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Abstract 

Future linear colliders will likely use sophisticated beam- 
based alignment and/or steering algorithms to control the 
growth of the beam emittance in the linac. In this paper, a 
mathematical framework is presented which simplifies the 
evaluation of the effectiveness of these algorithms. As an 
application, a quad alignment algorithm that uses beam data 
taken with the nominal linac optics, and with a scaled optics, 
is evaluated in terms of the dispersive emittance growth 
remaining after alignment. 

I. INTRODU~ION 

A major concern in the design of future linear colliders is 
the emittance growth in the linac. For example,‘dispersive and 
~wakefield generated growth occurs when the beam travels off- 
axis as a result of misalignments of the quads, beam position 
monitors (BPMs) and accelerator structures. Steering and 
alignment algorithms have been devised to reduce these offsets 
and their effects [l-3]. The basic method of evaluating these 
algorithms is to simulate the linac beam transport including 
misalignments, and then to apply the correction scheme. This 
is repeated for many misalignment configurations to accurately 
gauge the effectiveness of the algorithm. 

Here we present an analytical approach that makes it 
much easier to explore the ‘parameter space’ of an algorithm 
by eliminating the need to do simulations. This approach is 
generally applicable in cases where the emittance growth 
depends quadraticly on the misalignments. Some examples in 
which it can be easily applied are dispersive growth where 
there is little filamentation, and wakefield growth where the 
orbit perturbations are smaller than the orbit offsets in the 
accelerator structures. 

A good way to describe the approach is to apply it to the 
problem of the dispersive emittance growth that results from 
misaligned quads and BPMs. We first define the problem, 
then formulate a quad alignment algorithm, and finally evalu- 
ate the growth from first order dispersion. Briefly, we exploit 
the fact that the computed misalignments are linearly related to 
the BPM measurements used in the fit. Since the emittance 
growth also depends linearly on the misalignments, the growth 
can be expressed in terms of the measurement errors. 

II. ALIGNMENT PROBLEM 

As a specific example, we treat the case of misalignments 
in a linac consisting of a FODO lattice with a BPM located in 
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the bore of each quad. We assume that a single bunch of 
constant mean energy and constant energy spread traverses the 
linac. We also assume a constant spacing, L, between quads, 
and a constant phase advance per FODO cell, j.t. These 
parameters define the periodic beta function: its maximum 
value is 

lL=$j [l+sin(p/2)]. 

We note that the emittance results derived with these 
assumptions can be simply related to the case of constant 
gradient acceleration with a * scaling of beta. 

In computing the beam motion, we consider only the 
steering effect of the quad misalignments. The relation 
between the resulting beam trajectory and the BPM 
measurements is illustrated in Figure 1. Here, a quad is offset 
relative to an alignment axis by xq, and the BPM located in the 
quad is offset relative to the quad center by xr,. Not 
represented in this figure is the BPM measurement error, 
which we denote by x,. Including this error, the BPM 
measurement, x,, is related to the orbit offset, x, by 

%l =x-xxq-xt,+x,. (2) 
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Figure 1. Illustration of a quad offset, xq, BPM offset, xb, and 
BPM measurement x, for x, = 0. 

From this relation, one can see that correcting the orbit by 
zeroing the BPMs (using steering magnets for example) will 
result in an rms orbit offset at each quad that is the sum in 
quadrature of the rms BPM and quad offsets (assumed to be 
uncorrelated) and the BPM resolution. With this one-to-one 
steering approach, the resulting dispersion is proportional to 
the rms orbit offset. In an actual linac, the largest of the three 
contributions is likely to be from the quad offsets, followed by 
the BPM offsets. Hence, in a beam-based approach to 
reducing dispersion, it is reasonable to consider determining 
the quad offsets from the BPM data. The measurements from 
N contiguous BPMs can in fact be used to fit for the offsets of 
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the N  q u a d s  start ing at the q u a d  ups t ream of the first B P M . 
These  offsets cou ld  then  b e  u s e d  to correct  the orbi t  by  e i ther  
mov ing  the q u a d s  (assumed  h e r e  for simplicity), o r  by  
equ iva lent  ad jus tments  to s teer ing m a g n e ts. 

O n e  can  a lso  use  B P M  da ta  taken with o ther  latt ice 
conf igurat ions to fur ther reduce  the q u a d  offsets, o r  to a l low 
for a  fit for the B P M  offsets as  wel l .  However ,  just 
min imiz ing  the res idua l  orbi t  offsets is not  necessar i ly  opt imal  
for d ispers ion  reduct ion  s ince the corre lat ions that ar ise 
be tween  the offsets as  a  resul t  of the fit affect h o w  the 
d ispers ion  source  terms add .  In fact, the results a re  of ten 
counter intui t ive,  mak ing  it al l  the m o r e  usefu l  to h a v e  a n  
analyt ic m e a n s  of examin ing  the p rob lem.  

