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Abstract: The effects of the beam-beam interaction with a small crossing 

angle on large amplitude particles in an e+e- collider are studied. An 

analytical resonance analysis method is developed to understand the non- 

linear coupling resonance driving mechanism. The major effect of the 
crossing angle for large amplitude particles is to drive the SQxfQs=integer 

resonance family. The analytic results are consistent with a computer 

simulation. The resonance is observed in the crossing angle experiment in 

CESR. 
. - 

I. Introduction 

To study CP violation in B-meson decays, a luminosity of at least 

3xlO%m-%ec-1 is needed which is lo-50 times higher than what is 

currently achieved in electron-positron colliders. The most direct way to 

achieve the needed luminosity is to increase the collision frequency by 

shortening the space between bunches. This raises the problem of separating 

the bunches at the first parasitic collision point. One possible solution is to 

collide the beams with a crossing angle, and, in fact, proposed high 

luminosity e+e- colliders either have a crossing angle or have a crossing 

angle as an option. 
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The introduction of a crossing angle in e+e- colliders causes non- 

linear coupling between horizontal motion and longitudinal motion. This 

problem has been observed in operatio0 and discussed elsewhere[lJX 

This paper will concentrate on understanding the coupling resonance driving 
mechanism. In order to analyze the problem, we make a thin-lens 

approximation in which a particle gets only one momentum-changing kick 

when it passes the opposite bunch. This is a reasonable approximation being 

widely used in most beam-beam simulation programs, especially in the case 

of horizontal kick, where the change of beam size within one bunch length is 

not significant. The kick occurs when the particle passes the center of the 

opposing bunch. The strength of the kick, AT-’ = F(r), is a nonlinear function 

of the distance, r, between the particle and the center of the opposite bunch. 

In head-on collisions, r is the transverse displacement, and the kick is in the 

transverse plane, so that the process is nonlinear but not influenced by the 

longitudinal motion. In collisions with a crossing angle, however, r is a 

function of longitudinal displacement, S, and the crossing angle, a, as well 

as transverse displacement. Figure (1) shows the geometry when the kick 

occurs with a crossing angle. The distance r between the test particle and 

the bunch center can be written as: 

r=x+taIl@s (1) 

The kick is a function of both transverse and longitudinal positions and, as a 

result, non-linear synchro-betatron coupling is generated by the crossing 

angle collision. In addition, the kick has a component in the longitudinal 

direction. 
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This paper investigates the effects of the nonlinear coupling caused by 

the crossing-angle collision. Since other study suggests that the effects are 
mostly on the beam tail, rather than the beam core[31, the investigation is 

concentrated on large amplitude particles. Another study[41 has investigated 

the crossing angle beam-beam problem from the operational point of view. 

There are many measurements was made in luminosity performance, beam- 

beam tune shift, etc. 

The parameters used are based on the Cornell B-Factory (CESR-B) 

design, but the conclusion is general because the beam-beam interaction is 
essentially the same for all B-Factory designs. The experiment was 

performed on Cornell Electron Storage Ring (CESR). The qualitative 

theoretical analysis, computer simulation and experimental measurement are 

in agreement. 
I 

- 

bunchcenter 

Figure (1). Kick in crossing angle collision 

II. Theoretical Analysis 

A resonance analysis method is introduced in this section. The 

analysis is good for a linear storage ring with a single nonlinear thin 
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elementI51, which is a reasonable approach to the beam-beam interaction 

problem. This method is developed to employ the Fourier Transform to 

expand the non-linear force, and relates the Fourier expansion components 

to certain resonances. 

In an ideal storage ring, particles in each bunch are in three- 

dimensional oscillation about the center of the bunch. In the crossing angle 
problem, we are interested in the horizontal (x) and longitudinal (s) motion. 

