
, 

L 
SLAC-PUB-6215 
April 1993 
(A) 

Disruption Effects from the Collision of Quasi-Flat Beams* 
Pisin Chen 

Stanford Linear Accelerator Center 
Stanford University, Stanford, CA 94305 

Absiract 
The disruption effects from the collision of round 

beams and flat beams in linear colliders have been stud- 
ied in the past, and has by now been well understood. In 
practice, however, in the current SLC running condition 
and in several designs of the next generation linear collid- 
ers, the quasi-flat beam geometries are expected. Namely, 
the beam aspect ratio R z us/or > 1, but not infinitely 
large. In this regime the disruption effects in both z and y 
dimensions should be carefully included in order to prop 
erly describe the beam-beam interaction phenomena. In 
this paper we investigate two major disruption effects for 
the the quasi-flat beam regime: The luminosity enhance- 
ment factor and the effective beamstrahlung. Computer 
simulations are employed and simple scaling laws are de- 
duced. -&- - 

I. INTRODUCTION 
One of the most important issues in the design and 

operation of e+e- linear colliders is the effect of the 
beam-beam interaction. The single-pass nature of lin- 
ear colliders demands that a high luminosity can only be 
achieved by colliding tiny, intense bunches of electrons 
and positrons. In this circumstance, these bunches inter- 
act strongly with one another, inducing large disrupiion, 
or pinch, effect between the colliding beams, and produc- 
ing intense radiation called beamstmhlung. 

In the case of the disruption effects, there have been 
detailed studies for the round beam, i.e., R  = u~/u,, = 1, 
and for the flat beam collisions[l][2]. Typically, in the flat 
beam limit where R > 1, the horizontal motion of beam 
particles is nigligible, and the problem has been studied 
in the one-dimensional approximation. However the cur- 
rent SLC running condition lies in the regime where R is 
larger, but not so much larger than one. As a result the 
horizontal motion of particles cannot be ignored. It hap 
pens that several of the next generation linear colliders, 
i.e., CLIC, DLC and TESLA, call for beam dimensions 
which also fall into this catagory. There is thus a need for 
a scaling law which can help estimate the disruption effect 
in the quasi-flat beam regime. In addition, in this regime 
it is also important that the calculation on beamstrahlung 
has the disruption effect properly included. 

II. LUMINOSITY ENHANCEMNET FACTOR 
The collective fields in one beam deform the other 

beam during collision, by an amount controlled by global 
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disruption pammeiers, which may be different in the two 
transverse directions[l][2]: 

The deformation of the colliding barns results in effec- 
tive beam sizes, 6, and 6,, which are different from their 
nominal values. This in turn gives an effective luminosity 
different from the nominal one. The luminosity enhance- 
ment factor is defined as the ratio of the effective luminos- 
ity to the nominal luminosity due to the change of beam 
size: 

H ( _ ==ffu D = c azgu * (2) 
.- F 

The luminosity enhancement factor is calculable an- 
alytically only’in the D,,, < 1 limit. Beyond this limit 
the dynamics of beam-beam interaction becomes nonlin- 
ear, and one must use simulations. For the case of round 
beams, simulations produce the behavior[2]: 

H  D= 1+D1~‘(~){1n(~+1)+21n(0.8/A)}, (3) 

where for round beam D E D, = D,, and A P A, = 
A, = urlp, and /? is the &function at the interaction 
point. This scaling law is valid to about 10% accuracy. 
The largeness of H, in the D=,,, > 1 limit was recognized 
to be associated with the near equilibrium pinch-confined 
transverse beam profiles[2]. In this regime the beam par- 
ticles undergo multiple betatron oscillations during the 
collision, and tend to be traped in a much narrower fo- 
cusing potential of the opposing beam. 

In the flat beam limit where one-dimensional approx- 
imation is employed, simulation gives the following scaling 
law[2]: 

H,(R > 1) z H,(R = l)‘l’, 

when D,, and A,, are fixed and OS, A, + 0. 

(4) 

It was later shown that there is actually a theoretical 
basis for such a cubic relationship[t]. The near equilib- 
rium pinch-confined states are approached through colli- 
sionleas damping due to mixing and filamentation in phase 
space. It was already pointed out[l] that the disruption 
parameter D is related to the square of the wave-number 
(of the betatron oscillation), KB. The emittance growth 
due to the disruption effect occurs in a length scale of 
K;‘, but the beam rethermalizes in a length /Y due to 
the nonlaminar effects of the finite emittance. Thus the 
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fundamental .quantity which governs the luminosity en- 
hancement is evdently &/AAy N ICOP, in the 1-D cal- 
culation. Indeed, this is precisely the leading logarithmic 
behavior in (3) for H, . When the same prescription is 
applied to round beams, it was shown that the cubic re- 
lationship between the two limits can be deduced. 

The less than quadratic dependence, which one might 
naively assume, can also be appreciated intuitively. In the 
round beam case the change of beam size in either z or y 
direction will enhance the pinching of the other dimension, 
i.e., the focusing in the two dimensions are fully coupled. 
On the other hand, it is well-known that the field strength 
in a non-round, i.e., R > 1, charge distribution is mainly 
determined by its major dimension, a,. This means that 
the lack of horizontal disruption renders a milder pinch 
effect for the flat beams. 

