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ABSTRACT 

A fundamental prediction of perturbative QCD is that the Reggeon trajectories 

=fp@) and aAz(t) g overning charge exchange reactions at high energies s >> -t 

must monotonically approach zero at large spacelike momentum transfers. The 

asymptotic prediction lim-t,, crR(t) = 0 reflects the fact that a weakly interacting 

quark-antiquark pair is exchanged in the t-channel. However, measurements of 

the inclusive processes a-p -+ x0X at s II 300 GeV2 and 8 GeV2 > -t > 2 GeV2 

indicate that the effective p trajectory becomes negative at large -t. We resolve 

the apparent contradiction between the perturbative QCD predictions and the 

experimental data by showing that the hard QCD part of the trajectory is weakly 

coupled and that its contribution will be hidden until much higher energy. We 

also show that Reggeon contributions to exclusive and inclusive mesonic exchange 

hadron reactions can be systematically studied in perturbative QCD. In particular, 

the Reggeon contributions to the reaction r-p + x0X and r-p + Ron is discussed 

in detail. 
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1. Introduction 

According to Regge theory, a scattering process at high energies and fixed mo- 

mentum transfer (s > -t) is controlled by the singularities in the partial wave 

amplitude continued to complex angular momentum. For an exclusive reaction 

AB + CD involving charge or other quantum number exchange, a fairly satisfac- 

tory description can be obtained by assuming that these singularities are simple 

poles (“Reggeons”), the residues of which, by virtue of unitarity, are factorizable: 

h!A&+C&,t) = x@R(t) (;)aR't)"(f) - 
R 

(1) 

Here oR(t) is one of the Regge trajectories corresponding to the exchanged quan- 

tum number, <R(t) = $[e -i*aR(2) f l] is the associated signature factor determined 

from s c) u crossing symmetry, and the residue function @R(t) factorizes as the 

product of Reggeon form factors 

i @R(t) = F,f~&)J'k+&) - (2) 

The form factor F&(t) can be thought of as a vertex function (Cl Jo IA) of 

“local” currents of effective spin aR(t) described by the Reggeon. 

Equation (1) neglects contributions from Regge cuts (unitarity corrections from 

multiple Reggeon exchange). Such contributions appear to be empirically small. 

The l/NC expansion of QCD provides a systematic procedure in which unitarity 

corrections are incorporated order by order in l/N,, and we can expect that Regge 

cuts do not appear at leading order in this expansion, and that the only moving 

singularities are Regge poles. There may of course be other fized singularities, e.g. 

fixed poles, in leading order. 

The leading Regge trajectories with quark-antiquark quantum numbers, p, j, w, 

and Aa, are approximately linear for t > 0 where they interpolate a sequence of 

meson states of progressively higher spin j = (YR(~ = Mi). For t < 0 these Regge 
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trajectories, extracted from fits to the high energy data, apparently continue this 

linearity for moderate t, suggesting the approximately linear form 

%(t) = QR(O)+ &(O)t (3) 

with cry x 0.4 and oh(O) w 0.8 GeV -2. This approximate linearity encour- 

aged the dual model approach to strong interactions which in tree approximation 

assumed exactly linear trajectories. However, this assumption is not consistent 

with the expectations of perturbative QCD at large spacelike momentum transfer 

-t >> A&,. For example, a mesonic charge-exchange Reggeon at large spacelike t 

can be simply identified with Q$&, exchange in the t channel. Thus to lowest order 

one expects in QCD 

f - 1 = 0 ; (4) 
i.e., the Regge trajectory asymptotically decreases to OR(t) = 0 at large -t. Simi- 

larly, in the case of a baryon exchange trajectory, we expect, 

(5) 

Kirschner and Lipatov [l] and McGuigan and Thorn [2] have shown that 

the approach to the asymptotic form of the Reggeon trajectory from the sum of 

t-channel ladder diagrams in perturbative QCD is very slow: cxR(t) N O(l/dm), 

and this approach is from above [3]. To leading logarithmic order, the QCD radia- 

tive corrections due to multiple gluon exchange between the exchanged quarks give 

the leading trajectory in the form shown in Fig. 1. For practical purposes it will 

be sufficient to use the numerical interpolating formula for the positive signature 