If we sit at one point of a linear ring observing a particle, its motion can be 

described by the difference equations: 

Xt+l - 2& cos#f& + q-1 = 0 (2) 

St+1 - 2sl cosps + St-1 = 0 (3) 

where t stands for turn number and pX and pu, are the whole-turn phase 

advances of’the oscillations. It is-straight forward to find their solutions: 

xr = Ax cos&t) (4) 

st = As cos(p&. (5) 

With the crossing angle collision, the difference equations become: 

Xt+l - 2COS/&Xt + X&l = -&inpXF(q +tan@st )COS~@ (6) 

St+1 - 2cosps St + St-1 = P,sin~SF(~~ +tan@*st )sin<DcosQ. (7) 

where F is the horizontal beam-beam kick, which can be approximated by a 

Dawson’s integraU61: 
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and F&y) = &?-” j; et2 dt. (9) 

where 0, is the horizontal beam size. pS can be defined in an analogous way 

to the transverse motionN For small crossing angle <D, the non-linear kick 

in the longitudinal plane is very weak. In addition, the longitudinal 

emittance is much larger than the horizontal emittance, which means s is 
much larger than X. Therefore, the longitudinal non-linear kick is negligible. 

Thus, the above equations are simplified: 

Xt+l - 2COS/f&t + X&l = -P,sinpXF(q +tan@st )cosW (10) 
St+1 - 2cos/.& St + St-1 = 0. (11) 

Equation (11) has the same solution as (5). As the first step approximation, 

substitute (4) into the right hand side of (10). Particles at large amplitude 

were used to evaluate the resonances, because previous studies have shown 

that crossing angles would mostly affect the large-amplitude particle0. 60 

amplitude is chosen because it is the typical amplitude for large amplitude 

particles which we concentrate on, and changes near this amplitude does not 
change the qualitative conclusion. Taking A~6ts, and As=60,, the 

Dawson’s integral becomes: 

6 
Fd- 

ox cospxt +a,tanCD coy.@  
a OX 

1. (12) 

From (12), we notice that the coupling term is actually proportional to 

As zan@, rather than tan@. Since A,-o,, the coupling generally scales as 

2anQ. This is called the normalized crossing angle. 

Expanding the non-linear kick in a two-dimensional Fourier Series, 

the right hand side of (10) can be written as: 
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1 
RHs =ygnLn comv4x+nps>t I+ &n cosKmpx-npdt 1 

, 
(13) 

Similarly, a solution is expected in the form: 

1 
Xt = z,c,a,n comvwws)~ I+ h?I$n cos[(mprnps)tl (14) 

1 

Substituting the above equations into (lo), it is easy to find the resonance 

driving relations: 

G?Ln 
angn = 

2sinJ@2+l)~+~~J sin&m- 1 &+Wd 
(15) 

b &n 
mn = 2sin~[(m+l)~~~~~]sin~[(m-l)~,-~~~l’ 

(16) 

7-93 
7477A2 

Figure (2). The power spectrum of the crossing angle beam-beam kick. 
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Near resonances (m&l)Qx&zQ s= integer, the denominator is small. Then, 

(a,b)m,n has strong response to (c,d)m,n . Therefore, we can say that cm,n 

and dm,n drive these resonances. 

Figure (2) shows the power spectrum of the Dawson’s integral (12), 

created by two-dimensional FFI. Due to the symmetry of the function, the 

terms with m+n=even vanish. In the calculation, the crossing half angle <D is 
10 mrad. The beam sizes 0, and o,, are taken as 0.36nn-n and 1 cm 

respectively corresponding to the CESR B design. The normalized crossing 

angle, defined as - OS CD, is 0.278. 
0:x 

From figure (2), we can easily see that the strongest coupling 

resonance (n #O) driving terms are those with m =4,n =l and m =6, n =l. 
According to the previous analysis, these two terms will drive 3Q&Q,= 

integer, 5Qx-+Qs= integer and 5Q&&= integer, 7Q&Qs= integer resonances 

respectively. It is natural to conclude that the 5Qx&QS= integer resonances 

are the strongest coupling resonances, since they are driven by both of the 

two largest driving terms. 

III. Simulation 

The simulation described here is aimed to explore the phenomenal 

difference with and without crossing angle, and some physics such as 

radiation damping and excitation is neglected to enhance the interested 

physical phenomena. A more detailed simulation could allow quantitative 

comparison, but the history of comparisons is spotty. 

A simple simulation program was written to study the crossing angle 

collision problem. The simulation program adopts a weak-strong beam- 
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beam interaction model, and consists of only a single beam-beam kick and a 

linear map for the ring. The beam-beam kick is calculated based on a Pade 

approach of complex error function[*l, and incorporates the crossing angle 

collision. Three dimensional motion is simulated. Particles are launched in 

6 dimensional phase space with 60 amplitudes, which are chosen for the 

same reason as in the theoretical analysis. For convenience of studying 

resonances, the program scans the horizontal fractional tune from 0 to 1. 

