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INTRODUCTION 

There are basically four known techniques, spectral ratios (Hauge 1981, Johnston and 

Toksoz 1981, Moos 1984, Goldberg et al 1985, Patten 1988, Sams and Goldberg 1990), 

forward modeling (Chuen and Toksoz 1981), inversion (Cheng et al 1986), and first pulse 

rise time (Gladwin and Stacey 1974, Moos 1984), that have been used in the past to 

measure the attenuation coefficient or quality factor from seismic and acoustic data. 

Problems have been encountered in using the spectral techniques, which included: (1) the 

correction for geometrical divergence of the acoustic wave front; (2) the suppression of the 

Gibbs phenomenon or the ringing effect in the spectra; and (3) the elimination of 

contamination from interfering wave modes. Geometrical corrections have been presented 

by Patten (1988) and Sams and Goldberg (1990) for the borehole acoustics case. The 

remaining difficulties in the application of the spectral ratios technique come mainly from 

the suppression of the Gibbs phenomenon and optimal windowing of wave modes. This 

report deals with these two problems. 
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FUNDAMENTALS 

The amplitudes R&j) of a seismic signal at frequencyfrecorded by a receiver at a distance 

or offset x from the source can be represented as, 

R(x,f) = A(f)G( (1) 

where A(/) is the source term, G(x) is the geometrical divergence which is assumed to be 

independent of frequency, and a is the attenuation coefficient. 

For the purpose of demonstrating suppression of the Gibbs phenomenon and optimal 

windowing of fust arrivals, we choose the simplest technique for geometrical correction; 

i.e., let G(x) = l/x. Then, from equation (1) we obtain the attenuation between a receiver 

with an offset XI from the source and a second receiver with an offset x2 from the source 

(Xl <X2)9 

(2) 

. - 

The quality factor Q can then be calculated from the following relation, 

Q 
nf =- 
au’ 

(3) 

where v is the average formation velocity, ignoring velocity dispersion. 

SUPPRESSION OF THE GIBBS PHENOMENON 

The Gibbs phenomenon is caused by the truncation of Fourier series or the discrete Fourier 
e - 

transform (DFT) of data of finite length with discontinuities at or a difference between the 

end points (Antoniou 1979, Bloomfield 1976, Oppenheim and Schafer 1989, Papoulis 

1962). The conventional way to treat this problem is to use windows such as Harming or 
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Hamming to force the end points to become zero or near zero. However, the weighting the 

data points in between the end points in the conventional windows distorts the spectra and 

thus causes erroneous estimation. An ideal way to suppress the Gibbs phenomenon is to 

force the end points to become equal or zero without weighting of the data points in 

between. This can be achieved by: (1) Moving the zero line to the first point of the data- 

shifting the zero line will only introduce a dc component into the spectra which will not 

affect the spectral content of interest and can simply be ignored in measurements of the 

spectral ratios; (2) flipping the data over to create a new data set twice the original length 

with the original last data point as the center of mirror images--this flipping creates an even 

function (Bracewell 1965, Bloomfield 1976) which, as we shall see, will not affect the 

spectral ratios measurements. However, it has recently been observed that, since in a DFI’ 

the input data are implicitly treated as a periodic waveform with period equal to the data 

length, the Gibbs phenomenon actually arises from the incomplete periodicity of the 

waveform; i. e., its period ends before the waveform has completed a full cycle (Pan 

. - 

1993). Zero-line shifting is thus not really needed for the suppression of the Gibbs 

phenomenon, if the end data points are equal, to make the waveform to become a complete 

cycle. Therefore, in the practical application of FFT, if the length of the even function is not 

a power of two, instead of shifting the zero-line and filling in with zeros, the blank points 

- 

in between the length of the even function and the length of FFT can be filled in with the 

first data point or the last point of the even function. The results will be the same. 

