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ABSTRACT

Hadron wavefunctions are most naturally defined in the framework of light-

cone quantization, a Hamiltonian formulation quantized at equal light-cone ‘time’

τ ≡ t + z. One feature of the light-cone perturbation theory is the presence of

instantaneous interactions, which complicate the consideration of processes involv-

ing bound states. We show that these interactions can be written in a simple and

general form, parametrized by an instantaneous contribution ψ̃ to the hadronic

wavefunction. We use the rotational invariance of Feynman diagrams to relate this

instantaneous piece of the meson wavefunction to the propagating part, and to

obtain constraints relating wavefunctions and quark fragmentation amplitudes.
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Light-cone quantization (LCQ) is a natural framework for the description of

processes involving scattering into bound states; as such, it offers the most attrac-

tive basis for the description of hadrons in terms of their partonic constituents.

LCQ is a Hamiltonian theory, quantized at equal light-cone ‘time’ τ ≡ t + z.

As a result, its perturbation theory (LCPTh) shares several features with old-

fashioned time-ordered perturbation theory, notably that internal particles propa-

gate on mass shell, while the ‘energy’ P− ≡ P 0 − P z is not conserved in interme-

diate states.

In perturbation theory, each Feynman diagram can be written as a sum of

LCPTh diagrams over all possible τ -orderings of its vertices; the advantage of

LCPTh is that the conserved momentum p+ ≡ p0 +pz is positive for each particle,

so that vacuum-creation graphs do not appear in perturbative calculations, and the

number of nonzero LCPTh diagrams corresponding to a single Feynman diagram

is greatly reduced.

In LCQ, the formation of hadrons from underlying partonic processes is gov-

erned by process-independent light-cone wavefunctions [1]. In the consideration of

exclusive processes at leading twist, only the projection of this wavefunction onto

the valence Fock state need be considered. For a meson, the valence state is simply

the qQ̄ state with the flavor quantum numbers of the meson, and such processes

are governed by the valence light-cone wavefunction

ψh→qQ̄(x, k⊥),
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which is the amplitude for the meson h to decompose into on-shell partons q and

Q̄, with the quark q carrying momentum

pq = (xp+
h , p

−
q , xp⊥,h + k⊥);

the on-shell condition requires p−q = (p2
⊥,q +m2

q)/p
+
q .

By convention, this wavefunction includes the light-cone energy denominator

(p−h −p−q −p
−
Q̄
−iε)−1, as well as spinor normalization factors

√
p+
q p

+
Q̄

which simplify

the calculation of Dirac numerator factors. Thus, in perturbative calculations an

incoming meson with momentum p should be represented by the factors

1∫
0

dx

∫
d2k⊥
16π3

ψh→Q̄q(x, k⊥)
u(x̄p− k⊥)√

x̄p+

v̄(xp+ k⊥)√
xp+

, (1)

where we have introduced the notation x̄ ≡ 1− x.

In the same way, the closely analogous fragmentation amplitudes are defined as

ψQ→hq(x, k⊥),

the amplitude for a quark Q to emit a meson h. Here the momenta and energy de-

nominator are defined as above (but with h ↔ Q). The fragmentation amplitude

contains the factor
√
p+
q p

+
Q, rather than

√
p+
h p

+
q ; other than that, the definition of

the fragmentation amplitude is entirely analogous to that of the wavefunction.

One feature of light-cone quantization is that, in addition to the familiar

forward-going propagators of internal particles, there are additional ‘instantaneous’

contributions to the propagator (due to the fact that the quantization surface is not
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strictly spacelike) [2]. The light-cone Green functions can be derived from covari-

ant Green functions by integrating over τ ; instantaneous terms represent ‘contact’

interactions arising when vertices share the same coordinate τ .

In the scattering of free particles, the form of the instantaneous propagator can

be deduced from the Hamiltonian of the theory after integrating out dependent

degrees of freedom. For fermions, the Dirac structure of these contributions is

simply γ+ ≡ γ0 + γ3. [3]. However, when a bound state scatters by exchange of an

instantaneous particle, it is not immediately clear that a simple representation of

the form of the interaction can be obtained.

For example, the simplest hadronic process imaginable is the photodissociation

of a meson into a qQ̄ pair. The standard methods of LCQ do not suffice to calculate

the amplitude for this process, since the instantaneous interaction shown in Fig. 1

cannot be neglected. Thus, the applications of LCQ to wavefunction-controlled

processes have largely been restricted to the computation of spacelike form factors,

for which the evaluation of the +-component of the hadronic part of the amplitude

is sufficient. Instantaneous terms do not affect such calculations, since γ+γ+ = 0.