From (2) we see that for round beams the effective 
beam size is given by 

a = aH;‘l’ , 

On the other hand, since in the 
izontal beam size is assumed to 
tionship (4) suggests that 

a; = uy H;:” , 

R=l . (5) 

flat beam limit the hor- 
be fixed, the cubic rela- 

R>>l . (6) 

It was therefore proposed recently that the luminosity en- 
hancement factor for quasi-flat beams scales as[4]: 

H D = H;yH;.” , (7) 

Noteice, however, that although this scaling law a& 
proaches the right flat beam limit of (4), it does not con- 
verge to the correct round beam scaling of (3). It is evi- 
dent that the power law of the HD, dependence should be 
more complex than the simple cubic scaling when R ---, 1. 
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Fig.1 Evolution of H, as a function of R 
Computer simulation using ABEL[B] was performed 

to study the evolution of H, as a function of R. This 
is done by fixing D,, A,, and A, in the calculations, 

while varying Dz. Figure 1 shows the simulation results 
of H, as a function of R, with A, = A, = 0.1 and 
three choices of D,. We find that these results (shown 
in squares) agrees very well with the following scaling be- 
havior (shown in solid curves): 

H, = H;pH;F’ , 

f(R)=$$%{$ 1 ;z; ‘. 
P3) 

This new scaling law now applies to all values of R. 

III. EFFECTIVE BEAMSTRAHLUNG 
High energy e+e- beams generally follow Gaussian 

distributions in the three spatial dimensions, and their 
local field strength varies inside the beam volume. In the 
weak disruption limit, where particle motions have small 
deviations from the t direction, it is possible to integrate 
the radiation process over this volume and derive relations 
which depend only on averaged, global beam parameters. 
It is found in such para-axial, or fixed impact parame- 
ter, approximation, that the beamstrahlung intensity is 
controlled by a global beamstrahlung parameter[6][7], 

(B) 5 r:yN Ts=y-=- 
BC 6 QU,(U, + uy) ’ (9) 

where (B) is the mean electromagnatic field strength of 
the beam, B, = mz/e 1: 4.4 x 1013 Gauss is the Schwinger 
critical field, N is the total number of particles in a bunch, 
7 is the Lorentz factor of the beam, re is the classical 
electron radius, and a is the fine structure constant. 

In the most general designs for linear colliders, the 
photon spectrum due to beamstrahlung is not a factorized 
function of the electron and positron sources and depends 
on the detailed evolution of the bunches in the collision 
process. In general, then, the spectrum of radiation de- 
pends on the disruption process and must be computed 
by detailed simulation.[5] However, typical beams in lin- 
ear colliders are very long and narrow. Since all particles 
oscillate within the focusing potential that is defined by 
the geometry of the oncoming beam, the oscillation am- 
plitudes are small compared with their periodicity in L. 
Then the assumption of small deviations from the z di- 
rection remains approximately valid. The main effect of 
disruption on beamstrahlung is therefore the change of 
effective EM fields in the bunch due to the deformation 
of the transverse beam sizes. Thus, beamstrahlung is in 
practice still factorizable even under a non-negligible dis- 
ruption effect, if one computes its magnitude using an 
effective beam size which takes the global disruption into 
account. This means one shall only replace the nominal 
beam size uZ, uY in (9) by the corresponding effective size 
ai, and a’v following the prescription in (8): 

us - - - ucH;;” , %I = uy H;;(R) . (10) 
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Then the effective beamstrahlung parameter is given by 

Y2 rz7N 
6 au,(a, + 5,) * (11) 

As long as the effect of disruption on beamstrahlung 
can be grouped under the globle beamstrahlung param- 
eter, the recently derived beamstrahlung photon spec- 
trum[8], which invokes the mean-field approximation, is 
readily applcable. The number of soft photons radiated 
per unit time, calculated by the classical theory of radia- 
tion. is 

v-3 
5 aZy =-- . 

24 re7 (12) 
Note that for a given field strength vel is independent of 
the particle energy. This expression applies to the in- 
frared limit of the spectrum where photon energies ap- 
proach zero. For a hard photon, up to the initial energy 
of the electron, the quantum mechanical calculation gives 
a more general formula: 

v7 = ~,,[i + ~2/31-l/2 . (13) 

In a multi-photon radiation process, it was found useful to 
introduce a linear interpolation between these two values. 
Let z be the energy fraction of the initial electron carried 
by the photon. Then define 

v(x) = & 
J 

1 

dX’[X’&I + (1 - z’)+] 
t (14) 

= ;[(l-+x)v,l+(l -z)l+] . .’ - 

With these basic parameters introduced, f,(z) is given . 
by PI 

where Y is given by (ll), 

G(X) = $f{ 1 - 1 [l- em9(E)“y]} 
g(x)% 

+w{l- k[l-e++]} , 

g(x) = 1 - $1 - x)2/3 , 

and 

n7 = &u~v~. 

(15) 

(16) 

(17) 

n, is the mean number of photons radiated per electron 
throughout the collision. The approximations are valid 
for T 5 5. 

IV. EXAMPLE 
To varify the validity of our handling of the dis- 

ruption effect in beamstrahlung, we calculate the beam- 
strahlung spectrum in TESLA with center-of-mass en- 
ergy at 1 TeV[S]. In this design, N = 5.8 x 101o,u, = 
404nm, by = 50.5nm,u, = llOO~m,P~ = 8mm, and 

4 = 2.5mm. Therefore D, = 1.95, D, = 15.6 (R = 8), 
and A, = 0.14,Az = 0.44. This gives aZ = 172nm and 
% = 27.0nm form (10). In turn, we find H, = 4.4 from 
(8). According to our prescription the disruption effect 
changes the beamstrahlung parameter from TO = 0.10 
to Y = 0.24. With this effective beamstrahlung parame- 
ter, we calculate the beamstrahlung spectrum using (15). 
This is then compared with the simulation result, shown 
in Fig. 2. We see that our prescription indeed agrees very 
well with the simulation. 
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Fig.2 Beamstrahlung spectrum in a 1 TeV TESLA. 
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