Regge trajectory given in Ref. [4]: 

a;Qyt) = urnax 

Pltp2G+-t) 
(6) 

where wmax = & 2 0.32, for b = .w = 0.053 (four flavors), and the fitted 

coefficients are: p1 = 1.14 x z = 0.855, p2 = 0.90 x I(%) l/2 = 0.398, Thus 
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in practice, oR pQCD(t) stays above 0.2 until very large -t ( criQCD(t) = 0.160 for 

-t = Mi). Although data [5] at large -t with s x 300 GeV2 do indeed show 

the effective p trajectory flattening off for -t > 2 GeV2, it approaches a negative 

value (x -0.7) and not zero from above. Since the idea that the leading Regge 

trajectory in any channel is not monotonic is probably physical nonsense, we have 

a potential clash here between QCD and experiment. 

The simplest resolution of this contradiction is that the “hard QCD” (i.e. flat) 

part of the p trajectory is so weakly coupled that its contribution is hidden by 

subleading contributions which are numerically dominant at currently available 

energies [6]. If this is indeed the case, then the effective trajectory extracted 

by Kennett et al. is not the true p trajectory but some averaged subleading set of 
. 

trajectories that are still contributing because s is not large enough.’ The estimates 

of the normalization of the hard QCD contribution that we will give below will 

indicate where the true asymptotic trajectory sets in. 

r:’ 2. Born term estimation 

The pair of inclusive processes, 77-p --t r’(q)X, singles out the p(A2) Regge 

trajectories respectively. According to perturbative QCD both the p and A2 tra- 

jectories approach zero from above as t -+ -oo. We would like to be able to test 

these predictions by experiment. Existing experiments effectively probe s up to 

200 to 300 GeV2 and -t up to 6 to 8 GeV 2. The most extensive studies have been 

done by Kennett et al. for ?y” production. In perturbative &CD, the hard part 

of the trajectories is generated by a sum of ladder gluon exchanges between the 

1 For example, in the constituent interchange model discussed in Ref. [7], it is assumed that 
the dominant contribution to large momentum transfer fixed CM angle hadron scatter- 
ing amplitudes is due to the interchange of the bound valence quarks. In this model the 
dominant interactions occur within the bound state wavefunctions, and the resulting meson 
exchange Reggeon trajectories have an effective behavior corresponding to on = -1. Recent 
measurements of a number of two body scattering processes at BNL have shown that quark 
interchange processes strongly dominate gluon exchange contributions at fixed angles. See 
A. Carroll, el al. [S] 
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quark and antiquark exchanged in the charge changing process. The first diagram 

[Fig. 2a] in this sum that provides an s ’ behavior is a single rung of the ladder 

describing the annihilation of a u antiquark from the projectile with a quark from 

the target Bjorken (91. has suggested a simple estimate of the strength of this low- 

est order contribution in terms of form factors and structure functions: since the 

gluon carries large momentum, we may approximate its contribution as l/zrz2~ 

times a contact interaction which through a Fierz transformation can be expressed 

as a vector exchange in the t channel. (The axial coupling does not contribute 

to the process r-p -+ r’(q)X.) Th e resulting hadron matrix elements can then 

be identified as a form factor for the projectile times a form factor or structure 

function of the target, for exclusive and inclusive reactions, respectively. We can 

make this identification precise by incorporating into the definition of the Reggeon 

form factors and structure functions the reciprocal of the momentum fractions zr 

and x2 of the annihilating quarks. Since these fractions are less than one, they 

will enhance an estimate based purely on ordinary electroweak form factors. In 

fact we shall show that one can reliably estimate the size of these enhancements in 

the Reggeon form factors using the various popular models for the wavefunctions 

of the mesons and nucleons [lO,ll], in terms of quark degrees of freedom. For the 

inclusive case, the kinematics actually fixes the momentum fraction of the quark 

in the target to be x2 = zgj, so that factor can be incorporated without further 

approximation. 