Data flipping is not really “windowing” in the conventional sense. Instead, it creates a new 

data set having the spectral content of the original data, but without forced weighting to 

distort the spectra, or difference between the end points to produce the Gibbs phenomenon. 

The technique doubles the data length before transforming into the frequency domain. The 

spectral resolution is thus accordingly doubled. The spectral resolution may be further 

refined by flipping the data mom than once. 
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In a DPT, the discontinuities at or difference between the end data points are equivalent to 

the multiplication of the data by a boxcar function of unit height, which, after being 

transformed into the frequency domain, becomes the convolution of the spectra with a sine 

function (Antoniou 1979, Bracewell 1986). Data flipping eliminates the difference between 

the end data points, and thus clears the discontinuous truncation of the periodic waveform 

by the boxcar function. This means that in the time domain, the data are no longer 

multiplied by a boxcar function, but become an impulse train of complete periodic&y. Once 

transformed into the frequency domain, the spectra are, therefore, no longer convoluted 

with a sine function but are still a periodic impulse train (Pan 1993, Oppenheim and 

Schafer 1989, Papoulis 1962). The Gibbs phenomenon thus disappears, and the spectra 

become truly those of the data . Data flipping has created an even function r’(x,t) by 

doubling the data length against the last data point. That is, 

r(x, f) f =0,1,2 I..‘, N-l 

r(x,2N-l-f) f=N,N+1,...,2N-1’ 
(4) 

- _ . where r(x,t), t = 0,. 1, 2, . . . . N-l, is the original data set, and the equal data points 

r’(x,N-1) and r’(x,N) are the center of mirror images of the even function. 

_ - Assuming that x is independent of t, then the spectra of r’(x,t) are, 

q&f’) = $ 
[ 
R(x,f) + 8% X,f’) ( 1 f’=o,+,t; ,..., (N;1), (5) 

where j = d-1 and R(xJ’) are the spectra of r(x,t), which are identical to R(x,f) in 

equation (1) except that f ’ =fl2, and R*(xf ‘) are the conjugate of R(x,f ‘). The even 

symmetry of r’(x, t) gives R ‘(xf 3 = 
.= 

eJ N R ’ *(nf ‘), which implies that the transform is 
e - 

not real. This is because the even function is of even number and its symmetry is not about 

the origin (Bloomfield, 1976). The average R(xf ‘) and its phase-shifting conjugate will 

induce a phase interference in R’(xf ‘), but the spectral content of the original data is not 
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altered. It will therefore not affect the spectral ratios measurements. Data flipping doubles 

the spectral resolution; i. e.,f ’ =f/2 = 0, l/2,1, . . ..(I%1)/2. This means in R’(x,f ‘) the 

discrete frequency has been cut in half while the spectral length is twice that of R(xf), from 

N/2 to N. The derivation of equation (5) and related equations can be found in the 

Appendix. 

The data flipping technique has been used to design a digital filter via the FFT algorithm 

(Pan 1993). The filter is able to suppress the Gibbs phenomenon in the time domain with 

no transition between passbands and stopbands, no waveform distortion or spectral 

leakage, and the end-effects are minimum. The filter can provide a lowpass, bandpass, 

highpass, bandstop, notch, or single-frequency-pass filtering by simple manipulation of the 

band limits. The technique is also successful for suppression of the ringing effect in the 

frequency domain. 

Simplistic synthetic wavelets shown in Figure 1 are used for the preliminary test of the 

technique. The wavelets are generated using a 20-point sine function centered at 1000 hertz 

- - - with a spectral band-of 500-1500 hertz. The attenuation is calculated using Q = 50, v = 

17187.5 ftk, xl = 660 ft, x2 = 990 ft (Kjartasson 1979), and velocity dispersion is 

ignored. The wavelets are purposely generated with discontinuities at the starting points. 
_ - 

The attenuation coefficient and quality factor Q measured using the data flipping technique 

are respectively plotted against frequency in Figures 2 and 3 together with those using 

Hanning and Hamming windows and those with no windows. Figure 2 shows that data 

flipping gives an almost linear dependence of attenuation on frequency within the spectral 

band of the wavelets, while the other techniques give either ringing or scattered values. 

