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ABSTRACT

We study higher order corrections to Higgs production with an associated jet

at SSC energies, using the resummation of the leading logarithmic contributions to

multiple gluon emissions due to Lipatov and collaborators. We find a considerable

enhancement of Higgs production at large transverse momenta.
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1. Introduction

One of the most important open questions in the Standard Model is the cause

of the electroweak symmetry breaking. Both the SSC and the LHC are being

built with the resolution of this puzzle in mind. The simplest explanation of the

symmetry breaking is by a fundamental SU(2) doublet scalar field, which leaves

a neutral scalar, the Higgs boson, as a remnant of the symmetry breaking. This

simple theory is the experimental standard against which any model of symmetry

breaking will be measured. Thus, it is important that we completely understand

the production environment of the Higgs boson at these hadron colliders.

At the SSC and the LHC, the Higgs boson is predominantly produced by

gluon fusion. At lowest order α2
s, it is produced with zero transverse momentum.

The complete order α3
s corrections have been calculated

[1]
with an increase in the

total cross section by a factor of 1.5 to 1.7. In addition, production of Higgs

bosons with nonzero transverse momentum have been studied at order α3
s. Higgs

bosons produced with sizable p⊥ may be phenomenologically important both in the

intermediate mass region, where rare decay modes such as γγ and τ+τ− must be

used to observe the Higgs,
[2]

and for heavier Higgs bosons where the vector boson

decay channels may be used.
[3]

At small transverse momentum it is necessary to

resum large logarithms in m2
H/p

2
⊥ in order to obtain a physical p⊥ distribution.

[4−6]

At the large center of mass energy
√
s of the SSC and the LHC there are also

important contributions from events with multiple final-state partons. These arise

in a new kinematical region, the semihard region, characterized by scattering pro-

cesses with
√
s much larger than the momentum transfer Q, s >> Q2 >> Λ2

QCD.

The study of this region is theoretically challenging because, in the perturbative

expansion of cross sections, there appear coefficients containing logarithms of large

ratios of kinematical invariants, of the order of the rapidity interval in the scat-

tering process. In the inclusive production of the Higgs boson, the large ratios of

kinematical invariants appear in the small-x evolution of the structure functions,

thus requiring a more sophisticated analysis than the usual DGLAP evolution.
[7]
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In the context of jet production, Mueller and Navelet
[8]

were able to disentangle

the small-x evolution of the structure functions from the appearance of large ratios

of kinematical invariants in the parton subprocess by proposing to tag two jets at

the extremes of the Lego plot in azimuthal angle and rapidity, with large transverse

momenta p⊥, and longitudinal momentum fractions xA, xB large enough that the

parton structure functions could be computed from the ordinary DGLAP evolution.

Thus, fixing the parton center of mass energy ŝ = xAxBs, the semihard region is

realized also at the parton level ŝ >> Q2, and the large logarithmic terms ln(ŝ/Q2)

appear in the parton cross section. To deal with these, Mueller and Navelet used

the Balitsky-Fadin-Kuraev-Lipatov theory (BFKL),
[9]

which systematically resums

the leading powers in the rapidity interval by using a multigluon amplitude where

the rapidity interval between the tagging jets is filled with gluons, the minijets,

whose spacing in rapidity is approximately uniform.

For the Higgs boson this program can be implemented by considering the pro-

duction of the Higgs boson and a jet at the extremes of the Lego plot, with the

rapidity interval between them filled with minijets, and the Higgs boson and the

jet tagged at large transverse momenta. Since in gluon fusion the Higgs boson is

produced via a quark loop, and the fermion-Higgs coupling is proportional to the

quark mass, the only contribution to the quark loop which is numerically impor-

tant is due to the top quark. Thus, two more scales, the Higgs boson and the

top quark masses, enter the kinematics, and in order to avoid complications with

the evolution of the structure functions
[7]

and apply the BFKL analysis, we must

require that ŝ >> p2
⊥,m

2
H ,m

2
t . However, when p2

⊥ << m2
H doubly logarithmic

terms ln2(m2
H/p

2
⊥) appear, which more properly belong to the evolution of the

structure functions
[4−6]

and may void the BFKL analysis. So in order to single out

the strong rapidity-ordering regime characteristic of the BFKL analysis, the Higgs

and the jet transverse momenta must be comparable to the Higgs mass p2
⊥ ' m2

H .