In addition to the annihilation diagram just described there is an exchange 

diagram [Fig. 2b] in which a d quark from the meson is exchanged with a u quark 

from the proton with a gluon exchanged between the two exchanged quarks. This 

diagram gives a u ’ behavior which at fixed t is also an so behavior. Iterations of 

the gluon exchange in this t,u diagram again build up the p or A2 Regge trajec- 

tory. This t, u ladder exchange combines with the first mentioned ladder exchange 

to supply the familiar signature factor (ewira f 1)/2. The A2 trajectory has even 

signature (+) and the p trajectory odd signature (-). In the Born term estimate 

the trajectories are effectively at zero so strictly speaking one predicts a non-zero 
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coupling only for the even signature exchange (A2 trajectory, 7 production). How- 

ever, once Reggeization has been incorporated, both the even and odd signature 

trajectories lie above zero and both signature factors are nonvanishing. For exam- 

ple, in the large NC limit the p and A2 trajectories stay degenerate and at large --t 

are 0( dm). In fact, in this limit the only difference between the even and 

odd signature contributions is the signature factor. Both amplitudes are nonzero 

since op, (Y,& > 0. Multiplying the Born term estimate for 7 production by the 

ratio L(~R)/~+(QR) evaluated at nonzero cry provides a large N, estimate for ?ro 

production. For small CUR this suggests a suppressed amplitude for 10 compared to 

v production2. However, for finite NC the odd signature trajectory is slightly higher 

by 0(1/N:) than the even signature trajectory in perturbative QCD. The steeper 

energy dependence of the odd signature contribution will eventually compensate 

for the small signature factor so that at extremely high energies RO production 

will dominate over 7 production. As shown in Ref. [4], the difference between the 

magnitude of even and odd signature amplitudes can be neglected in practice up 

to SSC energies. ..~ 

The inclusive cross section fortheprocess w-p --t R’X has the general form: 

$0 1 
- = 326~~ dtdu’ 

dX(2r)4S(Px - k - p) &-- WX12 (7) 
P 

with momenta of 7~-, ?y” defined as k = (w,z) and k’ = (w’,c) respectively. We 

can compare this with the cross section for lepto-production: 

d% -=3 
dtdu’ 2 W,w[(k + k’)p(k + k’)” - (q’q” + Q2g”“)] (8) 

where q = k’ - k is the momentum transfer and Q2 = -q2 = -t. The Born term 

estimate for the leading Reggeon behavior is obtained by substituting (20/3Q2) 

2 Note that since the physical ‘1 contains a significant strange quark component (transforming 
approximately as an SU(3)fl ,,vOr octet), 7 production is further suppressed by a factor of 
roughly 3 compared to AO production. (A fictitious “9” made up only of up and down 
quarks is l/3 octet and 2/3 singlet.) 
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in the electroproduction formula by ~~(1 - l/N:)/4x2~, and replacing the factor 

[(k+k’)J‘(k+k’)“-(qJ‘qY+Q2g@“)] for theelectron by ~$%‘;IZ~2(k+k’)~(k+k’)Y 

for the pion where F;l, is the pion form factor with an extra l/x in the wave 

function convolution. The fi converts the pion form factor to the charge-raising 

isovector form factor. In all models of the pion form factor which are based on a 

quark wave function symmetric under x + 1 - x the effect of the l/x enhancement 

is to multiply the form factor by a factor of two.3 

These substitutions can be understood as follows: 

1. The up quarks in the proton are the ones that participate in the charge 

exchange so we want the up quark contribution to the electroproduction am- 

plitude which is proportional to 2cr/3. The electroproduction measurement 

includes a piece from scattering from the d quark but this is small (there 

are twice as many up quarks and each contributes 4 times as much) and we 

don’t try to remove it. 

2. The quark annihilation gluon is-in the crossed channel w.r.t. the photon in 

electroproduction, so a Fierz transform routes the spinor lines as in electro- 

production. The Fierz factor is -l/2 to each of axial and vector couplings, 

but the axial doesn’t contribute here. Also the T coupling is subleading by 

a power of s. 

3. The color factors are crS C, XyX!/4. But since the quark antiquark must be 

in a singlet state, x,(X: + Xq)2 = 0 which implies that the color factors are 

-do(N: - 1)/2NC where R-J is the singlet projector. It is just &5:/N C’ 

The Kronecker delta’s just tie together the quark lines of the initial and final 

pion and those of p and X, leaving one more factor of l/N,. 