Figure 3 shows that, within the spectral band of the wavelets, data flipping is able to 

recover a constant Q value of 50 used in the synthesis of the wavelets, while the other 

techniques either overestimate or underestimate Q in the same spectral band. The technique 
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deteriorates slightly near the edges of the wavelet spectral band. The large anomalies at the 

starting points in Figures 2 and 3 are the result of measurements at frequencies below the 

500-hertz spectral band. The attenuation and Q measured using the Hamming window and 

using no windows are cut short at about 1400 hertz because they ring wildly above that 

frequency. 

Another interesting characteristic of the attenuation and Q measured using the data flipping 

technique is that their frequency dependence is invariant with velocity change, while those 

measured using the other techniques are not. Figure 4 plots Q measurements corresponding 

to those in Figure 3 except that the formation velocity has been changed from 17 187.5 ft/s 

to 7000 ft/s in the synthesis of the wavelets. The plot shows that the Q measured using this 

technique keep the same form as those in Figure 3, while those measured using other 

techniques diverge considerably more from Q = 50 than those in Figure 3. 

OF’TIMALWINDOWING 

* - The data flipping technique can also be applied within windows. One hundred-point 

synthetic sine-function wavelets with a spectral band of 700-1300 hertz have been 

generated for this purpose. Measurements of Q with 20-point, 40-point, 60-point, and 80- 
_ - 

point windows are shown in Figure 5. The measurements are all close to 50 except some 

occasional scatters that may be caused by a slight mismatch between corresponding spectra 

arising due to the conjugate phase shift. Sams and Goldberg (1990) reported that 

windowing degrades the Q estimates in the borehole acoustic data, and that the estimates 

are dependent on window length. Data flipping doubles the window length, which 

improves windowing by suppressing the Gibbs phenomenon, and also makes the Q 

measurement less sensitive to window length for longer windows. 
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Fixed-length windows are not optimal for the isolation of first arrivals. A window with too 

short a length may leave out the lower frequency content of the first arrivals (due to the 

progressive delay of those lower frequencies by dispersion), and will thus underestimate 

the attenuation and overestimate Q. Whereas, a window with too long a length may 

jeopardize the effort to eliminate contamination from the lower velocity arrivals. A floating- 

length window, designed to pick up the first arrivals on a cycle-by-cycle basis, improves 

the results. The first cycles of the arrivals can be picked up in two ways. Examples of 

selecting the first one and one-half (1 l/2) cycles to the zero line (point 0’) to include the 

peak of the second cycle, as well as selecting one and three-fourth (1 3/4) cycles to the 

trough of the second cycle, are shown in Figure 6. The difference between the two 

selections is small; however, the results in attenuation and Q measurements are surprisingly 

different. As shown in Figure 7, the atrivals chosen up to 1 l/2 cycles underestimate Q (or 

overestimate the attenuation) at lower frequencies and overestimate Q (or underestimate the 

attenuation) at higher frequencies, while those chosen up to 1 3/4 cycles give a Q close to 

50 and an attenuation nearly linearly dependent on frequency. For the general case, the 
. _ 

implication of this observation of these data might be that the derivative or slope at the 

truncation points should be kept as close to zero as possible. 