The maximum amplitude of all particles ever reached during the lOOO-turn 

tracking is recorded as a function of horizontal tune. 

1. Head on collision 

The goal of the simulation is to study the non-linear synchro-betatron 

coupling due to a beam-beam interaction with a crossing angle. However, 

even with zero crossing angle, the beam-beam interaction excites many 

resonances.’ Therefore, as a baseline, the simulation was done with head-on 

beams and an uncoupled ring. This result will be used for comparing with 

crossing angle collisions to find out which new resonances are excited. 

Figure (3) shows the maximum horizontal amplitude as a function of 

horizontal tune with the vertical tune being fixed at 12.71. It is easy to 

identify the spikes in the horizontal amplitude plot. The spikes correspond 

to the half integer, 4th integer, 6th integer, 8th integer, 10th integer ssa 

resonances, as marked in the picture. Because the beam-beam kick is anti- 

symmetric about the beam axis, only even order resonances are excited. 
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Head-on collision 
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Figure (3) Maximum horizontal amplitude vs. tune for head-on collision. 

Labels above peaks identify resonances. 

Crossine anele collision 2. 

The results of a simulation with @=lOmrad crossing angle are shown 

in figure (4). Comparing figure (3) and (4), it is easy to see many more 

resonances than in the case of a head-on collision. Some one-dimensional 
resonances, such as Qx=1/2, l/4 and l/6, already exist in head-on collision. 

Besides those resonances, the strongest new resonances are identified as 
SQ&*=integer resonances. The coupling resonance Q&Qr=integer can 
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also be seen in this picture. The conclusion supports the theoretical analysis 

result. 

Crossing angle 

t SQx&Qs=integer 

6 

collision 

- Qx-Qs=integer 1 -D resonances Qx+Qs=integer 

0 I I I I 1 I I I I I I I I I I 1 I I , I 

0 0.2 0.4 0.6 0.6 1 
Horizontal Tune 

Figure (4) Maximum horizontal amplitude vs. tune for crossing angle 
collision. (Q&081) 

IV. Experiment 

The experiment is designed to observe the 5Qx+Qs resonance 

associated with crossing angle collision, which is predicted by the theory in 
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previous sections. According to the theory, the 5Qx&Qs resonances drive 

large amplitude particles to even larger amplitudes, which can result in 

losing those particles. Therefore, one should expect to see a bad lifetime 

near those resonances. 

The experiment is based on the setup of the CESR crossing angle 

experiment141. CESR has been running with multi-bunch mode (7 bunches 

of e- on 7 bunches of e+). The key point of making multi-bunch mode 

possible is to separate bunches around the ring except at the interaction point 

where the detector is located. In CESR, four electrostatic separators are used 

to separate electron and positron orbits at parasitic crossing points. As 

shown in figure (5), the orbits (thin lines) are separated at 13 would-be 

collision points, but are merged between the two south (lower) separators, 

including the interaction point (IP) where the collision takes place. The 

crossing-angle lattice is es.sentially a modified version of the normal- 

operation lattice. The experiment was performed with one bunch on one 

bunch. A certain amount of anti-symmetric voltage is applied to the south 

separators, which creates anti-symmetric orbits about the IP. This is 

displayed in figure (5) as the thick lines. It is easy to see from the picture 

that the beams will collide at the IP with an angle. The half crossing angle 

can go up to about k2.5 mrad. The crossing angle is limited by the physical 

aperture at the interaction region (IR) quadrupoles, where the closed orbit is 

moved to 8.60 from vacuum chamber. 



12 

electron orbit 

-- ideal orbit 

---- positron orbit 

electron crossing 

- I - I positron 
crossing 

I’ ’ 
\ 
\ 

t \ . 
\ 

I 
\ 

q 
5. 

