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Abstract 

Global Tuning Knobs for the SLC Final Focus.* 

N. J. Walker, J. Irwin, M . Woodley 
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 

The beam phase space at the exit of a given transport line 
generally depends on the incoming beam conditions, and thus 
in order to adjust the beam parameters at the exit of the line 
requires a prior knowledge of the initial beam parameters. The 
same is generally true for final focus systems. A tuning algo- 
rithm  for p .matching the SLC final focus is reported here in 
which no prior knowledge of the exact incoming phase space is 
required. Only a single beam size diagnostic located at either 
the interaction point (IP) or an image of the IP is required, 
together with a knowledge of the linear lattice from  the quadru- 
poles to the tuning point. The algorithm  is presented within the 
Lie Algebra framework. Although the algorithm  is presented 
here is specific to linear collider final focus systems, the tech- 
nique is generally applicable to any beamline. 

I. INTRODUCTION. 
The SLC final focus consists of twb telescopes separated by 

a chromatic correction section (CCS)[l]. The demagnification 
of the final telescope (FT) is 5:l in both planes, and approxi- 
mately 8: k,horizontally and 3:l vertically in the upper tele- 

.scope (UT). Adjusting the focus at the interaction point (IP) is 
critical to achieving the maximum luminosity: the beam waist 
(a-l>) must- be at the IP, and the correct p function (p*) is 
required to give the m inimum possible beam size[2]. Given the 
dynamic range of the incoming beam conditions (especially 
emittince), it is necessary to be able to efficiently tune the final 
focus to acheve the required conditions at the IP. In general, 
beam matching in transport lines requires a prior knowledge of 
the initial beam phase space. These measurements are then 
given to a non-linear fitting algorithm  that adjusts the quadru- 
poles in the line to achieve the desired results. In the following 
sections, an algorithm  for achieving the correct /3 match in the 
SLC final focus is presented that requires only a single beam 
size diagnostic (wire scanner), and no prior knowledge of the 
incoming beam conditions. It is proposed to implement such an 
algorithm  as part of the SLC final focus upgrade[3], where all 
the tuning will take place in the UT. To facilitate this, a new 
wire Scanner will be positioned at the IP image point at the 
entrance to the CCS (exit of the UT). Although the algorithm  is 
presented within the framework of the SLC final focus, the 
technique is generally applicable to any beamline. 

II. p MATCHING ALGORITHM. 
Figure 1 shows schematically the proposed tuning algo- 

rithm . For simplicity, only one plane will be considered. The 
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initial adjustment (figure la) brings the beam waist to the wire 
(al--o). This is achieved by applying an effective drift matrix: 

R, = (1) 

In practice, the parameter s is scanned until a m inimum in the 
beam size at the wire scanner is achieved. The next stage is to 
correct the beam size, i.e. adjust the p function (figure lb), 
which is simply the application of a magnifying matrix of the 
form  

fm O\ 
&=I0 1). (2) 

\ ml  

In this case, the parameter m  can either be scanned until the 
desired beam size at the wire is achieved, or it can be calcu- 
lated and applied from  the knowledge of the initial beam size at 
the wire. If there is no coupling in the beam (see section III), 
the beam is now matched to give the desired image at the IP 
(assuming that the demagnification and phase advance of the 
CCS and final telescope are correctly set). 

The problem is now reduced to designing orthogonal con- 
trol over the two parameters s and m  (four when considering 
both X and Y planes). In the 2x2 matrices given in (1) and (2), 
there are three independent parameters; thus to generate the 
desired form  of the matrix requires three (six) independent 
quadrupoles. It may at first seem strange that three independent 
variables are required to match two parameters (a and p); how- 
ever the phase advance is also implicitly constrained, giving a 
total of three parameters. Because of the phase advance con- 
straint, the solution arrived at may not be the optimum with 
respect to magnet strengths. A phase knob can be constructed 
which adjusts only the phase advance and leaves the p function 
unchanged and the waist at the wire. The corresponding matrix 
has the form  

(3) 
which is more complicated than either (1) or (2), and requires a 
prior knowledge of the p function. The single parameter 4 can 
be adjusted to relieve magnet power supplies which are at their 
maximum strength, without losing the p match. 

III. CONSTRUCTION OF TUNING KNOBS. 
To construct the orthogonal knobs to adjust the matching 

parameters, a perturbation technique is employed The three 
matching quads need to be adjusted in such a way as to pro- 
duce either a pure s, m , or 9. An elegant method for calculating 
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Figure 1. Figures (a), (b) and (c) represent the tuning stages involved in p matching (the phase space is normalized to the target p). First the waist 
is brought to the wire scanner by scanning the s parameter (a), then the required matching is achieved by adjusting the m parameter. All operations 

can be accomplished by measuring the beam size on the wire scanner. 

the knobs his to use second-order Hamiltonians to represent the 
thin lens perturbations to the existing lattice, and then use them 

e: -HAR: u = u+ [-HAku] +&t-H,, [--HAK,“]l +... (6) 

as generators in a Lie Algebra[4]. - 
If the.ph-ase space coordinates at the wire scanner (match- 

where u can be any phase space coordinate. To see how the 

ing point) are x = (x, x’, y, y’), then the total perturbative Hamil- 
coefficients in HM relate to the required tuning matrices given 