Finally, we should also note that, as shown in Figures 2, 3, and 4, the attenuation and Q 

arc measured within the spectral bands of the wavelets excluding the sidelobes. Ringing or 

scatter shown by the non-data-flipping measurements in these figures is therefore not 

related to the sidelobes but is an effect of the Gibbs phenomenon within the spectral band 

of the wavelets. 

e - 

CONCLUSIONS 

A preliminary test of the data flipping technique using a sine-function wavelet reveals: (1) 

the technique is effective for the suppression of the Gibbs phenomenon or the ringing effect 
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in the spectral ratios measurement and is invariant to velocity change; (2) after the Gibbs 

phenomenon has been suppressed, windowing will not degrade attenuation and Q 

measurements, but the measurements do show a dependence on window length; (3) the 

optimal way to pick up the first arrivals for attenuation and Q measurements through data 

flipping is to pick up to a point at which the derivative or slope is zero or nearly zero, such 

as at the trough of the second cycle of the first arrivals; and (4) attenuation and Q 

measurements are least scattered within the spectral band of the first arrivals. 
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APPENDIX 

SPECTRA OF AN EVEN FUNCTION 

The DFT ot the spectra of the even function r’(xJ), t = 0,1,2,. . .,2N- 1 in equation (4) are, 

R’(x,f) = &zzryx,f)e-jF 
t-o 

f =0,1,2 ,..., N-l , (Al) 

where j = 4-l. Now letf ’ =f12 and substitute t’ - - 2N-1-t into the second term of equation 

(Al). Since summation is independent of direction and its index is dummy, and in a DFT 

the waveform is periodic with its period equal to the data length, then we have, 
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Here one should note that there is a slight difference between R ‘(xf) and R ‘(x,f ‘) in 

theoretical interpretation. R’(x,fl is the direct DFI’ of r’(x,t), which implies a frequency 

sampling interval of 1/2NAt, where At is the time sampling interval. Whereas, R’(xf ‘) 

represents the average of R&f ‘) and its phase-shifting conjugate, which implies an original 

frequency sampling interval of l/NAt. Physically R’(xf) and R’(xf ‘) are identical, with 

exactly the same spectral resolution and spectral length. The discrete frequency of R ‘(xf ‘) 

therefore has to split; i.e.,7 =$G = 0,1/2,1,3/2,. . .,(N-1)/2. 

On the other hand, from equation (4) we know that r’(x,t) = r’(x,2N-l-t) for 

t = 0,1,2 ,..., 2N-1. We then obtain, 

R’kf’) 

=e 
jw 1 *N-l 
2N [fi c r(x,f’)d%] 

t’=O 

=e’zR’*(x,f) f =0,1,2 ,..., N-l . 

. . 

NOW substitutingf =f12, we have 

R’(x,f’) = ,iTR’*(x,f’) f’=o,+,1,; I..., (N;l) 

12 
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LIST OF FIGURES 

FIG. 1. Synthetic wavelets generated using a sine function centered at 1000 hertz in a 

spectral band of 500-1500 hertz. Attenuation is added using Q = 50, and v = 

17187.5 fk/s. The solid-line is the wavelet at offset x1 = 660 ft, and the dbshed-line is 

at offset x2 = 990 ft. 

FIG. 2. Attenuation measurements from the synthetic wavelets shown in Figure 1. Solid- 

line is measurement using data flipping technique, dashed-line using Hanning window, 

dotted-line Hammin g window, and cross-line with no window. 

FIG. 3. Q measurements from the synthetic wavelets in Figure 1. Line notations are as 

those in Figure 2. 

FIG. 4. Q measurements corresponding to those shown in Figure 3, except formation 

velocity has been changed from 17187.5 ft/s to 7000 ft/s. 

. FIG. 5. Q measurements from synthetic data with fixed-length windows. Solid-line is from 

20-point window, dashed-line from 40-point window, dotted-line from 60-point 

window, and cross-line from 80-point window. 

FIG. 6. First arrivals pick-up. First method picks up to the point 0’; second method picks 

up to the end trough. Solid-line is at offset xl = 660 ft, and dashed-line at offset x2 = 

990 ft. Note the discontinuities at the end points. 

FIG. 7. Q measurements from synthetic first arrivals. Dashed-line is from the 1 l/2-cycle 

wavelets, and solid-line is from the 1 3/4-cycle wavelets. 
e - 

13 