In section 2, we consider the inclusive production of the Higgs boson and a

tagging jet, p p → H + jet + X in this kinematic situation. We recall the exact
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Born-level calculation of Refs. 2 and 3 and consider its large-rapidity limit, and

then we compute the leading logarithmic corrections at large rapidity, using the

BFKL analysis. In section 3, we present numerical results for the inclusive Higgs-jet

production, with or without integrating over the Higgs and jet transverse momenta,

and compare the Born-level to the minijet-corrected calculations. Our conclusions

are presented in section 4.

2. The Higgs + Jet Inclusive Cross section

We are going to study the semi-inclusive process pp → H + jet + X in the

semihard regime defined by ŝ >> Q2, with Q2 being a typical momentum scale in

the event, Q2 ≈ m2
H ,m

2
t , p

2
⊥. The tagging jet is required to ensure that we have

an event with a large rapidity interval y = yJ − yH ≈ ln(ŝ/Q2). Other relevant

parameters in the event are the Higgs and jet transverse momenta pH⊥, pJ⊥, their

relative azimuthal angle φ and the average rapidity y = (yJ + yH)/2.

In the semihard, large-y regime we can write the cross section:

dσ

dp2
H⊥dp

2
J⊥dφdydy

=
∑
ij

x1x2 fi(x1)fj(x2)
dσ̂ij

dp2
H⊥dp

2
J⊥dφ

. (2.1)

The parton subprocess cross section dσ̂ij/dp2
H⊥dp

2
J⊥dφ contains the sum over all

additional particles (i.e. minijets) in the event. The factorization of the minijets

into the subprocess cross section is possible, because at large y the initial parton

momentum fractions x1 and x2 are fixed in terms of the Higgs and jet momenta,

and are essentially independent of the particles filling the rapidity interval. We will

arrive at this cross section in several steps, starting with the exact Born level cross

section, taking it to the y >> 1 limit, and finally filling in the rapidity interval

with the minijets. Of course, the analysis can be applied equally well for y << −1,

by reflecting along the beam axis.

i) Born Level Cross section. At the Born level the Higgs boson and the parton

jet are produced back-to-back. The exact lowest order cross section can be put in
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the form (2.1) with the replacement

dσ̂ij

dp2
H⊥dp

2
J⊥dφ

⇒ dσ̂ij

dt̂
δ(p2

H⊥ − p2
J⊥) δ(φ− π) . (2.2)

The parton momentum fractions and the subprocess invariants at this level are

given by:

x1 =
ey√
s

(p⊥e
y/2 +mH⊥e

−y/2)

x2 =
e−y√
s

(p⊥e
−y/2 +mH⊥e

y/2)

ŝ = x1x2s = p2
⊥ +m2

H⊥ + 2p⊥mH⊥ cosh(y)

t̂ = −p2
⊥ − p⊥mH⊥e

−y

û = −p2
⊥ − p⊥mH⊥e

y ,

(2.3)

where mH⊥ = (p2
⊥ + m2

H)1/2 and p⊥ = pH⊥ = pJ⊥. We use the lowest order

Standard Model calculation for the subprocess cross sections dσ̂ij/dt̂ in Ref. 2.

ii) Large-y Born Cross section. We now investigate the lowest order cross sec-

tion when the rapidity interval y is large. For y >> 1 the lowest order amplitude

is dominated by diagrams with gluon-exchange in the t-channel as in Fig. 1(a). In

this limit the only subprocesses that contribute are gg → gH and q(q)g → q(q)H.