3 The form factor is given as Ji dzf(z)/(l - z) where z is the momentum fraction of the 
quark coupling to the current. The enhancement supplies another factor of l/t. The 
identity l/2(1- z) = l/z + l/(1 - z) together with f(z) = f(1 - z) gives the result. 
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Making all these substitutions leads to 

2&‘&(Q2)12Wpv[(k + k’)“(k + k’)“] 

8F,2-(Q2)J+‘pv[(k: + k’)p(k + k’)“] 

- u)/212 
(9) 

x s F,2-(Q2) 2 . 
2 P 

Now use mpux2 = Q2/2 and multiply by (ILz)~ NN 389GeV2pbn to convert to 

pbn/GeV3: 

& (pbn/GeV3) M ~~p~2~2~~ F~-(Q2)vW2(x2) 

2 
x 2170 as 

mpQ2w2x2 F:-(Q2)yW(x2> . 
(10) 

We also present this estimate in terms of Feynman XF x w’/w.’ Note that 22 in 

the above formula is Bjorken x: xi = Zgj = Q2/2mpv = Q2/2mpw(l - XF). Then 

we have 

&~~W~e~2) = 4340 as(,ag4- xF) ~~~~~~~~~~~~~~~ . (11) 

The strong coupling constant in this formula should be evaluated at the scale 

z= 21x2s = &72pXlXBjq = 
xlQ2 Q2 

(1 - XF) = 2(1 - XF) ’ (12) 

In the triple Regge limit4 (Romeron, 2 Reggeons), XBj N 0, 1 - SF N 0, assuming 

v(O) = 1 and a Reggeon trajectory a~(&~), th e cross section should have the 

4 This limit of an inclusive process requires s > M2 > -t = Q2 where M is the invariant 
mass of the unobserved particles. The first inequality (fulfilled if zF - 1 or XBj - 1) means 
that the process I- + p -+ zr” + X can be approximated by the exchange of a Fteggeon 
aR(t).  The second inequality (fulfilled if %Bj - 0) means that the sum over X, related by 
the optical theorem to a forward elastic amplitude, can be approximated by the exchange 
of the Pomeron ap(0). 
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asymptotic form 

& (h/GeV2) = G(Q2) (1 - XF)1-2aR . (13) 

Thus we see that the Born estimate corresponds to putting CrR M 0. 

The experiment of Kennett et al. for no production uses an incident beam of 

200 GeV pions so w = 200 GeV. The experimental range of Q2 is from 1 to 8 

GeV2. Picking 4 as typical and consulting the literature for Fx at that value gives 

F z = .075 so F,“/mpQ2w2 % 3.74 . low8 so for these values our estimate is 

&a 
- x 0.81 . 10m4 2 vW2(xz)(pbn/GeV3) . 
dtdw’ (14) 

The Kennett et al. data give roughly 2 - 10-4(pbn/GeV3) at x2 x .2 and 3.5 + 10m3 

at 22 x l/15. This is to be compared to 4 . 10-4a~vI&‘~(x2)(~bn/GeV3) and 

1.2. 10-3cr~vW2(x2)(~bn/GeV3) respectively. Since vW2 is roughly 0.3 for 22 < .2 

and cy, should surely be less than 1 at these scales, we see that we estimate the 

hard QCD part to be hidden in the noise of the Kennett et al. data. 

More recent experiments (see e.g. Ref. [12]) at the Fermilab Tevatron have 

studied these inclusive processes with a 500 GeV I- beam. Unfortunately, only 

scattering angles 6 M ~!hpXBj( 1 - XF)/W larger than about 20 mrad are mea- 

sured. To improve the extraction of the true Reggeon trajectory over the Kennett 

data we would want to probe 1 - SF < .O5 and XBj < .l. At w = 500 GeV, we 

require scattering angles smaller than 3 to 4 mrad. We hope such experiments 

will be seriously considered. At the SSC, even higher energies would be available, 

but, of course, measurements must be made at correspondingly smaller angles (< 1 

mrad)! 

The above calculation offers an explanation of the puzzling apparent absence 

of the qq annihilation process in a variety of allegedly short distance experiments. 

This absence was noticed long ago in studies of fixed angle scattering of hadrons 
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at high energies [3]. The explanation is that the process couples so weakly that it 

is swamped by sub-asymptotic longer distance effects. 

