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Abstract

We discuss the fragmentation of a heavy quark to a baryon containing two heavy

quarks of mass mQ � ΛQCD. In this limit the heavy quarks first combine perturbatively

into a compact diquark with a radius small compared to 1/ΛQCD, which interacts with

the light hadronic degrees of freedom exactly as does a heavy antiquark. The subsequent

evolution of this QQ diquark to a QQq baryon is identical to the fragmentation of a heavy

antiquark to a meson. We apply this analysis to the production of baryons of the form

ccq, bbq, and bcq.
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The spectroscopy and interactions of baryons consisting of two heavy quarks and one

light quark simplify in the limit that the heavy quark masses mQ tend to infinity. This

is because the heavy quarks are bound into a diquark whose radius rQQ is much smaller

than the typical length scale 1/ΛQCD of nonperturbative QCD interactions. In the limit

rQQ � 1/ΛQCD the heavy diquark has interactions with the light quark and other light

degrees of freedom which are identical to those of a heavy antiquark. Hence as far as these

light degrees of freedom are concerned, the diquark is nothing more than the pointlike,

static, colour antitriplet source of the confining colour field in which they are bound [1]–[3].

One immediate result of this limit is that the spectrum of such “doubly heavy” baryons

is related to the spectrum of mesons containing a single heavy antiquark[1]. It also follows

that the form factors describing their semileptonic decays may be related to the Isgur-Wise

function, which arises in the semileptonic decay of heavy mesons [2]. In this note we will

apply the same symmetries to the nonperturbative dynamics which governs the production

of such states via fragmentation processes. We will use our results to estimate the produc-

tion rates for baryons of the form ccq, bbq and bcq; however, we note that, especially in

the cc system, the heavy diquarks are not particularly small relative to 1/ΛQCD, so there

may well be sizeable corrections to our results.

The fragmentation of a heavy quark Q into a QQq (or QQ′q) baryon factorises into

short-distance and long-distance contributions. The heavy quark first fragments into a

heavy diquark via a process which is perturbatively calculable. In fact, the amplitude may

be trivially related to that for the fragmentation ofQ into quarkoniumQQ. The subsequent

fragmentation of the diquark QQ to a baryon is identical to the fragmentation of a Q to

a meson Qq; this information may be obtained from experimental data on production of

heavy mesons.

We will begin with the case of baryons of the form QQq, in which the two heavy

quarks have the same flavour. For concreteness we will discuss the production of baryons

with two charm quarks ccq; the extension to bottom baryons bbq will be trivial. As the

colour wavefunction of the charm quarks is antisymmetric and the quarks are taken to be

in the ground state S-wave, the spin wavefunction must be symmetric. Hence the cc can

only form a spin-1 diquark, which we shall denote by (cc). The (cc) can then fragment

either to a spin- 1
2 baryon, which we shall denote by Σcc, or to a spin- 3

2 baryon, which we

shall call Σ∗cc.

The initial short distance fragmentation process c→ (cc)c is analogous to that for the

fragmentation into charmonium, c→ ψc, which has been shown by Braaten, Cheung and
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Yuan [4] to be calculable in QCD perturbation theory. The Feynman diagrams responsible

for (cc) production are shown in fig. 1. The computation, which we shall not repeat, follows

directly that outlined for c→ ψc in [4]. In fact, after some rearrangement the form of the

fragmentation function Dc→(cc)(z) is exactly the same as that for Dc→ψ(z), except for an

overall normalisation factor. Since the charm quarks in the (cc) are in an overall colour

3 rather than a singlet, there is a colour factor of 2/3 instead of 4/3 in the amplitude.

The colour wavefunction of the diquark is |(cc)a〉 = 1
2εabc

∣∣cb〉 |cc〉 where a, b, c are colour

indices. The factor of 1/2 in the normalisation of the diquark state is canceled by a factor

of 2 in the matrix element from fermi statistics, giving an overall 2/3 in the amplitude.

Squaring and summing over final colours then gives the desired fragmentation function,

renormalised at the scale µ = 3mc:

Dc→(cc)(z, µ = 3mc) =
4

9π
|R(cc)(0)|2

m3
c

αs(3mc)2F (z) , (1)

where

F (z) =
z(1− z)2

(2 − z)6

(
16− 32z + 72z2 − 32z3 + 5z4

)
. (2)

Here R(cc)(0) is the nonrelativistic radial wavefunction at the origin for the perturbatively

bound diquark. Unlike the case of charmonium, there is no physical “decay constant”

f(cc) to which it may be related. However we may näıvely scale R(cc)(0) from charmonium

by noting that in a hydrogen-like potential R(0) is proportional to (CFαs)3/2 where the

colour factor CF is 4
3 for cc and 2

3 for cc. Hence we expect that |R(cc)(0)|2 ≈ |Rψ(0)|2/8 ≈
(0.41 GeV)3.