We obtain

dσ̂gg

dt̂
= C

|F(p2
⊥)|2

p2
⊥

, (2.4)

where

C =
Ncα3

sαW
(N2

c − 1)128πM2
W

. (2.5)

Similarly, we find

dσ̂qg

dt̂
=

dσ̂qg

dt̂
=

CF
CA

dσ̂gg

dt̂
, (2.6)

with CF /CA = (N2
c − 1)/2N2

c = 4/9 the ratio of the Casimir operators. The form

factor F(p2
⊥) is given in the appendix for both a scalar and a pseudoscalar Higgs
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boson. We have checked that (2.4) agrees with previous results
[5]

if we take the

additional limit p2
⊥ << m2

H ,m
2
t . The parton momentum fractions in the large-y

limit are

x1 =
pJ⊥√
s
e(y+y/2) =

pJ⊥√
s
eyJ

x2 =
mH⊥√

s
e(−y+y/2) =

mH⊥√
s
e−yH .

(2.7)

Equation (2.7) is also valid in the large-y limit when higher-order corrections are

included, so that pH⊥ 6= pJ⊥.

iii) Minijet-corrected Cross section. As discussed in the introduction, going

to higher orders in the coupling constant, i.e. to multiple parton emission, we

encounter large logarithmic contributions. In the semihard regime, the BFKL

theory
[9]

systematically resums the leading logarithmic terms ln(ŝ/p2
⊥) by using a

multigluon amplitude where the rapidity interval between the Higgs boson and the

tagging jet is filled with gluons, strongly ordered in rapidity. This amplitude is

shown in Fig. 1(b), where the thick line represents the resummation of the virtual

radiative corrections, whose effect is to reggeize the gluons exchanged in the t

channel. The real gluons are inserted on these using the Lipatov effective 3-gluon

vertex.
[9]

The BFKL multigluon amplitude is then put in a rapidity-ordered phase

space, the rapidities of the gluons are integrated out, and the dependence of the

cross section on the gluon transverse momenta is reduced to the resolution of an

integral equation. Its solution is then convoluted with the Higgs-boson production

vertex on one side and the jet emission vertex on the other side of the rapidity

interval to give the minijet-corrected parton cross section for producing the Higgs

boson and a jet:

dσ̂

d2pH⊥d2pJ⊥
=

2C

π

|F(p2
H⊥)|2
p2
J⊥

f(y, pH⊥, pJ⊥) . (2.8)

In this equation f(y, pH⊥, pJ⊥) is the Laplace transform in the rapidity interval y,

f(y, pH⊥, pJ⊥) =

∫
dω

2πi
eωyfω(pH⊥, pJ⊥), (2.9)
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of the solution of the BFKL integral equation

fω(pH⊥, pJ⊥) =
1

(2π)2

∞∑
n=−∞

ein(φ−π)

∞∫
−∞

dν
(p2
H⊥)−1/2+iν(p2

J⊥)−1/2−iν

ω − ω(n, ν)
. (2.10)

The eigenvalue of the integral equation ω(n, ν) is

ω(n, ν) =
2Ncαs
π

[
ψ(1)−Reψ(

|n|+ 1

2
+ iν)

]
, (2.11)

with ψ the logarithmic derivative of the Gamma function. Substituting (2.9) and

(2.10) in (2.8), and doing the integral over ω, the minijet-corrected parton cross

section becomes

dσ̂

dp2
H⊥dp

2
J⊥dφ

=
C

2π2

|F(p2
H⊥)|2

pH⊥ p3
J⊥

∑
n

ein(φ−π)

∞∫
0

dνeω(n,ν) y cos

(
ν ln

p2
H⊥
p2
J⊥

)
.

(2.12)

If we integrate over the azimuthal angle φ in (2.12), only the n = 0 term survives.

iv) Minijet-corrected Cross section in the Saddle Point Approximation.