In this paper, we show that the instantaneous interaction does indeed have a

simple form, parametrized by a wavefunction analogous to those of Ref. [1]. We

then use the rotational invariance of certain scattering amplitudes to write the

instantaneous wavefunction in terms of the familiar propagating wavefunctions of

Ref. [1] in the valence Fock state. In addition, we are able to obtain a sum rule

constraining the behavior of the wavefunction and fragmentation amplitude. Sum

rules for inelastic scattering at the probability level have been obtained by Gribov
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Figure 1. Instantaneous interactions of a meson. Chap-
ter I demonstrates that the interactions may indeed be
written in the form suggested by this figure. Arrows
indicate fermion flow; time flows from left to right.

and Lipatov [4], but the simple relations which prevail in exclusive processes at the

amplitude level have not been elucidated.

I. THE INSTANTANEOUS WAVEFUNCTION

An example of an instantaneous interaction contributing to the photodissoci-

ation γh→ qQ̄ is shown in Fig. 1; however, this diagram does not as yet represent

anything. To describe such interactions in a simple form, we must take one step

further into the ‘muck’ of the quark-meson vertex, as shown in Fig. 2. In Fig. 3,

a non-instantaneous diagram contributing to the photodissociation process, the

propagating internal quark line is represented by the factor Dprop = uλ(q)/
√
q+,

where λ = ± is the quark helicity.

We first consider the time-ordering shown in Fig. 2(c). The instantaneous

quark is now represented by

Dinst =
γ+

q+
6̃ε uλ(p̃)√

p̃+
. (2)
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Figure 2. Underlying processes which contribute to in-
teractions like that shown in Fig. 1. We must account
for the possibility of the ‘invisible’ internal quark and
gluon being either forward- or backward-moving.

Figure 3. Another diagram contributing to the pho-
todissociation process, calculable using the methods of
Ref. [1].

We will derive a more compact expression for eq. (2), depending only on the

external momenta ph, pQ̄, and q of Fig. 1. Once this is accomplished, the wave-

functions inside the muck of Fig. 2 may be integrated out, leaving a form similar

to that of eq. (1). Fortuitously, the presence of the γ+ acts as an ‘information wall’

which we now show serves to block out the dependence on the ‘invisible’ internal

momentum p̃.
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Since the light-cone wavefunctions must be quantized in the light-cone gauge

A+ = 0 [1], we substitute γ+ 6̃ε → −γ+ε̃⊥ · γ⊥. Then we can explicitly evaluate

eq. (2), obtaining

Dinst =
ε̃1 + iλε̃2

q+
ζλ, (3)
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where (in the Dirac representation of γµ)

ζ+ ≡
1√
2


0

1

0

1

 and ζ− ≡
1√
2


−1

0

1

0

 ; (4)

the spinors ζ± are related to the basis spinors χ of Ref. [1] by ζ± = γ0γ1χ± =

±γ+χ∓.

We have almost accomplished our objective; the spinors ζ± carry information

about the spin of the invisible internal quark (as they must, since helicity is con-

served for light quarks), but they do not depend on its momentum p̃ at all. The

unwanted extra information has been blocked by the intervening γ+.

The only remaining obstacle is the dependence on ε̃⊥. We use the light-cone

gauge convention of Ref. [1], so that ε⊥ = (1,±i)/
√

2. The gluon with spin −λ,

opposite to the internal quark spin, contributes a factor
√

2; the gluon with spin

+λ does not contribute at all. Now we can write eq. (2) as

Dinst =
√

2
ζλ
q+
, (5)

with the implicit constraint that the internal gluon of Fig. 2 has helicity −λ.

Though we have as yet discovered nothing about ψ̃, the form of eq. (5), into which

no momenta other than q enter, is sufficient to demonstrate its existence.

The wavefunctions inside the muck of Fig. 2 carry an extra unit of orbital an-

gular momentum, which is not present in the wavefunction of Fig. 3; the difference

serves to balance the angular momentum carried by the gluon which we have ex-

plicitly extracted.
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We can now define the instantaneous wavefunction ψ̃h(qλ)Q̄(x, k⊥) required for

the evaluation of the amplitude shown in Fig. 1. The parentheses in the subscript

denote the exchange of an instantaneous particle; the arguments x and k⊥ are

defined by

x ≡
p+
Q̄

p+
h

and k⊥ ≡ p⊥,Q̄ − xp⊥,h.

