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Abstract

We discuss the relation between the CP symmetry and the custodial SU(2)
symmetry in the Higgs sector. In particular, we show that CP violation in the
Higgs-gauge sector is allowed only if the custodial SU(2) symmetry is broken. We

exploit these facts to constrain CP violation using the experimental bounds on ρ−1.
CP nonconservation in the Higgs-fermion interactions can also be constrained in a
similar way although a possible exception is pointed out.
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1. Introduction

In the standard model (SM) of the weak interactions the origin of CP noncon-

servation is intimately related to the mechanism of electroweak symmetry breaking

(ESB). Progress in the understanding of one of these phenomena will most probably

lead to progress in the understanding of the other.

CP nonconservation in the SM arises from the phases appearing in the Kobayashi-

Maskawa matrix
1
. This suffices to explain the CP violation observed in the neutral

kaon system. However, unless only one Higgs doublet triggers ESB, it seems natu-

ral for CP nonconservation to also occur in the Higgs interactions
2
. This source of

CP violation can manifest itself through virtual effects or through direct produc-

tion of Higgs bosons. In the first case, one looks for one-loop Higgs contributions

to CP-violating experimental observables such as the electric dipole moment of the

neutron
2−4

and electron
5
, or asymmetries in the top quark production or decay

6
.

Such one-loop contributions are generally small and decrease with increasing Higgs

masses. For Higgs masses of the order of a hundred GeV maximal CP violation in

the Higgs sector is consistent with present experimental data. In the second case,

one tries to detect CP violation in the production mechanisms of the Higgs bosons

or their decays
7−9

. For example, evidence of CP violation in the production of two

Higgs, H1 and H2, in e+e− colliders can be obtained by observing the processes
7

e+e− → Z∗ → ZH1 ,

→ ZH2 ,

e+e− → Z∗ → H1H2 .

(1)

Another possibility would be to use polarized photons produced by back-scattering

laser beams at a TeV scale e+e− collider
8
. In this case, large Higgs production

asymmetries in γγ collisions would provide evidence of CP violation.
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In this paper we propose a new way to constrain CP violation in the Higgs sec-

tor. The idea is as follows. We know that experimentally ρ ≡ m2
W/(m

2
Z cos2 θW ) '

1. This can be understood as a consequence of an approximate global SU(2) sym-

metry of the lagrangian, called in the literature a custodial symmetry
10

. We will

show that when we have CP violation in the Higgs sector, such a custodial SU(2)

symmetry cannot be defined in the Higgs potential.
#1

Thus, if we insist in having

CP violation, radiative corrections to ρ will be unavoidable. From the experimen-

tal bounds on ∆ρ ≡ ρ − 1, we will be able to constrain the CP violation in the

Higgs sector.

In section 2, we analyze the scalar contributions to the ρ parameter in a CP-

violating two Higgs doublet model. The custodial symmetry is defined in section

3 where we prove our assertion that a custodial-invariant Higgs potential is always

CP conserving. In section 4 we use the results of section 2 and 3 in an attempt to

place bounds on CP violation in the Higgs sector. Finally, section 5 is devoted to

the conclusions.

2. Contribution to the ρ parameter from a Higgs sector with maximal

CP violation

CP violation can occur in the Higgs sector in models with several scalar multi-

plets. Models with only Higgs doublets are particularly interesting because at tree

level ρ = 1 is insured in a natural way. This is true whether or not we impose a

custodial symmetry on the scalar potential. Higher representations, on the other

hand, require a fine-tuning of the vacuum expectation values (VEVs) of the neu-

tral scalars in order that ρ ' 1.
#2

In such models the ρ parameter is arbitrary and

#1 This was previously pointed out by S. Weinberg in Ref. [2].
#2 There are some exotic representations, such as a 7-plet of hypercharge Y = ±4, for which

ρ = 1 at tree level independently of the VEVs of the scalars.
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radiative corrections are not calculable.

In this paper we will only work within the two Higgs doublet model (THDM).

Our results, however, can be generalized to most of the multi-scalar models. The

most general SU(2)L × U(1)Y gauge invariant two Higgs doublet potential is

V (Φ1,Φ2) = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 − (m2
12Φ†1Φ2 + h.c.)

+ λ1(Φ†1Φ1)2 + λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+ 1
2

[
λ5(Φ†1Φ2)2 + h.c.

]
+ 1

2

[
Φ†1Φ2{λ6(Φ†1Φ1) + λ7(Φ†2Φ2)}+ h.c.