At very large values of the rapidity interval y, the correlations between the Higgs

boson and the jet are washed out by the random walk in transverse momentum

space of the gluons exchanged in the t channel. This can be seen most easily by

evaluating (2.12) in the saddle-point approximation. The contribution of (2.11) to

this equation is dominated by n = 0 and is strongly peaked near ν = 0. Thus we

keep only the first term in the Fourier expansion in φ, and expand ω(ν) = ω(0, ν)

about ν = 0

ω(ν) = A−Bν2 + · · · , (2.13)

with

A =
4Ncαs
π

ln 2, B =
14Ncαs

π
ζ(3). (2.14)

Then we can evaluate (2.12) using the saddle-point approximation for the integral

7



over ν, to obtain

dσ̂

dp2
H⊥dp

2
J⊥dφ

=
C

4π

eAy√
B π y

exp

(
−

ln2(p2
H⊥/p

2
J⊥)

4By

)
|F(p2

H⊥)|2
pH⊥ p3

J⊥
. (2.15)

The exponential growth of (2.15) with the rapidity interval y is due to the produc-

tion of the minijets.

3. Numerical Results

We now examine numerically the effects of the minijets on Standard Model

Higgs production at SSC energies. Throughout this section we will use a repre-

sentative Higgs mass of 100 GeV and a top mass of 150 GeV, and the SSC center

of mass energy
√
s = 40 TeV. The qualitative results do not depend strongly on

these values of mH and mt. Except where indicated we set y = 0 and observe

the cross sections as a function of the rapidity interval |y|. We obtain a factor

of two by including both positive and negative y. We use the “average” parton

density functions of Diemoz et al.,
[10]

and we evaluate the QCD coupling αs and

the structure functions at a scale Q2 = m2
H . For p⊥ > 50 GeV and |y| > 4 the

structure functions are always evaluated at x > 10−2, so we are justified in using

the DGLAP evolution in this region of phase space.

In Fig. 2 we present the inclusive Higgs-jet cross section, integrated over the

azimuthal angle φ and over both transverse momenta with a cutoff of p⊥min = 50

GeV. We present it in the four approximations (i-iv) given in section 2. From the

plot we see that the large-y Born cross section is a good approximation to the exact

Born level cross section for |y| >∼ 4. The minijet-corrected cross section is typically

enhanced over these lowest order cross sections by a factor of 2-3 for |y| >∼ 4. We

define the K-factor as the ratio of the minijet-corrected cross section to the large-y

Born cross section

K =
dσ(minijet)

dydy

/
dσ(large−y)

dydy
, (3.1)

and plot it in Fig. 3. K is defined so that K → 1 as y → 0. The minijet
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enhancement is often plotted on a logarithmic scale
[8]

; on such a plot, the exact

integral approaches the saddle point approximation, since the relative error tends

to zero at large ŝ.

We next show the p⊥ distributions of the Higgs and the tagging jet for rapidity

intervals of |y| = 4 and |y| = 8 in Figs. 4(a) and 4(b), respectively. The other

momentum is integrated over p⊥ > p⊥min = 50 GeV. Of course, for the Born cross

section we have pH⊥ = pJ⊥, so the transverse momentum distributions of the

Higgs and the jet are identical. However, with the inclusion of the minijets, this is

no longer true. In fact the pH⊥ distribution is considerably flatter than either the

lowest order result or the minijet-corrected pJ⊥ distribution.

This effect can be understood by referring to Fig. 1(b) and analyzing the var-

ious terms in the minijet-corrected cross section (2.8). When convoluted with the

structure functions we find

σ ≈
[
x2f(x2)

∣∣∣F(p2
H⊥)

v

∣∣∣2] f(y, pH⊥, pJ⊥)

[
x1f(x1)

( 1

pJ⊥

)2
]
, (3.2)

where the first bracketed term is associated with the Higgs boson production vertex

and the last bracketed term is associated with the jet emission vertex. Note that

the 1/p2
J⊥ comes from the jet vertex, whereas the form factor F(p2

H⊥) is relatively

constant in the region of interest. For very small rapidities we approach the Born

cross section (2.4) with

f(y, pH⊥, pJ⊥) → δ(p2
H⊥ − p2

J⊥) δ(φ− π) , (3.3)

so that both the Higgs boson and jet p⊥ distributions fall as 1/p2
⊥. In addition,

both x1 and x2 increase with p⊥ via (2.7) so that there is an additional suppression

from both parton density factors (xf(x))2 as p⊥ increases. However, for very large

rapidities we have

f(y, pH⊥, pJ⊥) → ∼ (pH⊥pJ⊥)−1 , (3.4)

and the Higgs boson and the tagging jet become uncorrelated. Now the Higgs

boson distribution falls slower as 1/pH⊥, while the jet distribution falls faster as
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1/p3
J⊥. In addition both distributions are now only suppressed by one factor of

xf(x). These effects combine to strongly broaden the Higgs p⊥ distribution. For

the tagging jet the two effects tend to cancel and its p⊥ distribution is much less

modified.