To ensure that the instantaneous wavefunction has the same spin properties as the

propagating wavefunction ψh→qQ̄, we rewrite eq. (5) as

Dinst =

[ √
2 p+

Q̄

q+(k1 + iλk2)

](k1 + iλk2

p+
Q̄

)
ζλ, (6)

and absorb the factor in square brackets into the definition of the wavefunction

ψ̃h(qλ)Q̄.

With this result, we can represent instantaneous interactions of the sort shown

in Fig. 1 by replacing the incoming meson with the factor

∞∫
0

dx

∫
d2k⊥
16π3

ψ̃h(qλ)Q̄(x, k⊥)
(k1 + iλk2

p+
Q̄

)
ζλ

v̄(xp+ k⊥)√
xp+

; (7)

this should be compared to eq. (1), the standard expression, which appears in the

evaluation of the propagating amplitude shown in Fig. 3. The new terms in eq. 7,

(k1 + iλk2)ζλ/p
+
Q̄

, combine to mimic the properties under boosts and rotations

about ẑ of the corresponding term uλ/
√
p+
q in eq. (1); thus the two wavefunctions

behave identically under those transformations.

Though we have constructed this result for only one of the time-orderings of

Fig. 2, the proof in the other cases proceeds in exactly the same manner except for

the substitutions uλ → v−λ or ε̃→ ε̃∗, which do not affect the result.
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Figure 4. A process involving the instantaneous wave-

function ψ̃(x < 0). Again, arrows indicate the direction
of fermion flow.

For diagrams like that shown in Fig. 1, we must allow x ∈ (0,∞) since the

momenta p+
h and p+

Q̄
can take any positive value, and q+ may have either sign.

Another class of diagrams, like that shown in Fig. 4, requires determination of the

instantaneous wavefunctions for x ∈ (−∞, 0); we will not need to consider this

case in the present work.

Figure 5 shows a configuration in which it is not clear which wavefunction we

should use. This process may be considered either as an instantaneous process like

those of Fig. 1, or as a higher-order correction to the tree-level diagram of Fig. 3.

How do we avoid double-counting such contributions?

The answer depends on the choice of separation scale µ. Define the internal per-

pendicular momentum k⊥ ≡ q⊥ − (q+/p+
Q̄

)p⊥,Q̄. If |k⊥| > µ, we must consider the

process shown in Fig. 5 as a higher-order correction to the propagating amplitude

of Fig. 3; for |k⊥| < µ, the same amplitude is already accounted for as part of the

amplitude corresponding to Fig. 2(a). Thus the instantaneous wavefunctions, like

the propagating ones, are dependent on the factorization scale; their µ-dependence

is determined by diagrams like that of Fig. 5. Consideration of this evolution is

outside the scope of the present work; we will fix the same factorization scale µ
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Figure 5. A diagram which may or may not be con-
sidered instantaneous, depending on the momentum
transfer k⊥.

for the instantaneous and propagating wavefunctions, and compare the resulting

quantities. The discussion, however, should highlight the fact that at small mo-

mentum transfer, the quark is not the simple object which enters into perturbative

calculations, but has all the complexity usually associated with composite hadrons.

In sum, we have constructed a rule, eq. (7), for the calculation of instanta-

neous scattering from mesons; its use is exactly analogous to that of the familiar

non-instantaneous wavefunctions of Ref. [1]. The power of this result is its indepen-

dence of the internal dynamics of the muck, demonstrated by eq. (5); the internal

momenta do not affect the form of the interaction.

It must be pointed out that the theoretical stature of the instantaneous wave-

function is not on a par with that of the more familiar two-particle wavefunction.

The latter is simply the projection onto a qq̄ basis Fock state of an eigenstate of

the light-cone Hamiltonian, while the former incorporates the sum and integration

over more populous Fock states represented in Fig. 2. Thus the wavefunction en-

tering into eq. 7 is, in terms of the expansion of the meson wavefunction over the
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Fock state basis, only an effective wavefunction entering into processes like that

shown in Fig. 1.

Equation (7) ensures that the properties of the instantaneous wavefunction

under rotations about ẑ are the same as those of the propagating wavefunction

with the same meson and parton helicities; thus the two contributions may read-

ily be combined in the calculation of scattering amplitudes. Finally, we note that
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time-reversal invariance requires

ψ̃Q̄(q)h(x, k⊥) = ψ̃∗h(q)Q̄(x−1, x−1k⊥). (8)

We next turn to the problem of relating the instantaneous contributions so defined

to the conventional wavefunction.

