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ABSTRACT

Recently
1

Dalley and Klebanov proposed a light-cone quantized study of the

c = 2 matrix model, but which ignores k+ = 0 contributions. Since the non-

critical string limit of the matrix model involves taking the parameters λ and µ of

the matrix model to a critical point, zero modes of the field might be important in

this study. The constrained light-cone quantization (CLCQ) approach of Heinzl,

Krusche and Werner is applied . It is found that there is coupling between the zero

mode sector and the rest of the theory, hence CLCQ should be implemented.
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1. Introduction

Light-cone quantization has proven to be a very fruitful approach to study

quantum field theories in 1+1-dimensions
2

, (as well as for studying non-critical

strings
1
,) since it is possible to define a sequence of compact operators of increased

’exactness’ by increasing the a ’resolving’ parameter K which governs the total

momentum of the system.

It is known that the light- cone vacuum is trivial, i.e. it is identical to the

perturbative vacuum , and it was not understood how one would get non-trivial

topological behaviour like symmetry breaking. Only recently have we started to

understand how to do this
3

.

This can be seen by noting that light-cone quantization is quantization of a

system with constraints
4 5

, as the Regensburg group has noted.

Essentially a classical system can have constraints if there are some q’s which

don’t have conjugate p’s. If we want to pass to the quantum system, we cannot

apply the canonical quantization procedure. In such cases we need to examine the

nature of these constraints. Dirac calls these constraints first class if they commute

among themselves, and second class if they do not.

For the first class case we can
¯

use the canonical quantization procedure, but

need to restrict the Hilbert space of allowed states upon which the quantum op-

erators are allowed to operate by imposing these first class constraints on them.

Theories with a gauge symmetry are such an example.

For the second class, Dirac found that by modifying the Poisson braket he was

able to define a consistent set of rules for quantization. In the case of light-cone

quantization, this is the case we have to deal with.
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Lack of implementation of a consistent quantization shows itself in unphysi-

cal aspects in the theory such as breakdown of Lorentz invariance, lack of gauge

invariance or presence of ghosts . This has also shown up in light-cone quantiza-

tion. Recently, Burkardt and Langnau showed that naive light-cone quantization

of a Yukawa model leads to problems with rotational invariance
6

. Their solu-

tion is to add appropriate counterterms in the Hamiltonian and which restores the

symmetry.
7

.

Recently, Dalley and Klebanov
1
applied DLCQ to the study of c = 2 matrix

model. In this approach, one takes a double scaling limit
8

of a matrix model
9

as

a way to study c = 2 non-critical strings
10

. In this limit, one lets the coupling

g go to 1 and N go to ∞ but one keeps fixed some product of N and (g − 1). In

their work, Dalley and Klebanov took the N going to∞ limit first and then looked

for critical coupling. They interpreted the appearance of continuous states in the

mass spectrum as the appearance of the Liouville mode
11

. They also found the

presence of tachyonic states, which they identified with those of bosonic strings.

In this paper I will to study the effect zero modes of the field might have on this

c = 2 matrix model. The outline of the paper is as follows: first I will study a

similar model , the φ3 model , in CLCQ. Then I will apply the results obtained to

the model of Dalley and Klebanov.
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2. Constrained Light-Cone Quantization of the φ3 Model

It is assumed that the reader is familiar with the way one implements CLCQ

from previous work
4
,
3
, so it In this study I will follow the work of Werner and

collaborators
3
.

Consider then the Langrangian

LC = L0 + LI

where

L0 =
1

2
∂µφ∂

µφ+
1

2
µφ2

and

LI = −λφ
3

3!

In light-cone coordinates this is

LC = ∂+φ∂−φ+
1

2
µφ2 − λ

3!
φ3

To solve the theory we introduce a box of dimensions 2L in the x− directions.