III. A L IG N M E N T  A L G O R ITHM 

To  fur ther ou r  example ,  w e  next  formulate  a  q u a d  
a l ignment  a lgor i thm b a s e d  o n  two sets of B P M  measurements ,  
o n e  taken with the nomina l  lattice, a n d  o n e  taken with a  
un i fo rm scal ing of the q u a d  strengths. This  scal ing,  w h o s e  
size w e  deno te  by  O J Q o , changes  the p h a s e  advance  pe r  cel l  
wh i le  ma in ta in ing  per iod ic  focusing.  ( W e  no te  that o ther  types 
of latt ice sca l ing a re  possib le,  a n d  m a y  b e  m o r e  eff icient 
a l though  less s imple  to implement . )  

As -a  first-step, w e  n e e d  to de f ine  a n  a l ignment  axis to 
wh ich  the-trajectory offsets a re  re ferenced.  In pract ice, o n e  is 
l ikely to a l ign  a  g r o u p  of N  q u a d s  at a  tim e , o n e  g r o u p  
immedia te ly  after the next,  so  a  g o o d  cho ice  for the a l ignment  
axis is the l ine fo rmed  be tween  the b e a m  posi t ion at the first 
. quad  in  the g roup ,  a n d  the center  of the first q u a d  in  the next  
g r o u p  (i.e., q u a d  N+l) .  This  leaves the init ial ang le  of the 
b e a m  unconst ra ined,  so  it must  a lso  b e  inc luded  as  a  var iab le  
in  the fit. W e  assume,  however ,  that it d o e s  not  c h a n g e  
be tween  the two sets of measurements .  

As  wi th any  fitting p rocedure ,  w e  n e e d  to de f ine  a  x2  in  
terms of the var iab les a n d  measu remen ts  involved,  account ing  
for the er rors  a n d  their  correlat ions.  T h e  er rors  in  this p rob lem 
a re  the B P M  offsets relat ive to the q u a d s  a n d  the B P M  
measu remen t  error ,  e a c h  of wh ich  w e  a s s u m e  to h a v e  a  m e a n  
of ze ro  a n d  a n  rms of 

crz =  (x;“) a n d  crt =  (xi) (3)  

for e a c h  B P M . T h e  reso lu t ion var iable,  x,, dif fers f rom m e a -  
su rement - to -measurement  wh i le  the offset var iable,  xbr  i S  
c o m m o n  to al l  measurements .  If w e  let IX ,,, a n d  ‘X , b e  
vectors represent ing  the two sets of N+ l  B P M s  measu remen ts  
(i.e., the N  B P M s  at the q u a d s  be ing  a l i gned  p lus  the next  
downs t ream B P M , wi th superscr ipt  1  (2)  deno t ing  the 
measu remen ts  wi th the nomina l  (sca led)  lattice), then  w e  can  
wri te the full measu remen t  vector  a n d  the co r respond ing  er ror  
m a trix as  

w h e r e  the e lements  of A  a re  ob ta ined  f rom equat ions  2  a n d  3: 

I\i,j =  [Of  +  G E ]  6 i j  +  0 :  (s i , j -N- l  +  S i j+N+ l ) *  (5)  

T h e  f inal ingred ient  for the fit is the funct ional  d e p e n d e n c e  
of the measu remen ts  o n  the fit var iables.  F rom equa t ion  2, w e  
n e e d  on ly  a n  express ion  for x s ince xb  a n d  x, a re  t reated as  
r a n d o m  var iables.  A t q u a d  i, 

i - l  

xi =  R12i , l  8, -  c  R ~ z ~ , ~  K j  xsj 
j= t  

(6)  

a n d  (for future reference) ,  

i -1  

X I =  R22i . l  8, -  C  R22i . j  K j  Xs, j  -  ~  Xq, i  (7)  
j= t  

w h e r e  R1zi j  (Rzi j)  is the [1,2] ([2,2]) t ransport  e lement  
be tween  the center  of q u a d  j a n d  i, K j  is the in tegrated q u a d  
strength,  8, is the b e a m  ang le  just ups t ream of the fist quad ,  
a n d  X q ,i is the offset of q u a d  i (no te  ~s ,~+,  =  0).  

To  simpli fy the a lgebra ,  w e  form a  vector, R,, that is the 
d i f ference of the B P M  measu remen ts  a n d  the fit funct ion: 

(8)  

T h e  express ion  for x2  is then  
x2  =  a:, 1\-’ x, 

wh ich  w h e n  e x p a n d e d  y ie lds 

(9)  

X 2  O c  2  {  (‘Xd, i )’ +  (‘Xd, i r -$$(  “d,i)( 2xd, i ) }  ( lo)  
id  

w h e r e  
R=CTb/O, .  (11)  

In the R  +  0  limit, w h e r e  the B P M s  a re  perfect ly a l igned,  x2  
reduces  to the s u m  of squares  of the two measurements ,  wh i le  
in  the R  +  0 0  limit, it reduces  to the s u m  of the measu remen t  
d i f ferences squared .  

W ith this x2, w e  next  so lve the set of equa t ions  gene ra ted  
w h e n  sett ing its der ivat ive wi th respect  to the fit var iab les to 
zero.  Sk ipp ing  this a lgebra ,  w e  no te  on ly  that the resul t ing fit 
va lues  a re  l inear ly  re la ted to the measurements .  W e  express  
this by  

(12)  

w h e r e  F  is a  m a trix wh ich  d e p e n d s  o n  R, a n d  o n  the latt ice 
pa ramete rs  for the two measurements .  

IV . D I S P E R S I O N  

W ith the a l ignment  equat ions,  w e  n o w  compu te  the b e a m  
emi t tance g rowth  d u e  to the first o rde r  d ispers ion  rema in ing  
after the a l ignment  process.  To  beg in ,  w e  eva lua te  the 
d ispers ion  at the center  of q u a d  N  ( q u a d  N+ l  is not  u s e d  s ince 
the b e a m  ang le  at this locat ion is not  const ra ined in  the fit: this 
ang le  is corrected,  however ,  du r ing  the a l ignment  of the next  
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Figure 2. Scaled dispersion amplitude, A2, as a function of R and Q/Q, for N = 40 and p = 90”. 
The R -+ 00 limit is equivalent to fitting for the BPM offsets. 

group of N quads). Using equations 6 and 7, the normalized 
dispersion vector can be written 

r 1 8x, i 
. .-, -_ (13) 

where D is -a matrix that depends on the parameters of the 
nominal lattice, and 6 is the fractional energy difference. To 
evaluate the emittance growth due to this dispersion, we 
average over the beam energy spread and over the quad 
alignment results. If E, is the emittance of the beam entering 
the alignment region and c~f is the rms beam energy spread, 
the rms of the emittance at quad N, E,, is 

F = (1 + $Tr ,(qqt)])“’ (14) 
0 0 

where we ignore the effect of betatron chromaticity. Now we 
substitute the alignment results to compute the average: 

Tr [(nnt)] = Tr [(DR, jz: Dt)] (1% 

=Tr[(DFji,d~F’D’)]=Tr[DFhF’D’]. 

For convenience, we define a scaled dispersion amplitude as 

A2E. %Tr[DFAF’D’] 
r 

(16) 

which depends on p, R, N and Q/Qu. The emittance is then 

(E2N)112= 
EO ( 

1 + +c A2 l/2 
maxEo 1 P - 

(17) 

From a practical point of view, one wants N to be large in 
order to reduce the dispersion from the uncorrected quad 
offsets at the ends of the alignment sections, but not too large 
that systematic effects, such as those due to common errors in 
the quad strengths, are large. Based on experience with beam- 
based alignment in the SLC, a reasonable value is N = 40 for 
p = 90”. Figure 2 shows A2 for this choice, and various 
values of R, as a function of Q/Q over the range in which the 
phase advance per cell is c 180’. 

For Q/Q0 = 1, where two sets of the nominal lattice data 
are used, A2 scales as 1+ 2R2 since the effect of the BPM 
offsets and measurement errors are indistinguishable in the fit. 
Outside of the Q/Q0 = 1 region, A2 saturates as R + 00 since 
the difference of the orbits from the two lattices is independent 
of the BPM offsets, and hence independent of R. This is true 
even though the orbit offsets after alignment still scale as R for 
R >> 1. Another interesting result is that if the BPM offsets are 
included as variables in the fit, the dispersion is the same as 
the R + 00 case. Allowing the BPM offsets to vary apparently 
leaves the quad offsets sensitive to only the difference orbit. In 
this case, however, the orbit offsets after alignment do not 
depend on the initial value of R (the error in determining the 

- BPM offsets is about 1.3 or, independent of N). Finally, we 
note that A2 is essentially linear with N at Q/Q0 = 1, and at 
values outside of the peak region. In the transition region, the 
widths of the peaks decrease as N increases. 
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