Comparing Figs. 4(a) and (b), we can also observe some subtleties that have

been neglected in the arguments of the last paragraph. For example, the separation

between the Higgs and jet p⊥ distributions at large p⊥ shrinks as |y| goes from 4

to 8. This is due to the fact that both quarks and gluons can enter the parton

scattering on the jet side, while only gluons can enter on the Higgs side. Thus, the

suppression from the structure functions is more severe on the Higgs side than on

the jet side as x grows according to (2.7).

Finally, we discuss the effects of varying the Higgs and top-quark masses in the

p⊥ distributions of Fig. 4. Although the change in the contribution of the minijets

is minor, there will still be some overall effects on the distributions. For example,

because we have chosen the factorization and renormalization scales to be fixed at

the Higgs mass, as mH grows the coupling constant αs and the structure functions

become smaller, while the parton momentum fraction x increases. Consequently,

the absolute scale of the p⊥ distributions will decrease. Changing the top-quark

mass has a different effect. The form factor F(p2
H⊥) is roughly constant for p⊥ <∼

mt, but falls off as m2
t/p

2
⊥ times logarithms for p⊥ >∼ mt. Thus, while the jet p⊥

distribution becomes independent of mt at very large y, the Higgs and Born p⊥

distributions fall more steeply for p⊥ >∼ mt. For a given fixed p⊥ larger than the

top mass, the Higgs and Born p⊥ distributions will increase with mt.

The disappearence of correlations as |y| increases can be seen dramatically in

Fig. 5 where we plot the transverse momentum distribution of the tagging jet at

a fixed Higgs transverse momentum of pH⊥ = 125 GeV. For a rapidity of |y| = 2

the cross section is strongly peaked near pH⊥ = pJ⊥. As the rapidity is increased

there is a diffusion of the jet momentum away from the Higgs momentum until the

peak disappears completely for |y| = 8. Note that the saddle point approximation
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removes the correlation for all values of |y|. There is a similar diffusion of the

azimuthal angle away from φ = π as the rapidity increases.

In Fig. 6 we consider the pH⊥ distribution of centrally produced Higgs bosons.

We fix yH = 0 while integrating over the rapidity and transverse momentum of the

tagging jet. The dashed line is the lowest order Born calculation with no cuts on

the jet rapidity, while the dotdash line has a cut of |yJ | > 4. The jet transverse

momentum is fixed at pJ⊥ = pH⊥ in these Born-level curves. The solid line is the

minijet-corrected cross section with cuts of |yJ | > 4 and pJ⊥ > 50 GeV. We apply

these cuts in order to be confident that we are in a kinematical region where the

minijet-corrected cross section is a good approximation. As in the previous plots

we see that the minijet-corrected pH⊥ distribution is much broader than the lowest

order distribution. At pH⊥ = 400 GeV the minijet cross section with the kinematic

cuts is over two orders of magnitude larger than the Born cross section with cuts.

Moreover, it is almost within a factor of 2 of the lowest order Born cross section

without any cuts at all.

