, we are greatly indebted to Tanimura by analysing so carefully what 

properties of the bracket expression he needs. He points out that bracket expression 

[ , ] needed for th e roo is not necessarily an operator expression. It suffices that p f 

it have the five algebraic properties 

bilinearity, 

PA + ~4 Cl = 44 Cl •t I@, Cl, 

[A, MI t PC] = A[A, B] t p[A, C]; 

anti-symmetry, 

P,Bl = -P,Al; 

the Jacobi identity, 

14 IB, Cl1 + [B, [C, All t [C, [A,.BlI = 0; 

Leibniz rule I, 

[A,BClI= [4BlC+W%Cl1; 

and Leibniz rule II, 

-&WI= &M%~l. 

He further notes that “It is one of the virtues of Feynmun’s proof that there is 

no need for a priori existence of Humiltoniun, Lugrungiun, canonical equation, or 

Heisenberg equation.” 
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From the point of view of a finite and discrete theory, the most critical steps 

in the proof are those which depend on “derivatives”. We derived all of these from 

measurement accuracy in the last chapter and have pointed out where they occur 

in our summary of Tanimura’s proof. 

4.4 EXTENSION TO GRAVITATION 

In order to make his result manifestly covariant, Tanimura finds that he has to 

introduce an ordering parameter r which is not the proper time. This idea has an 

old history going back at least to Stueckelberg, which we learned of from E.O.Alt. 

Alt’s interest stemmed from the difficulty of formulating a relativistic quantum 

mechanical few body scattering theory without introducing the infinite number 

of degrees of freedom required in any “second quantized” formalism. We will 

pursue this idea elsewhere in our own context. Here we simply note that our new 

fundamental theory comes to us with this ordering parameter (bit-string length) 

built in, as will be seen on consulting the program universe method for generating 

bit-stings in the fundamental papers. Thus, as before, Tanimura’s formal steps go 

over into our fundamental theory practically unchanged. We leave this for detailed 

. exploration at a later stage in the development of the theory. Our further discussion 

of gravitation in this paper is better left until we have discussed the combinatorial 

hierarchy. 

5. SUMMARY AND CONNECTION TO 

THE COMBINATORIAL HIERARCHY 

Our new fundamental theory 113-161 models the process of “measurement” as 

the counting of finite and discrete bits of information acquired using an understood 

laboratory protocol. Any such theory can be modeled by the bit strings of contem- 

porary computer practice, rules for combining them, and rules for relating them 

unambiguously (although possibly statistically) to that laboratory protocol. 
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Define particles as the conceptual carriers of conserved quantum numbers be- 

tween events and events as regions across which quantum numbers are conserved. 

Take as the basic paradigm for two events the sequential firing of two counters sep- 

arated by distance L and time interval T, where the clocks recording the firings are 

synchronized using the Einstein convention. Define the velocity of the “particle” 

connecting these two events as v = PC = L/T where c is the limiting velocity for 

the transfer of information. If our unit of length is AL and our unit of time AT, 

then c E AL/AT has the same significance in any system of units; this definition 

is scale invariant. Similarly, we can define Kepler’s Constant with the dimensions 

of area over time by K = AL2/2rAT = CAL/~ 7r while retaining scale invariance. 

In these units an event at x = (nl - na)AL, t = (nl + n2)AT is at a Lorentz 

invariant interval from the origin given by I2 = c2t2 - x2 = 4nln2AL2. nl,n2 are 

simultaneously Lorentz invariant and scale invariant. 

We assume that “fields” are to be measured by the acceleration of a utest 

particle” which belongs to a class of particles whose ratios of charge to mass and 

gravitational to inertial mass are Lorentz invariant. We relate space and time 

derivatives of functions of x, i, t to measurement accuracy by deriving the bracket 

expression [xi, ii] E KSij from an analysis of measurement accuracy and Kepler’s 

Second Law for motion with constant velocity past a center. This also allows us 

to give meaning to finite and discrete accelerations through the relation [$i, ?j] •l- 

[xi,Zj] = 0 and t o replace partial derivatives with finite “derivates”. Then we 

show that Tanimura’s proof 12’1 that the only fields which can act on such particles 

are structurally indistinguishable from electromagnetic and gravitational fields is a 

consequence of measurement accuracy alone, and does not depend on any specific 

assumptions about quantum mechanics. 

Consider a particle bound to a center a distance r away which receives an 

impulsive force toward the center each time it has moved a distance X whose square 

is 4nln2AL2/(nl - n2)2. If we take 27rr = jX, the area swept out per unit time by 

the radial distance to the particle is (j2 - $)K” = e(e+ 1)~’ where we have defined 

e= j-3. Assuming that the probability of the impulsive force occurring after 
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one step of length AL = h/m,c is 1/137(e + 1) we obtain[161 Bohr’s relativistic 

formula (v)2[1 t (*)2] = 1 f or the levels of the hydrogen atom [351 in 

the approximation e2/tic x l/137, and hence his correspondence limit. Adding a 

second degree of freedom gives us the Sommerfeld formula and an improvement 

of four significant figures [I61 * m our value for e2/tLc. Our scale invariant theory is 

the proper correspondence limit for any relativistic particle theory which breaks 

scale invariance by taking mK; = h. i311 Note that h/%mc is the longest threshold 

distance for the non-classical process of particle-antiparticle pair creation. For 

gravitational orbits of a particle of mass m about a center containing N particles 

of mass m, orbital velocity reaches c when N = (Kc/Gm)+. Consequently the 

shortest distance (between two events!) in the theory is AL/N. This is the “black 

hole radius” for mass Nm. Thanks to the fact that our Lorentz-invariant theory 

predicts both the (quantized) Newtonian interaction and spin 2 gravitons, it meets 

the three classical tests of general relativity! 