We have also made a similar estimate for the hard QCD contribution to the 

exclusive r-p -+ ?r”n charge exchange reaction, again confirming that existing 

experiments should not yet have detected it. This is fortunate since those same 

data extract an effective p trajectory that is negative, conflicting with expectations 

from &CD. 

3. Reggeizat ion 

For a more sophisticated estimate we can incorporate the effects of Reggeiza- 

tion. In perturbative QCD there is actually an infinite accumulation of Regge pole 

trajectories approaching 0 as -t ---) 00. This bundle of trajectories simulates a 

square root branch cut in the angular momentum plane whose effect can be sum- 

marized as multiplying the Born approximation to the underlying quark scattering 
-i 

cross section by the factor 

In the process of expressing S: in terms of s we note that the enhancement fac- 

tors l/x in the wave function convolution become instead x@R-‘. So one has a 

trade-off between this reduced enhancement and an extra enhancement from the 

S2aR/(CYRe&)3. 

In general, the quark-antiquark annihilation scattering amplitude in the color 

singlet channel can be written as 

where a, b and u’, b’ label the color states of the initial and final quarks and anti- 

quarks. The signature corresponding to even (odd) parts of the amplitude under 
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the transformation 2? t) ii is p = +(-). The Born approximation corresponds to 

M+(&t) = 27rcrs 
NC2 - 1 

N 
C (17) 

M-(&t) = 0 . 

In the Regge kinematic region where Z >> --t >> AbCD, higher order corrections 

like N od[(od/7r)y2]” are important, when y, the rapidity, defined by y = en@/ - t), 

is large. Summing over this double logarithmic series with running coupling leads 

to PI 

M+(?,t) = 0.895 x 641r3bc&(t) (g)‘/2 (;>“““’ . (18) 

Here, we just take the leading Reggeon trajectory which is given by Eq. (6). In the 

fixed coupling case, one finds to good numerical accuracy M-(&t) m N+(&it). 

We shall assume this also holds in the running coupling case. Thus, in order to in- 

corporate the effects of Reggeization, one simply takes the first line of Eq. (9) and 

replaces 27~~~~~ by MP(Z,i,) as given by Eq. (18). We would like to express 

the scattering cross section in terms of the parton distribution so (3/2)2vW2 is 

replaced’by r;G,,,(z2, Q2). Here G&,(z2, Q2) is the u quark probability distri- 

bution in the target p. As usual, one can relate this probability distribution to 

the electromagnetic structure functions F2(5, -t) = Ca eilGqb,B(Z, -t) and the 

light-cone Fock states of the target: 

Gqb/~(x,-t)= C]“x/‘$ I~~B(xi,‘Li,~;)/Z*~~(x-x;) * (19) 
* 0 ‘= 

Making all these substitutions one has 

&a dtdw’ W-P ---) lox) = & ;7--12 I~$,r-_.,~~(n)12 G,ph Q2) 7 (20) 
C P 

or in terms of Bjorken variable x2 

d% 
dtdx2 

(r-p 4 7rO(?jqX) = (324 ~~$r-+-~~n~~ Qh Q2) (21) 
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where 

( > $ht) = 4& I”+(s,t)12 , (22) 

is the quark-quark backward scattering cross section (or quark-antiquark annihila- 

tion) averaging over the initial helicity states and summing over the final helicity 

states. The required Reggeon form factors J’$X-,,,Xo(II) [Fig. 31 can be most eas- 

ily represented as convolutions of light-cone wavefunctions [ll], where the frame is 

chosen such that -t = Q2 = &: 

J’,$,,,,c(t) = CC ]ndx JTi 2 tiic(xi, kLi, h)xaR(t)-ltinA(xi, kli, A> 7 
n Ai 0 

(23) 
where Icy = kl+( 1 -z)ql for active quarks q. + qc which couples to the exchanged 

Reggeon and kyi = kl-i - ziql for the spectator quarks. Here the sum is over all 

contributing states of the hadrons A and C. The notation n implies integration 

subject to Cr.r xi = 1 and X:=1 Eli = 0. The QCD-Reggeon term factor is thus 

computable as an overlap of light-cone wavefunctions for a transition current that 

replaces quark qa with qc. All the rest of the constituents of each Fock state n of 

hadrons A and C must match in quantum number and helicity. 