4. Discussion and Conclusions

In this paper we have calculated the contribution of minijets to Higgs pro-

duction in the semihard regime. The major phenomenological consequence of the

minijets at SSC energies is to produce a substantial enhancement of Higgs bosons

at large transverse momenta. Although our results are strictly valid for the semi-

inclusive process pp→ H + jet +X at large y, we have seen that these events may

still make a sizable contribution to the inclusive process pp→ H +X for large val-

ues of pH⊥. The enhancement occurs because in the minijet-corrected cross section

the falloff with pH⊥ is much slower than the falloff with pJ⊥. This suggests that

there may be a sizable contribution from events with a Higgs boson produced at

large transverse momentum, balanced by the collective p⊥ of several less energetic

jets. These events should appear first at order α4
s in the gg → Hgg and gq → Hgq

cross sections. The former has been calculated at the Born level in the large mt
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limit by Dawson and Kauffman,
[11]

who plotted the cross section with a single p⊥

cutoff on both the outgoing gluons and the Higgs boson. It would be interesting to

study this gg → Hgg cross section with the Higgs and gluon transverse momenta

varied independently in order to check for an enhancement of events at large pH⊥.
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APPENDIX

The analysis in this paper is valid both for a scalar Higgs boson and for a

pseudoscalar Higgs boson, as would occur in two-Higgs-doublet models. The only

change in our results is in the form factor F(p2
⊥). We present the analytic form of

F(p2
⊥) in both cases below.

i) Scalar Higgs. The scalar Higgs coupling to the top quark is −S(mt/v)Hψψ,

where S is a normalization constant which equals 1 for the Standard Model Higgs.

The form factor is

Fs(p2
⊥) = S

( 4m2
t

m2
H⊥

){
− 2 −

( 2p2
⊥

m2
H⊥

)[√
bW (b)−

√
aW (a)

]

+
1

2

(
1− 4m2

t

m2
H⊥

)[
W (b)2 −W (a)2

]}
,

(A.1)

where a = 1 + 4m2
t/p

2
⊥, b = 1 − 4m2

t/m
2
H , and we take the root

√
b = i

√
|b| for

b < 0. We have also defined the function

W (c) =



− 2i arcsin (1/
√

1− c) , c < 0

ln
1 +
√
c

1−
√
c
− iπ , 0 < c < 1

ln

√
c+ 1√
c− 1

, c > 1

(A.2)

Note that Fs(p2
⊥) is proportional to the form factor A5 of Ref. 2 in the appropriate
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kinematic channel. In the limit p⊥,mH << mt, the form factor goes to the value

Fs = −(4/3)S.

ii) Pseudoscalar Higgs. The pseudoscalar Higgs coupling to the top quark is

−P (mt/v)Aψiγ5ψ. In this case the form factor is

Fp(p2
⊥) = P

( 4m2
t

m2
H⊥

)(
−1

2

)[
W (b)2 −W (a)2

]
. (A.3)

In the limit p⊥,mH << mt, we find Fp = 2P .
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FIGURE CAPTIONS

1) Higgs + jet production amplitude in the large-y limit at (a) the Born level

and (b) with minijet corrections.

2) Inclusive Higgs-jet production at the SSC, as a function of the rapidity in-

terval y. The dashed and dotdashed lines are respectively the exact and

large-y Born cross sections, the solid line is the minijet-corrected cross sec-

tion, and the dotted line is the saddle point approximation to the solid line.

The kinematic parameters are described in the text.

3) K-factor, as a function of the rapidity interval y. The solid line represents the

ratio of the minijet-corrected cross section to the large-y Born cross section,

and the dotted line is its saddle point approximation.

4) Higgs and jet p⊥ distributions at (a) |y| = 4 and (b) |y| = 8. The dashed

and dotdashed lines are respectively the p⊥ distributions for the exact and

the large-y Born cross section, for which pH⊥ = pJ⊥. The solid lines are the

jet and Higgs p⊥ distributions for the minijet-corrected cross section. Notice

that in (b) the dashed and dotdashed lines completely overlap.

5) Jet p⊥ distribution at a fixed Higgs transverse momentum of 125 GeV. From

top to bottom, the solid lines are the jet p⊥ distributions for the minijet-

corrected cross section at |y| = 2, 4, 6 and 8. The dotted lines are the saddle

point approximation to the solid lines.

6) Higgs p⊥ distribution at yH = 0. The dashed and dotdashed lines are the

distributions for the exact Born cross section with, respectively, no cuts on

the jet rapidity |yJ |, and |yJ | > 4. The solid line is the distribution for the

minijet-corrected cross section with |yJ | > 4 and pJ⊥ > 50 GeV.
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