- \- -- $ II 

Figure(S). Diagram of the orbits for the crossing angle experiment 

The procedure of the experiment is similar to the simulation: scan the 

horizontal tune while the beams collide at an angle, and measure the decay 

rate (time derivative of the beam current). The weak-strong scenario is 

reproduced via collisions of a 2 mA beam of electrons and a 10 mA beam of 
positrons. The tune scan is carried out near the 5Qx+Qs = 43 (for Q,=0.064, 

Qx=8.587) resonance. The reason to choose this resonance is that the 

crossing angle lattice working point is close to the resonance (nominal 
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horizontal tune Qx=8.57). It is easy to move the tune to the vicinity of the 

resonance. In addition, simulation shows that this resonance is in a “clean” 

area, i.e., there are no other strong resonances near by. 

1. Measurement of 50,+0, resonance with and without crossing angle 

The experiment described in this section is designed to give a 

qualitative answer to whether the non-linear synchro-betatron resonance 

predicted by the theory exists in practice. 

A tune-scan program was used in the measurement. This program 

automatically changes the tune by changing the strengths of quadrupoles in 

the arc uniformly. The interaction region (IR) quadrapoles are not changed, 

so that the perturbation to the IR optics is minimized. The tune-scan varies 

tune by only 0.2%. Its effects on optics is unmeasurable. The vertical bearn .“L 
sizes and currents .of both beams are measured and recorded after each step 

of tune change. The vertical beam size is measured by the synchrotron light 

monitor, but this monitor does not have sensitivity at the large amplitudes 

studied in this paper. Tunes and tune changing rates were calibrated before 

each run with the coherent tune-shift taking into account. At the beginning 

of the experiment, the machine was tuned up with two strong beams so that a 

reasonable luminosity and beam-beam tune-shift were achieved. Then, to 

make a strong-weak collision, the electron beam was removed and a electro 

n weak beam is injected. 

The longitudinal tune has been measured to be 24.5 kHz. Because the 
fs CESR revolution frequency fr is 39OkHz, the synchrotron tune is Qs = f- = 

r 

0.0628. 
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Before measuring the resonance, the optics is checked by single beam 

tune-scan. One of the important issue is to set chromaticity near zero. This 

was typically done to M.3. Otherwise, the finite chromaticity introduces 
tune modulation, which could excite the same resonance (5@Qs ) with the 

involvement of sextupole field on single beam. 
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Figure (6). (a). Simulation result, maximum amplitude versus horizontal 
tune. (b). Experimental data, decay rate as a function of horizontal tune. 
Solid lines are the head-on collision data, and dashed lines are the crossing 
angle data. 
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For comparison, figure (6) gives both the simulation results and 

experimental results. Figure (6a) shows the simulation results for head-on 

collisions (solid line) and crossing angle collisions (dashed line). The plot 

gives the maximum horizontal amplitude as a function of horizontal tune. It 
shows that the 5&+QS resonance appears only when the beams collide at an 

angle. Figure (6b) plots the measured results. The data is from two separate 

measurements: one with the crossing angle turned on (dashed line), and the 

other one with the angle turned off (solid line). Both measurements employ 

strong-weak collisions, i. e., 10 mA positron on 2 mA electron. The weak 

beam (electron) is driven by the resonance, suffering bad lifetime (or large 

decay rate). The decay rate is obtained by digitally differentiating the 

electron current versus time (as the result of differentiation, some jitter in the 

current measurement creates bi-polar spikes, which result in unrealistic 
negative decay rates). The predicted resonance at w&587 appears in the 

data plotted in figure (6). -’ - 

To confirm that what is measured is really the result of crossing angle 

collisions, rather than due to the closed orbit effects, a measurement was 

made with a magnetic orbit distortion. This is the same lattice used to create 

the crossing angle, except that magnets are used to create an orbit which is 

very close to one of the crossing angle orbits. Therefore, both beams go 

through the same magnetic field as in the crossing angle experiment, but 

collide head-on. In this measurement, we see no resonance excitation, 

confirming that the resonance is the result of the crossing angle collision. 

2. Resonance strength as a function of crossing angle 
The experiment described in this section measures the same resonance 

by the technique discussed above, as a function of crossing angle. The 
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crossing angle was set to different values and a one-dimensional tune scan 

was performed to measure the decay rate as a function of tune at each angle. 

The angle is controlled by the anti-symmetric voltage applied to the south 

separators. Figure (7) gives the measured results. Test runs have indicated 

that the resonance is not measurable for half crossing angle smaller than 1.4 

mrad. Hence, detailed measurements took place at larger half crossing 

angles, up to 2.4 mrad. The picture shows a clear ridge of the decay rate at 
the 5Qx+Qs resonance, growing as the crossing angle increases. The result 

provides the evidence of the consistency of the resonance measurement. It 

also makes clear that the resonance is directly related to the crossing angle. 