II. CONSTRAINTS FROM ROTATIONAL INVARIANCE

With the introduction of the wavefunctions ψ̃, we are finally able to calculate

entire hadronic amplitudes, rather than only their +-components. The simplest

such process is the photodissociation of a meson; for definiteness, we will consider

the process γK∗↑ → d̄+s+, where the subscripts denote particle helicities.

We neglect all quark mass terms in the following analysis; thus our results will

suffer from corrections of order m/Q, where Q2 = −t is the momentum transfer

in the scattering process. This enables us not only to probe the projections of the

wavefunctions onto a state with definite helicities, but also to prepare the fermion

spinors in the spin-projection eigenstates of Ref. [1] without spoiling the rotational

invariance of the amplitude.

Other analyses of this sort [5] have been hampered by the fact that the ampli-

tudes corresponding to single Feynman diagrams are not in general Lorentz invari-

ant; thus one often is forced to deal with a complicated sum of such amplitudes,

greatly reducing the power of the resulting constraints.

Armed with the result of eq. (7), however, we can now calculate all of the com-

ponents of the hadronic part Hµ of the amplitude, rather than only H+. Thus
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it is possible to circumvent the lack of gauge invariance of single Feynman dia-

grams by specializing immediately to Coulomb gauge and working only in center-

of-momentum frames. While individual Feynman graphs lack the gauge invariance

which is prerequisite to full Lorentz invariance, in this case they will be invariant

(up to at most a phase) under rotations, though not under boosts.

For massless particles, the most general form for the initial- and final-state

four-momenta (k+, k−, k⊥) satisfying P⊥ = 0 is

pK∗ = (yP+, ȳP−, l⊥),

pγ = (ȳP+, yP−,−l⊥),

ps = (x̄P+, xP−,−k⊥), and

pd̄ = (xP+, x̄P−, k⊥).

(9)

Here we have introduced the notation ā ≡ 1− a; the requirement that all particles

be on mass shell means that k2
⊥ = xx̄P+P− and l2⊥ = yȳP+P−.

In order to obtain rotationally invariant quantities, we must work in center-of-

mass frames, where P+ = P− = Ecm; since there is only one energy scale in the

problem, we set Ecm = 1 for convenience. Then the three-momenta corresponding

to the definitions of eq. (9) are

pK∗ = (l⊥, y −
1

2
),

pγ = (−l⊥,
1

2
− y),

ps = (k⊥, x−
1

2
), and

pd̄ = (−k⊥,
1

2
− x).

(10)

We will use three-vectors, with the notation ~v = (v⊥, vz), in the remainder of

this work.
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In Coulomb gauge, ε0 = 0, and the photon polarization three-vectors are

~ε↑ = ~ε∗↓ =
√

2yȳ
( lL
y
ε̂R −

lR
ȳ
ε̂L , 1

)
, (11)

where for the sake of brevity we have introduced the notations

ε̂R ≡
1√
2

(1, i), ε̂L ≡
1√
2

(1,−i), and l
R(L)
≡ l⊥ · ε̂R(L)

.

As a first example, we calculate the s-channel amplitude for Compton scatter-

ing eγ → eγ, given these restrictions. When the electron helicity is positive, the

only nonzero contribution is that in which both photon helicities are negative. If

we let pK and pd̄ above represent the incoming and outgoing electron momenta,

the s-channel contribution to the full Compton amplitude is

e2
[√

x̄ȳ +
2lLkR√
x̄ȳ

]
= e2 cos

θcm

2
eiφ,

where φ is a pure phase [6].

This is indeed rotationally invariant, except for a phase factor from our spinor

conventions, due to the fact that the scattering plane is not parallel to the ẑ-axis.

If we require k⊥ ‖ ±l⊥, the amplitude is purely real. We will impose this additional

constraint in our later calculations. The kinematically allowed region of the xy-

plane is shown (with and without this restriction) in Fig. 6.

Now we can implement the program of using the requirement of rotational

invariance to constrain the meson wavefunction. The first step is to calculate the
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Figure 6. The kinematically allowed region of the xy-
plane for some values of t/s. In each case, the part of
the boundary given by the heavy solid line is allowed
when k⊥ ‖ l⊥.