Define now the zero mode background field ω

ω(x+) = P ∗ φ(x+, x−) =
1

2L

L∫
−L

dx−φ(x+, x−)

This is the P-space or zero mode projection of the scalar field φ. Its complement

4



Q is defined thus

ϕ(x+, x−) = Q ∗ φ(x+, x−) = φ(x+, x−)− P ∗ φ(x+, x−)

The free part of the Lagrangian becomes :

L0 = ∂+ϕ∂−ϕ−
1

2
µ(ϕ + ω)2

Then the interaction part of the Lagrangian becomes

LI =
1

2
µ(ϕ + ω)2 − λ

3!
(ϕ+ ω)3

=
1

2
µϕ2 +

1

2
ω2 + µϕω − λ

3!
(ϕ3 + ω3 + 3ϕ2ω + 3ϕω2)

The canonical ϕ momentum is

πϕ =
∂LC
∂(∂+ϕ)

= ∂−ϕ

leading to the constraint

θ1(x+, x−) = πϕ(x+, x−)− ∂−ϕ(x+, x−)

The result for the background field ω is

πω ≈ 0

and the next constraint is

θ2(x+) = πω(x+)

5



These degrees of freedom have the following canonical commutation

{
ϕ(x+, x−), πϕ(x+, y−)

}
= δ(x− − y−)

and {
ω, πω

}
= 1

We obtain the following result for the canonical Hamiltonian HC

HC =
1

2
µ(ϕ + ω)2 − λ

3!
(ϕ+ ω)3

We implement the constraints by adding extra terms to the canonical Hamiltonian

HC to obtain the ’proper’ Hamiltonian Hp

HP (x+) = HC(x+) +

L∫
−L

dx−u1(x+, x−)θ1(x+, x−) + θ2(x+)u2(x+)2L

The Lagrange multipliers u1 and u2 are determined by requiring that they have zero

Poisson commutator with the modified Hamiltonian HP . If the first commutator

is not zero, we continue to take commutators until zero is obtained
5
. We use the

cannonical commutation expressions for ϕ and ω introduced above. The following

expression is obtained for u1

u1(x+, x−) =

+L∫
−L

dy−GQ(x−, y−)
1

4

{
µϕ(x+, y−) + µω(x+)+

+
λ

2!
(ϕ(x+, y−)2 + 2ϕ(x+, y−)ω(x+) + ω(x+)2)

}
6



where GQ(x, y) is the Q-projected Green’s function

GQ(x, y) =
1

2
sgn(x− y)− x− y

2L

To determine u2 we need to work a bit harder. The first calculation gives

∂+θ2 =
{
θ2,HP

}
∂+θ2 = −µω(x+) +

λ

2!
ω(x+)2+

+

L∫
−L

dx−
λ

2!

{
ϕ(x+, x−)2 + 2ω(x+)ϕ(x+, x−)

}
= θ3(x+) ≈ 0

Since this equation does not give us an expression for u2, we take the commutator

of the new constraint, θ3, with the full Hamiltonian. We get the following results

for the commutators with θ1 and θ2 respectively:

{
θ3, θ1

}
=

1

2L
(λϕ(x+, x−)− µ)

and {
θ3, θ2

}
=

1

2L
(2λω(x+)− µ)

Putting this in the commutator with HP , we get

u2(x+) =
−1

2L

L∫
−L

dx−
λϕ(x−, x+)− µ

2λω(x+)− µ u1(x−, x+)

To determine the new commutation relations, construct the Dirac braket {, }∗

{A,B}∗ = {A,B} −
∑
ij

{A,ψi}{ψi, ψj}−1{ψj , B}

and here the ψi’s are all second class constraints, so that the inverse is meaningful.
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With this, the following Dirac brackets are obtained :

{ϕ(x+, x−), ϕ(x+, y−)}∗ = −1

4
GQ(x−, y−)

and

{ϕ(x+, x−), πϕ(x+, y−)}∗ = +∂y
−

− GQ(x−, y−)

These are as expected. The interesting result is that we also get

{ω(x+), ϕ(x+, x−)}∗ = −1

4

L∫
−L

dy−GQ(x−, y−)
λϕ(x+, y−)− µ
2λω(x+)− µ

This indicates that there is coupling between the non-zero modes of the field of the

scalar field and the background field ω, the zero mode of the scalar field.

