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ABSTRACT

We examine the hadronization process in QCD, modeling it

as a series of independent parton-meson scatterings. In the limit

of rapid scatterings, obtained by neglecting mass terms, we find a

simple description of the hadronizing system. The consequences of this

description, and the effects of heavy quarks, are discussed.
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I. INTRODUCTION

The mechanism by which quarks hadronize into color-singlet bound states

is perhaps the least understood of all processes in Quantum Chromodynamics

(QCD). This is due to the confining nature of the theory; as we attempt to

follow the hadronization process perturbatively to smaller and smaller values of

the factorization scale Q above which perturbative QCD (pQCD) is deemed valid,

we find that the perturbation expansion becomes unreliable due to the growth of

the running coupling constant at values of Q that are still too large to permit

detailed study of the formation of hadrons.

In this paper, we study the same process from another viewpoint, in which

nonperturbative physics is absorbed into the wavefunctions of hadrons [1]. We

work from the assumption that scattering into bound states, as opposed to

scattering of free partons, becomes important at some momentum scaleQ0 (as must

be the case, if hadronization is to proceed at all). The ‘elementary’ subprocesses

of our model are qg → qH, qq̄ → Hg, and gg → Hg, where H represents some

meson. We will show how consideration of these processes leads to a picture of the

hadronization process which, in the massless limit, possesses remarkably few free

parameters.

The paper is organized as follows: Section 2 outlines the important processes,

and explains how they proceed in pQCD. Section 3 introduces the limit from

which our results are obtained, discusses the validity of that limit, and extracts

information about the behavior of the parton-meson ensemble. Section 4 presents

the resulting final state, and draws comparisons with experimental information.

Finally, Section 5 presents our assessment of the method and conclusions.
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Figure 1. Three ways of looking at the one-meson amplitude: (a) represents the
full, nonperturbative amplitude, whose calculation will require extensive use
of numerical methods; (b) shows the two LCPTh graphs contributing to the
amplitude to form the meson in its valence (qq̄) Fock state; and (c) shows the
Feynman graphs that contribute in the high-energy limit.

FLUCTUATION SUBPROCESSES

We need to consider as generally as possible the generic process pp ↔ Hp,

where H is any meson and p = q, q̄, g any parton. In perturbative QCD, such

processes can be written in the language of light-cone quantization (LCQ) as

convolutions of scattering amplitudes in light-cone perturbation theory (LCPTh),

with nonperturbative light-cone wavefunctions of the mesons involved [1]; see

Fig. 1. Though we are interested in the region in which perturbation theory

is inaccurate, it is nonetheless instructive to examine briefly the conceptual

framework provided by LCQ.

A theory quantized on the light cone shares many features with

‘old-fashioned’ time-ordered perturbation theory; in particular, the ‘energy’ P− ≡

P 0 − P z is not conserved in intermediate states, while all internal particles

propagate on their mass shell (defined by the requirement p2 ≡ p+p−− p2
⊥ = m2).
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One notable difference is that the LCQ vacuum is very simple: since P+ ≡ P 0+P z

is both positive and conserved, no vacuum fluctuations can occur [2].

In this framework, the suppression of amplitudes in which particles propagate

far from the mass shell is ensured by ‘energy denominators’ [
∑

i k
−
i − P−]−1 from

each intermediate state containing momenta ki. If we carry out a calculation in

pQCD down to scale Q, each internal particle (in the Feynman language) will be

on-shell to within an amount ∼ Q; in light-cone language, each intermediate state

will provide an energy denominator ∼ Q. Thus processes involving the transfer

of momenta larger than Q are suppressed their energy denominators, while soft

processes proceed with increasing facility as Q decreases.

We assume that, at some momentum scale Q0, the familiar parton

interactions of QCD may be switched off and replaced by the (multiplicity-

conserving) interactions of the form pp ↔ Hp. While extreme in appearance,

this assumption is not as odd as it may seem in the region of momentum transfer

applicable to the formation of hadrons.

First, note that interactions of the type p ↔ pp that involve sizable

momentum transfer will push the intermediate states far off-shell; thus, they will

be suppressed relative to near-collinear or four-point interactions. The former will

not spoil the applicability of our results because collinear splittings, which serve to

‘dress’ partons at large momentum transfer, will not greatly affect the intrinsically

soft process of combination into bound states; a near-collinear qg system will

interact in much the same way as a bare quark.

Both the pp→ pp interactions of pQCD and the pp ↔ Hp interactions with

which we are concerned require the re-absorption of an intermediate-state parton

into a final-state parton or meson. Since we expect the color-singlet states of QCD

to be much more closely bound than nonsinglets, we expect that this recombination
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will proceed more readily in the parton-meson interaction, so that it will dominate

the four-parton scattering at sufficiently low momentum transfer. Thus our ansatz

is a plausible one, at least in the region of interest [3].

Parton-meson fluctuation processes

In perturbative QCD, a scattering pp ↔ Hp includes a sum over all Fock

states of the wavefunction ψH , convolved with hard-scattering amplitudes over

all possible values of the transverse momenta k⊥,i and longitudinal momentum

fractions xi carried by the Fock-state constituents. Such a calculation rapidly

becomes overwhelmingly arduous, and introduces dependence on the separate

projections of the wavefunction into each Fock state. attempt any such

computation, we will content ourselves with commenting on the general behavior

of such amplitudes.

We begin by examining the scattering amplitude in the high-energy region,

where it is comparatively well understood. Here the dependence of the

hard-scattering amplitude on the internal transverse momentum may be ignored,

leading to the simpler form [1]

M =

∫
[dx] TH(x;Q2) φ(x;Q2) ,

where φ(x;Q2) ≡
∫ Q

ψ(x, k⊥)d2k⊥/16π2 is the hadron distribution amplitude and

TH is the pQCD amplitude to produce a state in which the hadron is replaced by

collinear quarks with momenta pi = xipH ; see Fig. 1(c). The Appendix contains

some amplitudes computed in this limit, and comments on their behavior.

The point we wish to make is that the perturbative amplitude TH is strongly

divergent in the forward-scattering limit; to demonstrate the finiteness of the full

amplitude, one must take into account intrinsic transverse momenta or Sudakov
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effects [4]. The physics of individual scatterings is highly sensitive to the

implementation of such a cutoff, which greatly hampers the reliable extraction of

information about hadronic wavefunctions.

MULTIPLE-FLUCTUATION LIMIT

We now model the parton-meson subamplitudes at low momentum transfer

in a way that incorporates the salient features discussed above. Rather than

attempt to compute these subamplitudes with some cutoff procedure, we will

instead attempt to work with quantities that remain finite even in the absence

of any cutoff. While the resulting treatment cannot be entirely accurate (the full

physical amplitudes are indeed finite), it yields a simple picture of the hadronizing

system.

As we examine the amplitude at smaller and smaller scattering angles, the

rate at which the system oscillates between pp and Hp states diverges. However,

since the divergence is only in the forward direction, the quantity

d

dt

〈
θ2
〉

=
〈
θ2,H

〉
=
〈
θ2V

〉
+O

(〈
θ2
〉)

, (1)

where V is the interaction part of the Hamiltonian H, remains finite: the limit of

increasingly frequent scatterings through diminishing angles is a random walk in

the angular variables dΩ, which can be parametrized by the ‘diffusion’ constant

D ≡ lim
θ→0

θ2 V .

By failing to impose any cutoff, we have given up knowledge of the composition

of the system, which can now oscillate freely between states; however, we have

retained information about its orientation in a very simple way.
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This loss of information can be described heuristically by envisioning a very

densely populated QCD vacuum. A qg system, for example, need only pull a soft

q̄q pair from this vacuum; the resulting (qq̄)(gq) system now must be treated as

an hq system, since the pairs in parentheses are highly collinear. Thus the flavor

quantum numbers of any state are subject to change without notice, while its

momentum is altered only gradually.

The above discussion neglects the divergent backward-scattering peaks that

are present in qg → Hq scattering. However, the effect of backward scattering

can be duplicated by a chain of forward scatterings: for example, qg → qH with

pg ' pH (near the backward-scattering pole) can proceed through the forward

scatterings qp1 q̄p2gp3 → H ′p1
gp2gp3 → H ′p1

gp2Hp3 → qp1 q̄p2Hp3 . Here the subscripts

indicate the momentum carried by each particle; comparing the initial and final

states, we see that this is indeed a backward scattering.

Since the backward-scattering amplitude diverges more slowly at small angles

than the forward amplitude, it is numerically smaller in the region in question and

gives no contribution to the diffusion constant D. Hence no new effects arise from

the consideration of backward scattering, so that we may safely neglect it.

The angular diffusion constant D is proportional to the meson wavefunction

ψ(x, k⊥); hence, by dimensional analysis, D ∝ E0 where E is the center-of-mass

energy of the pp system, with 2E2 = p1 · p2. The rate of diffusion in momentum

space is related to D by d
〈
p2
〉
/dt = E2D. Since each parton may scatter

independently with any other, we sum the diffusion constants to obtain

d

dt

〈(
pi(t)− pi(0)

)2〉
=

∑
partons j 6=i

(pi · pj)
2

Dij . (2)

This expression can be further simplified. Since we have allowed the

rate of forward scattering to diverge, color, flavor and spin will flow freely
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through the graph. Thus any initial information about the partons is lost: the

particle properties can only be predicted statistically over the entire ensemble,

not associated with a given line. As a result, the diffusion constants Dij are all

identical, and we can perform the sum over partons to obtain

d

dt

〈(
pi(t)− pi(0)

)2〉
=

1

2
D(pi · P ) =

(
1

2
DEcm

)
Ei (3)

where the energy is understood to be evaluated in the center-of-momentum frame

of the hadronizing system.

Equation (3) has a very simple interpretation: the momenta are spread out

through independent, identically-distributed random walks in the rapidity space

whose coordinates are (lnE,Ω); see Fig. 2. When does this process terminate?

THE FINAL STATE

The multiple-fluctuation process described above presupposes that the initial

pp state is in a color triplet or octet. Thus, though the number of nonsinglet

partons will fluctuate rapidly, it will never decrease to less than two unless some

other mechanism intervenes. The first candidate is the process qq̄ → HH ′

(or gg → HH ′).

This ‘two-meson’ process will not serve to terminate the oscillation process,

for two reasons. First, the time-reversed process HH ′ → qq̄ occurs with equal

facility, restarting the fluctuation process; thus the two-meson mechanism is not

sufficient to halt the oscillations and produce a final hadronic state.

In fact, the two-meson process will not be important in hadronization. The

initial qQ̄ (or gg) state has a substantial chromoelectric dipole moment in the latter

stages of the hadronization process, as the system is spread out to a length scale

on the order of Λ−1
QCD; however, the final HH ′ state can have only a small dipole
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Figure 2. Random walks in two-dimensional rapidity space (lnE, φ).

moment, internal to the color-singlet mesons. Thus we expect that the amplitude

will disappear more rapidly as the system expands than will the other processes

under consideration, since the transition requires the creation at a point of a qq̄

pair that cannot readily join with the existing partons to form mesons. For this

reason, we ignore its potential both to stop and to restart the fluctuation process.

The remaining mechanism by which we may reach a purely hadronic final

state is the process qq̄ → H (or gg → H), which will occur when two partons

become sufficiently collinear to combine into a single meson (with lifetime longer

than the timescale of hadronization, or equivalently width <∼ ΛQCD). Since flavor

and color cannot be associated with individual partons, this will occur as soon as
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any two quanta wander near each other. The time for this to occur is clearly

proportional to D−1; thus the dependence of the final state on the diffusion

parameter D drops out, and our model predicts a statistical distribution of mesons,

with momenta obtained by proper smearing of the parton QCD parton momenta.

What is the ‘proper’ smearing? We have seen that each particle wanders

through rapidity space independently (subject to conservation of total momentum)

with the same diffusion constant. Thus we parametrize the total smearing by the

quantity ∆, the rms total diffusion in rapidity space:

∆2 ≡
〈

ln2 E

E0
+

2p · p0

EE0

〉
,

where p is the final-state hadron momentum corresponding to initial parton

momentum p0. It should be emphasized that ∆ is not a parameter of our model,

but rather a random variable whose distribution depends only on the distribution

of parton momenta produced in pQCD.

Since the partons are not produced independently, we must attempt an

estimate based on the parameters of the parton distribution (i.e., jet parameters).

Since ∆ is a measure of how far diffusion must proceed before two partons are

sufficiently collinear to produce a single meson, we expect a result of the form

∆−2 ∝
∑
jets
j

ln

(
nj(nj − 1)

M2
j

∑
mesons

H

f2
H

)
,

where Mj is the jet invariant mass, nj is the number of particles within the jet, and

fH is the meson decay constant that indicates the amplitude of the wavefunction

at the origin. This result is somewhat dependent on the jet definitions; however,

most sensible choices of jets will serve to nearly minimize the quantity ∆.
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Final-state populations

One set of parameters of the model remains; namely, the expected fraction

〈nH/N〉 of the total final-state multiplicity that will be comprised by each meson

species H. The only prediction of our model is that these fractions should be

universal, which is not surprising; theoretical extraction of the population fractions

would require a thorough numerical calculation of the mixing rate in lattice QCD

or Discretized Light-Cone Quantization (DLCQ).

What prima facie implications of this model can we obtain? The most

obvious is that all flavor information from the initial parton distribution (except

for heavy quarks) is destroyed; the final-state distribution of light mesons is solely

determined by the set of parton momenta produced in pQCD. However, we cannot

immediately deduce that, for example, jets from u quarks and from ū quarks should

be indistinguishable.

One complicating effect is the fact that there is a very large (8/9) probability

that the qQ̄ pair in a qq̄QQ̄ system produced in e+e− annihilation will be in a

color singlet [5]. Thus the two jets may become divorced into separate color

singlet states before hadronization occurs, preserving the flavor information they

carry. In addition, individual leading mesons may be produced directly [6] in the

pQCD process.

In actuality, charge assignment probabilities up to 66% (i.e., primary-quark

tagging efficiencies up to 32%) in two-jet events can be obtained by forming a

weighted sum of final-state hadronic charges [7]. It remains to be seen whether

the mechanisms we have mentioned suffice to explain the observed success of such

a method.

A clearer implication is that the ratio of the number of a given type of

hadron to the total multiplicity should be independent of the multiplicity of light
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hadrons, and of the presence of any heavy quarks. This will result in a slight

negative correlation between the fraction of any stable hadron (e.g., nπ+/N) and

the observed multiplicity N , due to decays of unstable mesons after hadronization

(in good agreement with results from the LUND Monte Carlo) [8].

Heavy quarks

The assertion above that all information on the nature of the pQCD partons

is lost in hadronization applies only in the limit of vanishing quark mass. In the

opposite limit, a heavy quark q will combine with light quarks to form mesons, thus

exchanging momentum through the same process of fluctuations, but never losing

its identity. The diffusion constant D will be marginally decreased (due to the

absence of the u-channel pole for qq̄ → Hg) for the heavy system, but will remain

unchanged for the remaining quarks as long as the total multiplicity N À nq.

The presence of heavy quarks will not affect the hadronization of the

light-quark system in any other way, so that the conclusions obtained above

(including the estimate of ∆) are valid in the presence of heavy quarks, as well as

for light-quark systems.

CONCLUSIONS

We have made two assumptions about the behavior of hadronizing systems;

that the parton-meson interactions of our model will dominate the fundamental

interactions of pQCD at small momenta, and that the fluctuations between

states which these interactions induce are rapid compared with the timescale

of hadronization. We have used these limiting properties to draw a simple and

very general picture of the hadronization process. Qualitative conclusions of this

analysis are found to be in rough agreement with experiment, which is certainly

to be expected of any sensible model. What application does it have?
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First, it provides us with a new way of looking at the process itself, which

may partake more of the physical reality than will models that attempt to

calculate the scattering into hadronic states directly. This is accomplished by

emphasizing the universality of the light-quark hadronization process, resulting in

the parameter-free predictions of the previous section.

Second, it presents an intuitively appealing way to deal with the endpoint

divergences of semiexclusive amplitudes [6]. The pQCD amplitude for the process

e+e− → K−s̄u diverges when pu ‖ pK ; this divergence does not appear in the

rate for the inclusive process e+e− → qq̄QQ̄, so it is not addressed by the usual

renormalization procedures. Instead, the divergence is contained by resummation

of the fluctuations sg ↔ Ku, in the manner outlined in this paper.

The greatest drawback of this model is the existence of the s quark, which

cannot safely be classified as either ‘heavy’ or ‘light’ at the energy scales of interest.

The model’s predictions of universal light-quark symmetry in hadronization are

not in good agreement with experiment if the s is considered light, but we should

be very hesitant to treat s quarks created in pQCD as heavy particles throughout

the hadronization process.

In sum, we have presented an intuitively attractive model of the

hadronization process for light quarks, whose only parameters are the mean

population fractions for each meson flavor. In the process, we have shown how

certain apparent divergences are naturally regulated by the same process of rapid

oscillations from which they arise.

13



    

APPENDIX

PARTON–MESON SCATTERING PROCESSES

In this Appendix, we comment on the parton-meson scattering processes

discussed in this paper, using pQCD calculations at leading twist as our starting

point.

We turn first to the process qg → HQ. The perturbative hard-scattering

term is the amplitude for the process qg → (qQ̄)Q with the final-state quark

momenta pq = xpH , pQ̄ = (1−x)pH . There are three minimally connected graphs;

each contains an internal gluon with momentum (pq − xpH), leading to a factor

of
[
x(1 − cos θcm)

)
]−1 in the amplitude. (This divergence appears only when the

Q and g helicities are the same; it is cancelled by numerator factors when they

are opposite.) The factor of 1/x is cancelled by a factor of x in the distribution

amplitude, leaving only the θ−2 divergence in the forward direction.

The second diagram of Fig. 1(c) diverges in the ‘backward’ direction

pH → pg. This divergence is proportional to 1/ cos(θ/2) ∼ (π− θ)−1; thus, it does

not contribute to the diffusion constant, which picks out only the quadratically

divergent terms (see Fig. 1).

Graphs like qQ̄ → Hg diverge equally in both the forward and backward

direction, as θ−2 or (π−θ)−2; thus, the fluctuations between partonic and mesonic

states destroy information about the quark flavor associated with each momentum.

Both graphs contribute to the diffusion constant D.

Finally, consider the two-meson graph in Fig. 3. This diverges as θ−3 in

the forward limit as two internal gluon propagators approach the mass shell; what

justification can there be for ignoring it?

Dimensional counting, or explicit calculation, tells us that the full amplitude

for the two-meson process is proportional to θ−3(µ/E)2 where µ is a ‘soft’ scale
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Figure 3. One of the fourteen Feynman diagrams contributing
to the process qQ̄→ HH ′ in the high-energy limit.

intrinsic to the hadron, as opposed to θ−2µ/E for the one-meson processes we

consider. Mass and transverse momentum terms both serve to cut off the growth

of the amplitude beyond some point θ ∼ µ/E, which is precisely where the two

amplitudes become comparable. Thus the faster apparent divergence is spurious,

and the one-meson amplitude remains dominant. Since the two-meson amplitude

is more sharply peaked, its propensity to cause diffusion can also be ignored. The

only remaining effect is the threat that the time-reversed HH ′ → qq̄ scattering

will restart the hadronization process from a purely mesonic state. As explained

in the text, this process becomes unimportant as the system expands, so that in

the final state it can safely be ignored.
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