Figure 7. Part of the K∗ photodissociation amplitude.
(a) shows the Feynman diagram, (b) the associated
LCPTh diagrams.
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t-channel contribution, shown in Fig. 7, to the amplitude for γ↑K∗↑ → s+d̄+ in the

massless approximation:

M = −eqs
√
p+
s p

+
d̄

{[ ū+(ps)√
x̄

~γ · ~εu+(ps − pγ)√
y − x

]
θ(y − x)ψK∗↑→d̄+s+

(x
y
,−x

y
t
)

+
[ ū+(ps)√

x̄
~γ · ~εv−(pγ − ps)√

x− y
]
θ(x− y)ψ∗d̄+→K∗↑ s̄−

(y
x
,−y

x
t
)

+
[ ū+(ps)√

x̄
~γ · ~εζ+

](pd̄R
x
− pK∗R

y

)
ψ̃K∗↑ (s+)d̄+

(x
y
,−x

y
t
)}

;

the three terms in braces give the contributions from the wavefunction, fragmenta-

tion amplitude, and instantaneous exchange amplitude, respectively. Our notation

is conventional, except that we have used k2
⊥ rather than k⊥ as the argument for

the wavefunctions, for the sake of brevity. Note that the definition of k⊥ in the

fragmentation amplitude differs from that used in the wavefunctions.
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Inserting the explicit representation of eq. (11) and the spinors of Ref. [1], we

can evaluate this expression:

M = −2eqs
√

2xx̄yȳ
( lL
y
ε̂R −

lR
ȳ
ε̂L , 1)

·
{( lR − kR

y − x ε̂L −
kL
x̄
ε̂R ,

1

2
+
kL(lR − kR)

x̄(y − x)

)
θ(y − x)ψK∗↑→d̄+s+

(x
y
,−x

y
t
)

+
(kR − lR
x− y ε̂L −

kL
x̄
ε̂R ,

1

2
− kL(lR − kR)

x̄(x− y)

)
θ(x− y)ψ∗d̄+→K∗↑ s̄−

(y
x
,−y

x
t
)

+
(
ε̂L ,

kL
x̄

)(kR
x
− lR
y

)
ψ̃K∗↑ (s+)d̄+

(x
y
,−x

y
t
)}

= −eqs
√

2

{
(xx̄y + x2ȳ − 2x

√
xx̄yȳ)

θ(y − x)

y − x ψK∗↑→d̄+s+

(x
y
,−x

y
t
)

+ (2x
√
xx̄yȳ − xx̄y − x2ȳ)

θ(x− y)

x− y ψ∗d̄+→K∗↑ s̄−
(y
x
,−y

x
t
)

+ (2
√
xx̄yȳ − x̄y − xȳ)ψ̃K∗↑ (s+)d̄+

(x
y
,−x

y
t
)}
.

(12)

In the last step, we have made explicit the assumption that k⊥ ‖ l⊥. The

requirement that the physics of this scattering process be rotationally invariant

implies thatM is a function of the Mandelstam invariants t and u only, for any x

and y in the kinematically allowed region

(ys+ x̄t+ xu)2 ≤ 4utxx̄.

The restriction k⊥ ‖ l⊥ restricts us to the boundary of the allowed region; along

this boundary, the phase and magnitude of M are constant.
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The first step in extracting the consequences of this independence is to consider

the two limits x→ 1 (which requires y → −u/s) and y → 1 (whence x→ −u/s).

The equality of the amplitude in these two cases yields the requirement

−ûψK∗↑→d̄+s+
(û, ût̂s) + t̂ψ̃K∗↑ (s+)d̄+

(û, ût̂s)

= ψ∗d̄+→K∗↑ s̄−
(û, ût̂s) + t̂ψ̃K∗↑ (s+)d̄+

(û−1, û−1t̂s),
(13)

where we have defined û = −u/s and t̂ = −t/s.

To obtain another, similar constraint, we consider the process γ↓K∗↑ → s+d̄+.

The calculation proceeds in identical manner, and we obtain the result

ûψK∗↑→d̄+s+
(û, ût̂s) = −t̂ψ̃K∗↑ (s+)d̄+

(û−1, û−1t̂s). (14)

Combined with eq. (13), this implies that

t̂ψ̃K∗↑ (s+)d̄+
(û, ût̂s) = ψ∗d̄+→K∗↑ s̄−

(û, ût̂s). (15)

We might hope to obtain an additional constraint by considering the process

K∗↑φ→ s−d̄+ for a scalar ‘photon’ φ [7]. However, the constraint thus derived is

merely eq. (15); the calculation provides a check of our results, but yields no new

information.