7-93 
7477A7 

Figure (7). Tune scans versus different crossing angles. 

An interesting question is how the resonance effect changes with 

crossing angle. Simulations have been done to investigate the question. The 

simulation was run with different crossing angles and the maximum 
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amplitude on the resonance was found for each angle. The result is given in 

figure @a). From the figure, we see that the maximum amplitude grows 

rapidly when the half crossing angle is about 1 rnrad to 1.2 n-n-ad. After that, 

the maximum amplitude is almost flat, up to 10 mrad. Figure (8b) plotted 

the peak decay rate values of each scan as a function of crossing angle. One 

can see that the growth of the decay rate peaks is rapid at the beginning, but 

relatively flat for large angles. 
5 I I I I I 

(a) Simulation 
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Figure (8). Resonance strength as a function of crossing angle. (a)Maximum 

amplitude on the resonance vs. crossing angle. (b). Peak decay rate on the 
resonance vs. crossing angle 
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Comparing figure @a) and (8b), one can see some similarity between 
them. Even though the two plots are not plotting the same quantity, the two 

quantities reflect the same physical phenomenon. In the two plots, both 

curves have a rapid rise in the middle, and saturate later. However, there are 

two obvious differences. First, the experimental data shows that the decay 

rate rises at a larger angle. Second, the last data point in figure (8b) rises 

again. The differences may be explained as follows: For the first difference, 

because the radiation damping is not included in the simulation, the particles 

may be easier to be driven to larger amplitudes than in the real situation. In 

other words, the radiation damping suppresses the amplitude growth that 

makes the rise of the effect in experiment slower. For the second difference, 

one can argue that the crossing angle has been pushed to the limit of the 

physical aperture. The tight physical aperture certainly enhances the decay 

rate. We know that at the maximum crossing angle there is only 8.60 

physical aperture left at the interaction region quadrupoles. Simulation 

shows that the resonance drives 60 particles to over 100. It is obvious that 

the physical aperture has its influence on the decay rate, and the lifetime is 

very sensitive to the aperture at such an amplitude. Therefore, it is not 

surprising that a relatively larger decay rate is measured at this angle. For 

the same reason, the experiment is limited at k2.5 mrad crossing angle. 

In addition, the 2.4 mrad half crossing angle in the experiment is 

approximately equal to 0.097 normalized crossing angle. In CESR-B 

design, the bunch length is significantly reduced. This normalized crossing 

angle is equivalent to 3.5 mrad in CESR-B. 

V. Conclusion 
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The study shows a good consistency among analytical results, 

computer simulations and experiment on the strongest coupling resonance 

family excited by the crossing-angle beam-beam interaction. This resonance 
family, SQ&&=integer, will result in a bad lifetime in operation. 

Simulation also shows a saturation of this resonance effect at larger crossing 

angle. If the saturation is real, it means that good performance might be 

expected even at the crossing angle required for the B-Factory. However, 
the experiment does not address the simulation prediction beyond 2.5 mrad. 

The observation of the second rise of the decay rate (represented by 

the last data point in figure (8b)) means either that some other resonance 

mechanism, as yet unknown, is coming into play, or that it is just an 

aperture-limiting result. The best way to resolve this is to go to a larger 

crossing angle. Unfortunately, this is impossible in current CESR, although .‘i 
it may be possible with new,.,larger aperture quadrupoles near the IP, or with 

new interaction region optics. 

The study is limited in a simplified situation. The couplings, errors 

and nonlinearities of the ring and their interference with the beam-beam 

interaction are not included. The experiment was performed in a limited 

range of tunes, even though it is near the practical operation point. In B- 

factory operation, there may be other resonances excited by the mechanisms 

that are not considered in this paper. 

As mentioned previously, another study[41 investigated the crossing 

angle beam-beam problem from the operational point of view. The results 
show that an e+e- collider can operate with a small crossing angle without 

significant luminosity degradation. The combined results show that the 
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crossing angle design of the B-Factory might be realistic, even without any 
compensation, but the 5Qx-+Qs resonances have to be avoided in the 

operation. 
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