. tonian due to the three quadrupoles can be expressed as 
in (l), (2) and (3), three cases are considered: 

H bK = ax2+bxx’+cx ,2 , c4j A. a=O, b=O. 

where the coefficients are functions of the linear lattice (R The Hamiltonian given in (4) is now simply cY2. Applying 
matrix elements) between the quadrupoles and wire scanner, (6) to x and x’ gives: 
and the change in quadrupole strengths AK=(AK], AK2, AK3). 
To first order, the coefficients in (4) can be expressed as linear -*2:x = x+2cx’ x + e’ 
functions of the A?C;s: xI +e:-cx 92 :xI = x1 

(7) 
3 

u = ~~AK,R,,(~)~ 
i=l 

3 

The equations in (7) can be represented as the matrix 

(8) 

b = -c AKiR,, (i) R,, (i) which is the required drift matrix (1) with s=2c. 
i=l 

B. a=O, c=O. 
3 

c = f c AK,R,, (i)2 Now HhK- -bxx’, and the expansion given in (6) becomes 
i=l (5) 

where Rpq(i) are the linear Green’s functions from the i* qua- 
x ~ e: -bxx’ : x = (I+b+T+$+g+...)x = ebx 

drupole to the wire scanner. Over some small range, therefore, 
it is possible to have linear combinations of the quadrupole x, --) e: -bxx’ :x, b4 
strengths which give independent control over the coefficients 

= (]-b+T-;+24-...)x’ = eebxt 
. (9) 

a, b and c. 
When exponentiated, the Hamiltonian becomes a generator In matrix form, the equations in (9) give the required magnifi- 

for a map[4]: cation matrix (2), with m = e! 
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--i? iz=(l/2)fl, b=O, c=(I/2)4$. 

The Hamiltonian is now given as: 

l$* 1 
HAK 2p 

= --x +$lpx’*. 

The expansion (7) now generates the phase knob matrix (3), 
with the corresponding phase change 4. 

Having equated the coefficients in the Hamiltonian to the 
desired tuning coefficients s, m and +, it is a simple matter to 
calculate the required changes in quadrupole strengths to effect 
the Lob. The linear equations given in (5) are only correct 
over a small range of the AKi, and in order to make large cor- 
rections or scans of a given knob, it will be necessary to inte- 
grate through the change, i.e. take small steps in AKi, 
recalculating the coefficients at each step. The size of the step 
has to be found empirically, although in simulations for the 
SLC tuning scheme, 9 or 10 steps have found to be sufficient. 
Figure 2 shows simulations of a waist (drift matrix) scan. 
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Figure 2. Simulations of an X waist (drift matrix) scan. The solid 

gray line represents a pure drift, while the other three lines represent 
scans using different step sizes. 
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the small o,, proportionally to the horizontal divergence. With 
the two skew-quadrupoles available in the UT, it is possible to 
independently control these two coefficients. The remaining 
coefficients, a and c, will be allowed to vary arbitrarily. Inclu- 
sion of the skew correction now necessitates the precise control 
of eight magnets (six normal- and two skew-quadrupoles), and 
the coefficients in (5) will in general contain the coupled 
Green’s functions. 

V. IMPLEMENTATION. 
The beta matching algorithm (with coupling) will be 

implemented in FORTRAN as part of the SLC control sys- 
tem[5]. This system provides the necessary interface to the 
readback and control of the magnets which will be used, as 
well as a standardized user interface consisting of touch panels 
and displays. In addition, a Correlation Plot facility is pro- 
vided which allows measurement of beam parameters as a 
function of magnet strengths[6]. Users will select a desired 
scan type (i.e. X-waist), scan range, and number of incremental 

- - 5 steps 
-------- 13seps 

steps from a touch panel. The beta matching software will 
. compute quadrupole strengths for each step of the scan and 

then use the Correlation Plot facility to measure the beam size 
on a wire scanner as it steps the magnets through their precom- 

,,!E puted setpoints. The user will be presented with the results of 

.,ms P 
the scan graphically and will be allowed to select the optimum 
set of quadrupole strengths. 

Iv. COUPLING CORRECTION. 
A coupling correction can be formulated in exactly the 

same way as the p matching described in section II. In general 
141 

four skew-quadrupoles are required to independently adjust the 
four skew parameters in the Hamiltonian: [51 

H skew = axy + bxy’ + cx’y + dx’y’ . (11) 

The associated coupled (now 4x4) matrix generated by this 
WI 

Hamiltonian is of the form 

. (12) 

where h=cos@), 5 = sin(O)/@ with 8* = ad-bc (@> 0). In the 
case of 8*< 0, then h=cosh(@, and 5 = sinh@)/O. Because of 
the flat nature of the beam (o )) Q ), only two of these coeffi- 
cients are of interest in the S*LC &al focus: the b parameter 
adjusts the x-y tilt of the beam, while the d parameter increases 
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