There is also coupling between the zero modes of the field and the momentum

of the non-zero modes of the field :

{ω(x+), πϕ(x+, x−)}∗ =
1

4

L∫
−L

dy−GQ(x−, y−)
λϕ(x+, y−)− µ
(2λω(x+)− µ)2

2λ

On the other hand we get the following Dirac brackets for the zero mode of the

field

{ω(x+), πω(x+)}∗ = {ω(x+), ω(x+)}∗ = {πω(x+), πω(x+)}∗ = 0

This means that upon Dirac quantization this quantity is not dynamical. Nonethe-

less, since it depends on the quantized field φ, and since it couples to the non-zero

part of the field, it is important in studying non-trivial topological properties of

the theory.
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3. The c=2 Matrix Model

Let us study now this Dirac (constrained) quantization applied to the c = 2

matrix model introduced by Dalley and Klebanov
1
. The Lagrangian is

L = Tr
{

1/2(∂αM)2 + 1/2µM2 − λ

3
√
N
M3
}

where M(x−, x+) are N × N hermitian matrices. We apply now the method of

constrained quantization described above and get the following for the full Hamil-

tonian

P−(x+) =

L∫
−L

dx−Tr
{1

2
µM2 − λ

3
√
N
M3
}

+

+

L∫
−L

dx−Tr
{
U1(x+, x−)Θ1(x+, x−)

}
+ Tr

{
Θ2(x+)U2(x+)2L

}

where the U ′s are the new Lagrange multipliers and the Θ′s the new constraints :

Θ1(x+, x−) = ΠM(x−, x+)− ∂−M(x−, x+) ≈ 0

and

Θ2(x+) = ΠΩ(x+) ≈ 0

The analysis goes through as in the previous chapter - except that now I have

the extra indices, since TrM2 means
∑

ijMijMji; I’ll suppress these indices from

9



now on. As before, I split the field M into a zero mode part

Ω(x+) = P ∗M(x+, x−) =
1

2L

L∫
−L

dx−M(x+, x−)

and

M(x+, x−) = Q∗M(x+, x−) = δ∗M(x+, x−)−P∗M(x+, x−) = M(x+, x−)−Ω(x+)

is the non-zero part. I get the following form for the new hamiltonian

HP = P−(x+) =

L∫
−L

dx−Tr
{1

2
µM2 − λ

3
√
N
M3
}

+

+

L∫
−L

dx−Tr
{

(ΠM(x−, x+)−∂−M(x−, x+))U1(x+, x−)
}

+Tr
{

ΠΩ(x+)U2(x+)2L
}

where the ΠM is the momentum canonical toM and ΠΩ the momentum canonical

to Ω. The U ′s are found to be

U1(x+, x−) =

+L∫
−L

dy−GQ(x−, y−)
1

4

{
µM(x+, y−) + µΩ(x+)+

+
λ

2!
(M(x+, y−)2 + 2M(x+, y−)Ω(x+) + Ω(x+)2)

}
and

U2(x+) =
−1

2L

L∫
−L

dx−(2λΩ(x+)− µI)−1(λM(x−, x+)− µI)U1(x−, x+)

As before, the interesting part is that there is coupling between the zero mode
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sector and the non-zero mode sector due to the following commutator

{Ω(x+),M(x+, x−)}∗ = −1

4

L∫
−L

dy−(2λΩ(x+)−µI)−1GQ(x−, y−)(λM(x+, y−)−µI)

In this case there is also coupling between the zero modes of the field and the

momentum of the non-zero modes of the field :

{Ω(x+),ΠM(x+, x−)}∗ =
1

4

L∫
−L

dy−(2λΩ(x+)−µI)−2GQ(x−, y−)(λM(x+, y−)−µI)2λ

4. Conclusions

The constrained light-cone quantization indicates that there is coupling be-

tween the zero mode sector and the nonzero mode sector. This means that the

analysis of Dalley and Klebanov
1
needs to be redone in light of this result. It is un-

clear at this point if there is still the kind of excitations which Dalley and Klebanov

associated with Liouville mode. This is because the type of critical behaviour stud-

ied might involve excitations of the zero modes of the field which were previously

left out. A more careful study is necessary to discover what happens now in the

double scaling limit of this matrix model.

There is also the possibility that the tachyonic mode which they discover might

be due to instabilities in the φ3 theory rather than due to the bosonic string. In

a recent paper, Hiller and Swenson studied the Wick-Cutkosky model which is

similar to the φ3 model considered by Dalley and Klebanov, and found instabilities

in vacuum , as expected for a cubic theory.
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