. - 

. 

The numbers nl, n2 as integer descriptors of velocity and two more integers 

for angular momentum provide quantized Mandelstam variables for four-leg dia- 

grams and discrete conservation laws. This allows a bit-string representation of 

particulate events. We label these “space-time descriptors” or content bit-strings 

by bit-strings of length 16. These label bit-strings combine by XOR (addition, mod 

2) and are organized into the first three levels of the combinatorial hierarchy: (1) 

3 = 22 - 1; (2) 10 = 3 + (23 - 1 = 7); (3) 137 = i0 •t (27 - 1 = 127) M tLc/e2. 

These 16 bits in the string specify the conserved quantum numbers of the standard 

model of quarks and leptons (charge, baryon number, lepton number, weak hyper- 

charge, color) with confined color, weak-electromagnetic unification, and precisely 

the three observed generations. 

The fourth level uses labels of length 256 and closes with 2127 + 136 M 1.7 x 

1O38 M hc/Gmj p ossible ways they can combine pair-wise. This specifies mp as the 

unit of mass. Then, since our labels conserve baryon number, lepton number and 

charge, any gravitating system with spin l/2, unit charge and lepton or baryon 

number one collapses by emitting Hawking radiation to become a stable charged, 
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rotating black hole. The number of bits of information lost in the collapse of 

13” hc/Gm2 is equal to the area of the event horizon in Planck areas. This stabilizes 

the proton and electron. Then most of the electron mass is generated either elec- 

tromagnetically or by the Fermi interaction. Self consistency of the electron mass 

calculated using either e2/tic = l/137 or Gfrn@z = 1/fi(256)2 of this calcula- 

tion gives weak-electromagnetic unification at the tree level. Since the labels must 

be generated before space-time can be constructed and takes on meaning, closure 

of level four plus baryon number conservation implies about (2127)2 baryons in the 

universe. The resulting cosmology is good to at least first order. Current results 

are summarized in the following table. 

_ : 
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Table I. Coupling constants and mass ratios predicted by the finite and 
discrete unification of quantum mechanics and relativity. Empirical Input: c, tL and 
mp as understood in the “Review of Particle Properties”, Particle Data Group, 
Physics Letters, B 239, 12 April 1990. 

COUPLING CONSTANTS _ _ 

Coupling Constant 

G-1 hC 

3 

GFrni/tic 

sin20Weak 

a-l@,) 

Gh 

Calculated Observed 

[212’ + 1361 x [l - A] = 1.693 31.. . x 103’ [1.69358(21) x 1O38] 

[1.02 682(2) x 1O-5] 

[0.2259(46)] 

[137.0359 895(61)] 

[13,3(3), > 13.9?] 

Mass ratio 

mpl me 
. - 

m$/me 

m,o /me 

mp,lrne 

Parameter 

NB/& 

Mdark/Mvis 

NB-NB 

P/&fit 

[2562fi]-’ x [l - &] = 1.02 758.. . x 1O-5 

0.25[1 - &I2 = 0.2267.. . 

137 x [l- &]-l = 137.0359 674.. . 

[(e)2 - l]f = [195]f = 13.96.. 

MASS RATIOS 

Calculated 

137* 
m = 1836-15 14g7 * - * 

275[1 - &] = 273.12 92. . . [273.12 67(4)] 

274[1 - A]= 264.2 143.. . [264.1 373(6)] 

3 - 7 * lO[l - j&l = 207 [206.768 26( 13)] 

COSMOLOGICAL PARAMETERS 

Calculated 

& = 2.328.... x 10-l’ 

x 12.7 

(2127 + 136)2 = 2.89... x 1O78 

0 bserved 

[1836.15 2701(37)] 

0 bserved 

x 2 x 10-10 

Mdark > 1oMvis 

compatible 

-05 < P/&sit < 4 
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Appendix: COHERENCE, DETERMINISM and CHAOS 

Abstract of contribution to ANPA 15, September 9-12, 1993 

We assume that “fields” are to be measured by the acceleration of a “test 

particle” which belongs to a class of particles whose ratios of charge to mass and 

gravitational to inertial mass are Lorentz invariant. We relate the measurement 

accuracy in space, AZ, and in time, At, by the scale invariant definition of two con- 

stants c, and IC: s = 1; $$ G 2n. Taking the experimental velocity resolution 

Au, = Ax/Tat = NAx/NTAt we derive the bracket expression [x, vZ] = K where 

x = NAx. Then it is a deductive consequence that the only fields which can act 

on such particles are structurally indistinguishable from electromagnetic and grav- 

itational fields in the sense that they satisfy the free space Maxwell Equations and 

Einstein geodesic equations. Such a scale invariant theory becomes the proper cor- 

respondence limit for any relativistic particle theory which breaks scale invariance 

by taking meK = ti. Here we use me because it defines the threshold distance for 

position measurement, h/2m,c, below which the non-classical process of electron- 

positron pair creation is observed, and above which that phenomenon cannot be 

directly observed. The coherence length L = NTAx specifies the maximum dis- 

tance within which quantum mechanical interference effects can be observed. For 

non-overlapping “wave packets” of this length, the deterministic classical equa- 

tions with particulate sources and sinks apply. But the characterization of a de- 

terministic system as chaotic requires a specification of boundary conditions to a 

precision which violates the constraint due to measurement accuracy or electron- 

positron pair creation. Hence the number of degrees of freedom used in a model 

fixes whether the system is quantum coherent or classically decoherent but (ap- 

proximately) deterministic and limits the applicability of chaos theory, removing 

certain paradoxes. 
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