]
.

(2)

In general the parameters m2
12, λ5, λ6 and λ7 can be complex and thus give rise to

CP violation in the Higgs sector.
#3

Even if all the parameters are real (no explicit

CP violation) it can be shown that there is a region of parameter space where the

VEVs of the neutral scalars are

〈
φ0

1

〉
= v1 ,

〈
φ0

2

〉
= v2e

iξ ξ 6= nπ (n ∈ Z), (3)

and therefore CP is spontaneously broken
12

. It is convenient to define a basis Φ′1,

Φ′2 where only one Higgs doublet gets a VEV, i.e.,

Φ′1 = cos β Φ1 + sinβ e−iξΦ2 =

(
G+

v + 1√
2

(
h0 + iG0

)) ,

Φ′2 =− sinβ Φ1 + cos β e−iξΦ2 =

(
H+

1√
2

(
H0 + iA0

)) ,

(4)

where v ≡
√
v2

1 + v2
2, tan β = v2/v1, G+ and G0 are the Goldstone bosons and H+

is the charged Higgs. The three neutral Higgs boson mass eigenstates Hi=1,3 are

#3 Strictly speaking, the presence of complex scalar self-couplings is a necessary but not suffi-
cient condition for CP violation11.
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mixtures of h0, H0 and A0: H1

H2

H3

 = OOO

 h0

H0

A0

 , (5)

where OOO is an orthogonal matrix.

Higgs boson contributions to the ρ parameter have been extensively analyzed in

theories with two Higgs doublets without CP violation
13−17

and also more recently

in the CP-violating case
18

. Nevertheless, the connection between the magnitude of

such contributions, the custodial symmetry and CP violation in the Higgs sector

has not been analyzed.

The loop contributions to ∆ρ are given by the parameter T defined by
19

αT ≡ g2

m2
W

[Π11(0)− Π33(0)] , (6)

where Πab(q
2) is the coefficient of gµν in the vacuum polarization tensor and

α = e2/(4π). The Higgs contributions to T are not finite. The gauge boson

contributions must also be included to obtain a finite result. For this reason, it is

convenient to set the SM with one Higgs doublet (Href ) as a reference point and

study the deviations from this point. In this case, the extra contribution to T in a

CP-violating THDM is given by
#4

αT = − 3g′2

64π2

3∑
i=1

OOO
2

i1

m2
W−m2

Z
L(m2

Hi
,m2

Href
)

+ g2

64π2m2
W

 3∑
i=1

(
1−OOO2

i1

)
F (m2

Hi
,m2

H+)− 1
2

3∑
i,j,k=1
i6=j 6=k

OOO2
i1F (m2

Hj
,m2

Hk
)

 ,

(7)

#4 See also Ref. [18].
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where

L(x, y) = F (x,m2
Z)− F (x,m2

W) + F (y,m2
W)− F (y,m2

Z) , (8)

and

F (x, y) = x+y
2 −

xy
x−y ln x

y . (9)

The first term reflects the breaking of the custodial symmetry which results when

the U(1)Y factor is gauged, and arises even when the Higgs potential is custodial-

invariant
20

. Such a term grows only logarithmically with the Higgs masses:

1
m2
W−m2

Z
L(m2

Hi
,m2

Href
) ' ln

m2
Hi

m2
Href

for mHi, mHref � mZ . (10)

The second term (in brackets) arises, as we will see, only if the Higgs potential

does not have a custodial SU(2) symmetry, and gives a contribution that depends

quadratically on the Higgs masses. Contrary to what occurs in the CP-conserving

THDM, this term does not cancel when the H+ is degenerate with one neutral

Higgs boson
13,14

. From Eq. (7) one can see that this second term vanishes only if

there exists a neutral Higgs boson Hi such that

mHi = mH+ and OOOi1 = 0 . (11)

In the case where the H+ is degenerate with two neutral Higgs such a term also

vanishes. It can be easily shown, however, that when this latter condition holds

Eq. (11) also holds.

The relation between CP and the custodial symmetry may be apparent in

Eq. (11). It was shown in Ref. [7] that in the limit where OOOi1 → 0 (for any i) CP is

conserved by the Higgs-gauge interactions. Consequently, if the contributions to T
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are small then CP violation is also small. Note that the opposite is not true
13−17

.

The relation between the custodial and CP symmetry will become clearer in the

next section.

In principle there is no reason to expect that Eq. (11) holds, so the contribution

to T for large Higgs masses could be significant. