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Abstract 

The design and testing of an imaging band pass analyzer (BPA) consisting of two 
90” spherical sectors operating in a magnetic field free region is described. Image 
electrons injected nearly parallel to one another and perpendicular to the first 90” sector 
are focused into an energy plane where electrons of desired energy are band-pass filtered. 
A second 90” sector is used to recover the energy-filtered image. With a 1 mm aperture, 
energy resolution of 1% and spatial resolution of 0.01% of the main path radius are 
calculated and agree well with the test results over an image size of 12x12 mm2. The 
addition of this analyzer to our magnetic projection photoelectron microscope poses an 
additional technological problem in that the electrons are required to pass from a 
relatively high field area to a field free region without disruption of the image. Design 

-considerations for a structure that abruptly terminates a magnetic field yet is transparent 
to image electrons are described. 
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1. Introduction 

X-ray photoelectron spectroscopy(XPS) took on its modern form with emphasis on 

core level analysis in the mid-1950s[ 11. Since that time the technique has progressed by both 

incremental and radical improvements in vacuum hardware, spectrometer construction and x-ray 

source design leading to the high level of performance found in today’s commercial systems. 

Innovations have been pursued precisely because the strengths of the technique - its surface 

sensitivity, access to chemical state information, relative ease of quantification, and non- 

destructive character - are firmly established and offer recognized problem solving capabilities to 

surface scientists in both research and production environments. 

A frequently cited drawback of XPS and a specific concern that continues to motivate 

-developmental efforts is that the relatively poor lateral resolution of XPS compared to other 

., ., -_ surface techniques such as electron stimulated Auger analysis(AES) or secondary ion mass \ . ,._ 1 
spectrometry(SIMS). The root cause of this discrepancy is that it is far easier to produce and 

focus intense beams of charged particles than to produce and focus intense beams of x-rays. 

Conventional XPS systems probe areas on the order of square millimeters where, by comparison, 

sub-micron Auger analysis can be considered commonplace. 

Strategies for improving lateral resolution in XFS can be separated into those 

techniques in which x-rays are focused to a fine point and those that make use of the imaging 

properties of transfer lens optics and electron analyzer optics. Focusing techniques (x-ray 

microprobes) have been pursued commercially by Surface Science Instruments[2] as well as in 

research environments at a number of synchrotron facilities[3][4][5]. Imaging systems that bring 

practical measurements below the 100 pm range have recently been described in the 

literature[6][7][8]. These imaging strategies can be further distinguished by the manner in which 

they transfer and magnify the image of the emitting source and by the method of energy filtering. 

Given the advantage of parallel analysis over serial analysis, the combination of transfer optics and 

spectrometer which are both compatible with imaging represents a desirable goal. 
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This paper describes the design and testing of an electron spectrometer that is 

compatible with imaging. This band-pass spectrometer has been designed to complement a 

magnetic projection photoelectron microscope which acts as the front-end transfer and 

magnifying optics for an advanced photoelectron imaging system[9]. The magnifying properties of 

magnetic projection microscopy were first developed in the Turner group at Oxford[ lo] and are 

unique in that the sample sits in a large magnetic field produced by a solenoid(Fig. 1). Collection 

efficiency approaches 100% with photoelectrons following helical paths tangential to guiding 

magnetic field lines. The image is magnified as the field lines diverges with the magnification 

dependent on the ratio of the fields at the sample and at the image plane. Magnetic projection in a 

diverging field also has useful parallelizing effects by which the helical paths followed by the 

electrons unwind as the field diverges[ 111. Assuming a 200 pm field of view and magnification of 

-70x, magnetic projection offers the spectrometer a relatively large magnified image of source 

e&sion(-10 mm in diameter) in which the electrons are moving nearly parallel to one another. 

To date our microscope has been operated with a simple retarding analyzer[l2] and the 

development of an imaging band pass analyzer is being pursued in order to improve signal to 

noise levels in x-ray excited, energy filtered imaging. 

There are two key challenges taken up in this work. First, in entering the double- 

hemispherical analyzer, the magnified image must pass from an area containing a magnetic 

field(-15 Gauss) into a field free region with minimal disruption to the image. Section 2 describes 

the design and optical properties of a magnetic terminating assembly that is largely transparent to 

electrons. Second, the relatively large, low angular dispersion image found in the field free region 

must be filtered with good energy resolution and with minimal disruption to the image. Section 3 

describes an imaging band pass analyzer in which two 900 spherical sectors are combined. As 

imaging electrons are injected into the analyzer moving nearly parallel to one another, they form 

energy dispersed distribution after passing through the first 900 sector. Apertures present between 

the sectors band-pass filter the electrons with the second 900 sector acting to reform the image. 

Energy resolution is shown to be limited by the angular dispersion of the electrons originating in 
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the magnetic projection process and passage through the magnetic terminating assembly and by 

the size of the images. Section 4 is devoted to a discussion of fringe field effects associated with 

passage through the analyzer while Section 5 reports recent test results. 

2. Calculation of the mesh size for magnetic shielding. 

Since the analyzer should be operated in a magnetic field free region, the field from the 

superconducting magnet needs to be terminated. A magnetic field termination mesh can be used 

for this purpose. In entering the double-hemispherical analyzer through this mesh, the magnified 

image must pass from a magnetic field region to a field free region with minimal disruption. As 

will be shown in section 3, most of the aberrations in energy and spatial resolution come from the 
.-- 

angular dispersion of the imaging electrons. The angular dispersion comes from three sources. 

,.,,: -, _Fir_st, the angular dispersion may come from the divergence of the magnetic field itself Assuming 
,: : 

that the superconducting magnet is a dipole, the magnetic field in front of the analyzer which is 

1.5 m away from the magnet has a maximum angle of 0.005 rad, which practically can be 

A’ neglected. But it can be reduced by using a plate of magnetic material placed in front of the 

analyzer perpendicular to the magnetic field, which makes the field lines parallel to each other and 

perpendicular to the plate. Second, the angular dispersion can also come from the fact that 

electrons are emitted from the sample with a large solid angle. Even though electrons become 

parallel to the magnetic field as they reach the low field region, the angle is not yet zero when they 

reach the magnetic mesh. The angle is given by the formula[ lo]: 

sin(pi)/ sin(Pf ) = (Bi / Bf)‘j2 (1) 

where pi is the initial angle at the sample surface, pr the final angle at the detector and Bi, B, initial 

and final magnetic field. So for pi = 450, pr = 0.70 = 0.01 rad. Third, the angular dispersion can 

come from the deflection of the electrons by the magnetic field as it is terminated by the magnetic 
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mesh. The magnetic mesh introduces transverse magnetic fields which deflect the electrons 

thereby introducing an additional angular dispersion. It is desirable to keep the angular dispersion 

due to this latter effect comparable to or less than that introduced by the first two effects 

described above which is approximately 0.01 rad. 

In order to keep the angular dispersion of the electrons within the 0.01 rad lim it, it is 

important to consider the effect of the mesh which term inates the magnetic field. Since the 

deflection(or transverse magnetic field) increases as the mesh size increases, reducing the mesh 

size would remove this problem . But this in turn would also reduce the transparency of the mesh. 

So the optimum size of the magnetic mesh needs to be decided by considering both the angular 

dispersion of the transm itted electrons and transparency of the mesh. To calculate the deflection 

of the electrons going through the mesh by the transverse magnetic fields, we consider a plane 
._- 

with in$nite permeability(this is a good approximation since some materials have a permeability of 

i . more than 10,000) with a hole of arbitrary shape(Fig. 2). The magnetic field on one side of the .-,._ - ,F 
plane is B, and that on the other side zero. Away from  the hole, the magnetic field is 

perpendicular to the plane. But around the hole, the magnetic field has transverse components, 

J which m ight increase the transverse momenta of the electrons. This results in increased angular 

dispersion, Let B, be the transverse component of the magnetic field around the hole. An electron 

with momentum p would have Lorentz force 

F = eB,p/m (2) 

where e and m  are the electron charge and mass. Therefore the total momentum change while this 

electron goes through the hole is: 

(3) 
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where vo=p/m is the initial velocity of the electron, e and c are the electron charge and the speed 

of light, respectively. Ap is assumed to be relatively small compared to p. z is the direction of the 

magnetic field. B, needs to be integrated along the electron path. The magnetic potential can be 

expanded in cylindrical co-ordinates[ 131: 

(pot = QO + 01 

and 

@’ = 11 l-1 W,, k, )expW,x + k,y))exp(-klzl)dk,dk, 

(4) 

(5) 

where k2 = k2, + k2, and A(k,,kJ is the expansion coefficient. @tot is the total magnetic potential 
I~ . . * : ,, . and cDO is the potential of the uniform magnetic field and CD1 is the perturbed potential due to the 

hole. This perturbed potential satisfies boundary conditions[ 131: 

* 

[a@ / CJZ]z_, = -;BO when (x,y) is in the hole 

[a@ / az],=, = 0 
(7) 

when (x,y) is not in the hole 

Then the change of the momentum due to the terminated magnetic field becomes: 

(6) 
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= -?J;dz/ldkxj-:W d k,[i kX A(k,, k,)exp(i(k,x + ky y))exp(-kz)] 

= Fl;dzrWdk,/l dkY[ikyA(kx,ky)exp(i(kxx+ kyy))exp(-kz)] 

Combining above equations gives 

_ aA&& - aAp,Dy= ~~~~dkX~~~dk,[kA(kX,k,)exp(i(kXx+k,y))] 

= ~[-a@ /a~],=, = eB,/c = [VxAp], 
Ilj( . -. - - . . ,F 

(9 

(10) 

(11) 

and 

aAp,Ey + dAp,/& 

= fI:dkxj, y[( dk kxk,/k-kXk,/k)A(kX,k,)exp(i(k,x+k,y))]=O (12) 

where the z coordinate has been integrated. The above two equations can be easily understood as 

V x Ap = (eB, / c); 
VAP = 0 (13) 

These final results look like Maxwell’s equations for a magnetic field with current density eB,/4x 

along the z direction through the hole. So we may calculate Ap by integrating the current density 

eB,/4x in the hole. Simple cases are for circular and square holes. The maximum deflections (the 
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worst cases) occur at the circumference for the circular case and at the midpoint of an edge for 

the square case. They are: 

lAp/pl= (eB,L/ mv,c)/3.628 

IAp / pi = (eB,D / mv,c)/ 4 

for a square hole case 

for a circular hole case 

where L and D are the size of the square and the diameter of the hole, respectively. Note that 

there is not much difference between the square and circular cases. This is due to the fact that the 

deflection depends on how many lines of force an electron has to cross to get through the hole. 

This is primarily decided by the size of the hole and not by the shape. The above expressions are 
.-- 

also valid for more than one hole provided that the magnetic material has infinite permeability and 

is not saturated. ..li , -.- - - * : ,a 
As stated earlier in this section, the deflection resulting from the termination of the 

magnetic field should be kept low to maintain high spatial and spectral resolution. Since the 

P angular dispersion due to the microscope’s magnifying process is about 0.01 radian, we need to 

keep IAp/pI in equation (14) below 0.0 1. Practical values-l 5 Gauss for B, and 50 eV electrons- 

give D of 0.64 mm. In the practical design of the mesh, the saturation field and the permeability 

of the magnetic material, the resolution of the imaging detector, the desired energy resolution of 

the analyzer and the transparency of the mesh must be considered together. 

3. Theory of double 90 degree spherical analyzers 

The idea behind this imaging BPA is that two 900 spherical sectors are combined so 

that the first sector focuses a parallel beam of electrons which carries the image information onto 

the exit plane[ 141. Then the electrons with the desired energy are energy filtered by an aperture. 

The second sector then reforms the image at the detector(Fig. 3). The imaging along the non- 
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dispersive axis works the same way as that of a standard spherical analyzer for which there is 

focusing up to second order[ 151. It can be easily shown that the next error term is Lp2, where L 

is the size of the image and p angular dispersion of the electrons. For a small angular dispersion, 

this term is negligible. The energy filtering is performed along the dispersive axis. 

For the focusing along the dispersive axis, consider a 1800 sector. It is well known that 

a 180” sector acts as a lens which focuses a point source at it’s entrance to a ppint at the exit. 

Therefore, a 900 sector will convert a point source into a parallel beam, and conversely, a parallel 

beam entering the spherical sector is focused to a point at the exit plane[l4]. The lens equations 

for the 900 analyzer to second order are: 

YJR, = p, + AE/E, - (Y, /R,)’ + O(3) (15) 
.-- 

-p, = -Y,/‘R, + AE;E, + O(3) (16) 

Here R, the radius of the main path, Y, and Y2 are the electron coordinates in the entrance and 

exit plane of the 900 sector with the origins at the main path, respectively. pr and p2 are the angles 

c of the electrons in both planes with respect to the main path. AE = E’ - E, is the energy deviation 

of the beam with energy E’ with respect to the pass energy E,(Fig. 4). Note that in equation (15) 

Y,/R, is proportional to AE/E, except for the terms PI and (Y,/RJ2. Once these two terms are 

kept small, Y,&, is linearly dependent on AEIE,. This means that the plane between the two 

sectors becomes the energy plane and the energy resolution is set by the angular dispersion of the 

incoming electrons, PI, and the image size, Y, max. Energy filtering can be performed by moving an 

- . aperture along this plane. For our case pr is always smaller than 0.01 rad. Since only the 

dispersion along the dispersive axis affects the resolution, the actual resolution is improved by a 

factor of 4/71= 1.27 for spherically symmetric angular dispersion. 

The determination of the size of the energy selecting aperture expressed by Y,&, 

depends on the energy resolution described above. A big aperture would allow more electrons 

with different energies to pass through it, hence the energy resolution would decrease. A small 
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aperture would improve the energy resolution by reducing the band width. But reducing the size 

of the aperture below a certain value would not improve the energy resolution above a certain 

lim it which is set by the angular dispersion of the incoming electrons and the size of images as 

discussed above. So the size of the aperture should be a value such that it gives a band width 

approximately same as the energy resolution. For our case, 1% of the radius of the main path 

gives 1.2 m m  for the proper aperture size. 

For the second sector, equations (15) and (16) may be rewritten as 

Y’, /R, = p’, + AE! E, - (Y’, /R,)’ + O(3) 

PI2 = -Y’, /R, + AEl E, + O(3) 

(15’) 
(16’) 

where Y’r, pi’, Y12, p2’ are new co-ordinates for the second sector(Fig. 4). Since p’l = -p2 and Y’, 

= -Y,, combining equations (15), (16) (15’) and (16’) gives =, ., . --. - > : ” 

Y’JR, = -p, + AE/E, - (Y2 /R,)2 

= Y, /R, - (Y2/R,,)2 
z 

= YJR, - P, 2 - @ E /E,)’ - 2&AE/E, + O(3) 

(17) 

This equation shows that the position of an electron at the exit plane of the second sector, Y12/Ro, 

is equal to that at the entrance plane of the first sector, Y,&,, except for the factor (Y2&J2. This 

- can be neglected since from  equation (17) all the terms are of second order or smaller. Therefore, 

equation (17) shows the recovery of the image at the exit plane of the second sector. The key - 

point of this analyzer is that the first order terms in the angular and energy deviations are canceled 

out by combining two spheres in opposite direction, so that the final position of an electron does 

not depend on the initial angle, PI, and the energy deviation, AE/E, in first order. This fact can be 

easily seen if the 900 sectors were combined in the same direction, that is, p’r = p2 and Y’, = Y2 

rather than p’r = -p2 and Y’, = -Y,. Then we get: 
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Y’JR, = -YJR, + 2AE/E, - p,‘- (AE/E,)2 - 2P,AEIE, + O(3) (18) 

Notice that there is an additional first order term from the energy dispersion. So the image can not 

be reformed by a 1800 sector unless the electrons are mono-energetic. 

For practical operation of the analyzer, we do not move the physical apertures 

between two spheres in order to change the desired electron energy but change the pass energy 

while fixing the physical aperture on the main path. Fixing the physical aperture on the main path 

forces Y, to be the size of the aperture. This improves the spatial resolution since Y, serves as the 

error term on the second line of equation (17). By changing the potentials on the spheres(or the 

pass energy) while keeping the aperture on the main path, the desired electron energy can be 

selected while maximizing the spatial resolution. With the size of the physical aperture of O.OlR,,, 

_/,, -. the spatial resolution is about 0.01% of the main path radius. 
J. : 

4. Fringe field effects. 

c 

For the non-imaging analyzers fringe field effects are not serious since the entrance 

apertures are small enough not to disturb the energy resolution, which is not the case for this 

imaging BPA. In the ideal case(where there is no fringe field), mono-energetic, parallel electrons 

are focused to a point by the first 900 sector. But in the real situation, as the electrons enter the 

analyzer, those entering closer to either the inner or outer sphere experience larger fringe fields 

than the electrons closer to the main path(a and c in Fig. 5). We performed a ray trace and the 

results show that these fringe fields cause the electrons to arrive at the energy plane(exit plane of 

the first sector) at reduced radii. Therefore, these electrons act as if they have lower kinetic 

energies than the electrons traveling along the main path. This fringe field effect can be interpreted 

as if electrons are entering an analyzer with no fringe field with certain initial angles to the 
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direction perpendicular to the entrance plane so that they arrive at the energy plane at reduced 

radii. The more that the electrons are affected by the fringe field, the larger are these initial angles. 

Furthermore, these initial angles are all negative in the coordinate system in Fig. 4. This fringe 

field effect does not affect the spatial resolution provided the energy aperture is kept on the main 

path as shown on the second line of equation (17) while it does affect the energy resolution as 

equation (15) includes the variable p, . 

Since this effect simply results in an energy dispersion in the image at the exit plane of 

the second sector, it is possible to make a map of this energy dispersion and use this map to 

correct the fringe field effect. This calibration map is a map of percentage errors in measured 

electron energies from the real values as a function of positions in the image and can be obtained 

by taking a series of images of a uniform mono-energetic input at different pass energies. This 
._- 

technique also automatically removes the size effect of images in the energy resolution which was 

discussed in section 3 so that the energy resolution is limited only by the angular dispersion of the ../., . -. - - ,: : 
electrons. 

d 5. Test results using an electron gun 

To test the analyzer, we used the test setup as shown in Fig. 6. The double 900 sectors 

with inner and outer radii of 88.27 mm and 145.4 mm, respectively(which gives mean radius of 

116.8 mm), were constructed by Surface/Interface, Mountain View, CA. An electron gun with an 

- Iridium coated filament from Apex Electronics was used as the electron source, which has a 0.7 

eV energy width. The two dimensional detector is a resistive anode combined with double stage 

micro-channel plates. The distance from the electron gun to the entrance of the analyzer was 

about 0.90 m. To shield the earth’s magnetic field, double steel tubes were used for the 0.90 m 

long electron path, and the analyzer has its own shielding. The operating electron energy was 500 

eV and the potential at the main path was held at ground so that the pass energy was also 500 eV. 

With no magnetic field inside the tubes, the maximum electron angle should be less than 0.015 
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radian. Imperfect field shielding might have introduced additional small deviations. 

First, the energy resolution was tested. An 1 mm slit was used for the energy aperture. 

1 mm is about 0.86% of the main pass radius which is 116.8 mm. While holding the aperture on 

the main path and changing the pass energy, we recorded the total number of electrons at the 

detector. From Fig. 7 it is clear that the peak is not a symmetric Gaussian. Most of the dashed 

area comes from the fringe field effect. As discussed in section 4, the fringe field effect results in 

the electron distribution on the lower side of the main peak. Removing the emission in the dashed 

area gives a FWHM of 4.5 eV. For an image size of 12x12 mmz(unaffected area by the fringe field 

effect) the angular dispersion is 0.01 rad and this gives an energy resolution of 1% of the pass 

energy. So FWHM of 4.5 eV is consistent with the calculated value of 5 eV. 

Second, the spatial resolution was tested using a square grid pattern at the entrance of 

the analyzer. The grid pattern is a 10 line/inch nickel mesh. Fig. 8.a shows a 25x25 mm2 image. 

.~ This image was taken with a 35 mm diameter circular aperture rather than with the 1 mm slit .-,._ _ ,:~ : 
aperture. This does not show the fringe field effect because the large aperture does not perform 

any energy selection. Fig. 8.b shows an image of the same grid pattern with the 1 mm slit 

aperture. The 1 mm aperture gives a smaller image since the aperture accepts only 500 eV 

electrons and cuts out the fringe field affected electrons which act as if they are lower energy 

electrons as stated in section 4. The electrons eliminated from this area make up the tail of the 

curve in Fig. 7. When a spectrum is taken from an area which is not fringe field affected, we get 

the same spectrum as the one in Fig. 7 without the tail. So 1% energy resolution and 0.01% 

- spatial resolution is achieved simultaneously only on the image size of about 12x12 mm2 as can be 

seen in Fig. 8.b. If bigger images are necessary, one would need to use the methods described in 

section 4. No difference in image sharpness between these two images is noticed. Since, according 

to .equation (17) the spatial resolution with a smaller aperture should be better than that with a 

larger one, one can guess that the spatial resolution is limited by that of the detector. The 

counting ratio between blocked and unblocked areas by the mesh is more than 1 to 10 and these 

counts in the blocked area are presumed due to the spatial resolution of the detector. 
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What little aberration is present in this image comes from non-linearity of the detector 

and the residual magnetic field in the analyzer chamber. This residual magnetic field poses another 

problem for the future. Since the analyzer eventually sits in a relatively high field( -15 Gauss ) and 

it needs to be operated at a lower pass energy for a better energy resolution, the residual field 

effect will be bigger. So a good method of complete degaussing of the system would be essential 

for both energy and spatial resolution. 
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Fig. 1. The schematic of the MicroESCATM magnetic projection photoelectron microscope. 

Fig. 2. A sheet of magnetic material separates two regions with asymptotic magnetic fields of zero 

on one side and B, on the other side. 

Fig. 3. The schematic of the double 90 degree spherical analyzer. Imaging electrons are entering 

from 15 Gauss region to a field free region through a magnetic mesh. 

Fig. 4. Coordinates used in the calculation. Yll, PI’, Y’*, p2’ are new co-ordinates for the second 

sector. Note that Y, = -Y’, and j3* = -pl1. 

Fig. 5. Fringe field effects on mono-energetic imaging electrons. Electrons closer to the spheres(a 

and c) have shorter radii compared to the electrons closer to the main path(b). 

Fig. 6. The testing setup of the analyzer. 

Fig. 7. Counts as a tinction of pass energy. The tail(dashed area) on the lower energy side of the 

graph comes from the fringe field effect. 

Fig. S.-(a) A 25x25 mm* image of a grid pattern at the entrance of the analyzer with a 35 mm . -,. - _ 

energy aperture. The pattern was a 10 line/inch nickel mesh. This image contains 160x160 pixels. 

(b) same as (a) with 1 mm slit aperture. Dispersive axis is about 30 degree off to the right of the 

vertical direction. Some part of the image does not have counts. Electrons in this area are fringe 

field affected and, consequently, are eliminated by the energy aperture. 
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