The complete fragmentation function Dc→Σ(z) for c→ (cc)c→ (Σcc,Σ∗cc)c is given by

convolving the function Dc→(cc)(z) with the amplitude for the heavy antitriplet diquark to

fragment to a ground state baryon with a single light quark. This latter function, which

we shall denote DQ→M (z), may be determined by data on charm and bottom antiquark

fragmentation to heavy mesons. Summing over the Σcc and Σ∗cc baryons, we then find

Dc→Σ(z) =
∫ 1

z

dy

y
Dc→(cc)(z/y)DQ→M (y) . (3)

However, in the limit mc � ΛQCD the heavy diquark carries all of the momentum of the

baryon, and DQ→M (y) = δ(1− y)PQ→M , where PQ→M is the integrated probability for a

heavy antiquark to fragment to a ground state meson. Then (3) takes the simpler form

Dc→Σ(z) = PQ→MDc→(cc)(z) . (4)
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Since in the limit we are considering all excited states will decay strongly to the ground

state, we may replace this probability by unity. (There is a small correction from the

fragmentation probability to baryons, PQ→Λ,Σ; here this would lead to an exotic ccqq final

state.) Then the integral of (1) yields the final result∫ 1

0

dz Dc→Σ(z) =
4

9π
αs(3mc)2 |R(cc)(0)|2

m3
c

(
1189
30
− 57 ln 2

)
. (5)

The Σ∗cc and Σcc baryons will be produced in the ratio 2 : 1. However we may use the

polarised fragmentation functions Dc→(cc)(z) derived in [5] to compute individually the

populations of the various helicity states of the Σcc and Σ∗cc. Let P be the net polarisation

of the initial charm quarks. Then the populations of the baryon helicity states can be

determined from P and the fraction ζ of the produced diquarks which are transversely

rather than longitudinally aligned. For example, a charm quark with energy E and helicity
1
2 can fragment to a (cc) diquark with helicity 0 or 1, but not to one with helicity −1,

to leading order in mc/E. Hence the net polarisation of the diquarks is degraded to ζP ,

where ζ = 0.69 [5]. To make the baryon, the diquark must then be combined with a

light quark from the nonperturbative part of the fragmentation. In the limit mc � ΛQCD,

the helicity of the diquark is irrelevant to this soft process; the parity invariance of QCD

then requires than the light quarks populate equally the helicities ± 1
2 . Since the Σcc

and Σ∗cc are produced incoherently, we may compute independently the probabilities that

the light quark and the diquark will combine into the two possible angular momentum

states, 1
2 and 3

2 . We then find the various helicity states to be populated in the ratios

Σ∗cc(± 3
2 ) : Σ∗cc(± 1

2 ) : Σcc(± 1
2 ) = 1

4ζ(1± P ) : 1
3 + 1

4ζ(−1± 1
3P ) : 1

6 (1± ζP ).

The quark fragmentation function (3) has been computed at the renormalisation scale

µ = 3mc. The Altarelli-Parisi equations must then be used to evolve it up to a high scale

µ = M typical of collider energies, a procedure which sums large logarithms of the form

ln(mc/M). This evolution has two effects. First, it softens the z distributions, but because

the relevant splitting functions Pc→cg(z) and Pc→gc(z) integrate to zero, the fragmentation

probability
∫ 1

0
dz Dc→Σ(z) remains unchanged. Second, a gluon fragmentation function

Dg→Σ(z,M) is induced via the gluon splitting function Pg→cc(z). In leading logarithmic

approximation, this effect, of order α3
s ln(M/mc), dominates over any direct contribution

to gluon fragmentation, which would be of order α3
s without the ln(M/mc) enhancement.

We now turn to the production of baryons of the form bcq, in which the heavy quarks

are not identical. In this case the bc diquark may be in either a spin-0 state, which we shall
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denote (bc), or a spin-1 state, which we shall denote (bc)∗. In addition to the formation of

Σbc and Σ∗bc baryons from the fragmentation of the of the (bc)∗ diquark, we now have the

possibility of the formation of Λbc baryons from the fragmentation of the (bc) diquark.

Just as in the case of diquarks consisting of two identical heavy quarks, it is straight-

forward to relate the fragmentation functions for b→ (bc)(∗)c and c→ (bc)(∗)b to those for

production of the physical states Bc and B∗c . These latter functions have been calculated

by Braaten, Cheung and Yuan [6], and we use their computation to obtain our results. Un-

like the (cc) case, the colour wavefunction of the diquark is |(bc)a〉 = 1√
2
εabc