We can now substitute eqs. (14) and (15) back into eq. (12) to eliminate the

dependence of M on ψ̃. Ignoring an overall factor of −eqs
√

2, we now have

M = x
(√

x̄y −√xȳ
)2 θ(y − x)

y − x
[
ψK∗↑→d̄+s+

(x
y
,−x

y
t
)
− y

x
ψ∗d̄+→K∗↑ s̄−

(x
y
,−x

y
t
)]

+ (x ↔ y).
(16)

Since this form is manifestly symmetric under x ↔ y, eqs. (13)–(15) encapsu-

late all of the consequences of the symmetry of M under x ↔ y. However, much
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more information is contained in eq. (12). To make eq. (16) clearer, we parametrize

the momenta by û, k⊥ ≡
√
−t, and z ≡ x/y; for the moment we will assume z < û.

Then the constraint k⊥ ‖ l⊥ requires

y =
1− û

1 + z − 2
√
ûz

⇒ x

y − x
(√

x̄y −√xȳ
)2

=
z

1− z (1− û).

Inserting this result into eq. (16), we obtain a sum rule relating the wavefunction

and fragmentation amplitude in the region z < û. We can repeat the preceding

analysis with k⊥ ‖ −l⊥ to probe the region z > û. In either case, we obtain the

same result:

zψK∗↑→d̄+s+
(z,
√
zk⊥)− ψ∗

d̄+→K∗↑ s̄−
(z,
√
zk⊥)

1− z =
M

1− û = F (k⊥), (17)

where F does not depend on z or û [8], and z can have any value in the allowed

region 0 < z < 1.

While our choice of the K∗ meson gave us a concrete example with which to

work, our results in no way depend on the nature of the meson in question. In

addition, the above computation yields the same results regardless of the helicity of

the struck quark. The only dependence on the spin properties of the particles arises

from the fact that the argument of transverse momentum k⊥ in the fragmentation

amplitude ψ∗q̄ is antiparallel to that used in the wavefunctions. Taking this into

account, we obtain the final result

ψ̃hλ(Qs)q̄s′
(z, k⊥) =

θ(1− z)
1− z (−1)λ−s−s

′
ψ∗q̄s′→hλQ̄−s(z, k⊥)

− θ(z − 1)

z − 1
ψhλ→q̄s′Qs(z

−1, z−1k⊥),

(18)

valid for z > 0.
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Thus the instantaneous wavefunction for any meson in any spin state is en-

tirely determined in terms of the ordinary wavefunction and the fragmentation

amplitude. This simplification should greatly advance the calculation of scattering

processes which mix free and bound states, in which instantaneous contributions

cannot be ignored.

One noteworthy feature of eq. (18) is that the instantaneous contributions do

not vanish as z → 1. This is sensible, since the vanishing of the conventional wave-

function is due to the divergent energy denominator k2
⊥/zz̄; no such denominator

appears in the instantaneous interaction.

The constraint (17) is equally general; we have the result

zψhλ→q̄s′Qs(z,
√
zk⊥)− (−1)λ−s−s

′
ψ∗
q̄s′→hλQ̄−s

(z,
√
zk⊥)

1− z = F (k⊥). (19)

One should keep in mind that eqs. (18) and (19) are subject to errors on the

order of µ/|k⊥|, where µ is a typical mass for the particles in question; thus they

are best applicable to light mesons at large momentum transfer. For example, the

relationship between distribution amplitudes

zφh→q̄Q(z)− φ∗
q̄→hQ̄(z)

z(1− z) = constant, (20)

obtained by integrating over k⊥ in eq. (19), is subject to errors from the region in

which k⊥ is small.
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III. CONCLUSIONS

We have introduced and defined the instantaneous wavefunctions, eq. (7),

by which mesons partake in interactions involving the exchange of instantaneous

fermions. They take a remarkably simple form, requiring no consideration of the

higher Fock states involved in the meson wavefunction.

Using these results, we have written rotationally invariant LCPTh amplitudes

corresponding to a single Feynman diagram. In this manner, we have been able to

relate the newly introduced instantaneous wavefunctions to the well-known prop-

agating wavefunctions by the relation in eq. (18); thus the consideration of instan-

taneous interactions introduces no new degrees of freedom into the calculation of

hadronic amplitudes.

Finally, we have used the form thus derived for the instantaneous wavefunction

to express rotationally invariant quantities in terms of the conventional wavefunc-

tion and fragmentation amplitude alone; from this, we have derived a constraint,

eq. (19), on the behavior of these functions.
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