Exclusive hadron scattering reactions in which all hadrons are identified such 

as n-p + non have the advantage that one can make a specific identification 

of the Reggeon contributions. The scattering amplitude involves quantum num- 

ber exchange and the Reggeon contribution factorizes. The hadron amplitude is 

given by the hard scattering of the Reggeon exchange multiplied by the product 

of respective form factors. The exclusive scattering cross section is given by: 

!$ (0 + x04 = p$,__.l+4t) F,RI,+(t)12 ($(s, 1)) , (24) 
In general, if hadrons A and C are related with internal symmetry, one may be able 

to relate the Reggeon form factor FR A+C(t) to the electromagnetic transition form 
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factor F;;(t) and FEE(t). Using th e same notation, the helicity-conserving electro- 

magnetic transition form factor Fiz(t) is given by FiTA = C e,aFq-,A,,,,A(t) 

with oR(t) = 1. In case of proton and neutron, the wavefunction $J& can be 

replaced by $& by isospin symmetry and so one can write 

F$p++,(t) = c c j ndx 1 n f$ ?,LJ=;~ xa@-l g,;,, 
n XiA{ 0 

(25) 

= F;r(t) + ;F;:(t)) (,on(+l) . 

Here, the argument of the wavefunctions are not shown explicitly for the sake of 

simplicity. We use the simple mean value theorem to go from the first line to 

the second line and note that (zQR(‘)-‘) is of order of 1. Thus, in principle, we 

can predict not only the effective Reggeon power dependence of exclusive quantum 

number exchange reactions, but also their normalization. 

At large momentum transfer, the behavior of form factors can be obtained 

by iterating the Fock state equations of motion to isolate the perturbative calcu- 

lable hard scattering amplitude [ll]. The leading power behavior is determined 

by PQCD dimensional counting rules: Ff+&t) N t-” where n is the mini- 

mum number of spectator quarks in the overlap of LC valence Fock states of A 

and C: F R (t) N t -r for meson transitions and FR(t) N tm2 for baryon transi- 

tions5. Thus PQCD predicts not only the energy dependence of exclusive reac- 

t ions: $AB + CD) oc ~~~~~~~~~ at large fixed -t, but also the t- dependence 

of the Reggeon coefficient functions at large -t. 

Thus exclusive and inclusive hadron reactions in the region s > -t >> A&, al- 

low a detailed look into a QCD at the intersection between non-perturbative Regge 

5 In the case of baryon trajectories MB --, BM the transition form factor has one spectator, 
so again P(i) - t-l. 
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phenomena and perturbative &CD. At low momentum transfer, such reactions have 

been traditionally used to explore the systematics of Regge phenomenology, triple 

Reggeon couplings, etc. However, at large momentum transfer, the underlying 

quark and gluon structure of the Reggeon becomes apparent, and one can use 

the methods of perturbative QCD and the light-cone Fock structure of hadrons to 

make detailed and elegant predictions directly from the theory. 
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FIGURE CAPTIONS 

1) The Reggeon trajectory. Dotted line is the usual linear form with cry = 

0.4, c&(O) = 0.8 GeV- 2 while the solid line is the PQCD Eq. (6). 

a. -t from 0 to 1 GeV2. 

b. -t from 0 to 5 GeV2. 

2) a. iiu annihilation in n-p + ?r”X. 

b. du backward scattering in n-p + n”X. 

3) The Reggeon form factor where @  denotes the insertion of operator x @R(t)-1 

16 



0.5 

0.4 

- 0.3 
=ic 
e 

0.2 

0.1 

0 0.2 0.4 0.6 0.8 1.0 

0.5 

6.4 

0.3 
G= 
-a 
ts 0.2 

6-93 

. 

. - 

. . . 

. . . 
- - . . 

. . 

2 3 5 

-t (GeV*) 
7467Ai 

Fig. 1 



d d 
7c- 

ii 

;; 

a x0 
1 

U 

P u 
d 

(a) 
. - 

9-93 KG 7467A4 

Fig. 2 



I 

5-93. 

x, Q, h 1: 
qL 

Fig. 3 

7467143 