∣∣bb〉 |cc〉, and

there is no factor of 2 from fermi statistics, so the spin-0 diquark fragmentation function

with an initial bottom quark is given by

Db→(bc)(z, µ0) =
2

9π
|R(bc)(0)|2

m3
c

αs(µ0)2F (z, r) , (6)

where

F (z, r) =
rz(1 − z)2

12(1− (1 − r)z)6

[
6− 18(1− 2r)z + (21− 74r+ 68r2)z2

−2(1− r)(6− 19r + 18r2)z3 + 3(1− r)2(1 − 2r+ 2r2)z4
]
,

(7)

r = mc/(mc + mb), and µ0 =
√

4mc(mb +mc) is a mass scale intermediate between mc

and mb. (The selection of this scale is discussed in detail in [6].) The analogous function

for an initial charm quark, Dc→(bc)(z), is given by (6) with the replacements F (z, r) →
(mc/mb)3F (z, 1−r) and µ0 → µ′0 =

√
4mb(mb +mc). Finally, the fragmentation function

Db→(bc)∗(z) to the spin-1 diquark is given by (6) with F (z, r) → F ∗(z, r), where

F ∗(z, r) =
rz(1 − z)2

4(1− (1− r)z)6

[
2− 2(3− 2r)z + 3(3− 2r + 4r2)z2

−2(1−r)(4 − r + 2r2)z3 + (1− r)2(3− 2r + 2r2)z4
]
.

(8)

Then the same replacements F ∗(z, r) → (mc/mb)3F ∗(z, 1 − r) and µ0 → µ′0 yield

Dc→(bc)∗(z).

A calculation similar to that in Ref. [5] gives ζ = 0.69 for the net alignment of the

(bc)∗. Hence the populations of the various helicity states of the Σbc and Σ∗bc will be in

the same ratios as for the Σcc and Σ∗cc.

The diquark distributions (6)–(8) must be convolved as in (3) with experimentally

determined meson fragmentation functions DQ→M(z) to obtain fragmentation functions

to Σbc, Σ∗bc and Λbc. These distributions are then subject to Altarelli-Parisi evolution up
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to collider energies. As in the case of (cc) production, the quark fragmentation functions

are softened by this evolution, and gluon fragmentation functions are induced. The de-

tailed effect of the Altarelli-Parisi equations on the fragmentation functions to Bc and B∗c
is presented in [6], and the discussion given there applies here as well. Of course, the frag-

mentation functions reduce directly to integrated probabilities as in (4) and (5), quantities

which do not evolve and are more accessible experimentally.

It is interesting to note that at high-energy colliders the rates for production of these

doubly heavy baryons are comparable to those for the more familiar quarkonium systems.

Relating our fragmentation probabilities to those for c→ ψ[4] probability for c→ Σcc,Σ∗cc
to be ∼ 2×10−5, for b→ Λbc to be ∼ 2×10−5, and for b→ Σbc,Σ∗bc to be ∼ 3×10−5. The

probabilities for b → Σbb,Σ∗bb, c → Λbc and c → Σbc,Σ∗bc are down by roughly (mc/mb)3,

or two orders of magnitude. Hence it may be possible to observe the doubly heavy baryons

Σ(∗)
cc , Λbc and Σ(∗)

bc at the Tevatron.

There will be additional contributions to the fragmentation to doubly heavy baryons

from radially excited diquark states which subsequently decay to the ground state. Equa-

tions (5) and (6) also hold for these processes, using the appropriate value for the diquark

wavefunction at the origin. Since for the ψ system, (Rψ(2S)/Rψ)2 ' 0.4, we expect that

(R(cc(2S))/R(cc))2 is also not particularly small and that excited diquarks will contribute

significantly to the production of doubly heavy baryons.

The largest uncertainty in our calculation arises from our lack of knowledge of the

diquark wavefunction at the origin. We have näıvely scaled the values for quarkonium

systems by a colour factor of (1/2)3, which is valid only for wavefunctions living entirely

in the Coulombic region of the potential. This is certainly a poor approximation for cc,

bc and bb bound states. However, we note that in deriving (5) and (6) we have assumed

nothing about the potential except that the diquark is sufficiently tightly bound to have a

∼ 100% probability of fragmenting to baryons:
∫ 1

0
dy D(QQ)→QQq(y) =

∫ 1

0
dy DQ→M(y) =

1. In reality, this integrated probability is somewhat less than one, since the diquark may

dissociate as it hadronises, for example (cc)→ DD+X. Thus it is likely that (5) and (6)

somewhat overestimate the true fragmentation probabilities.

In summary, we have calculated the fragmentation functions of a heavy quark Q to a

doubly heavy baryon of the form QQq or QQ′q. The perturbative part of the calculation

can be related simply to the fragmentation function to quarkonium, and is of a similar

magnitude. The nonperturbative part may be related to the fragmentation of heavy quarks

to heavy mesons, which may be measured experimentally. We have used our results to
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estimate fragmentation probabilities of b and c quarks to doubly heavy baryons of the form

ccq, bcq and bbq. We find the production rates for doubly heavy baryons are large enough

that some of these states may eventually be observable.
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Fig. 1. Feynman diagrams responsible for the fragmentation c→ (cc)c.
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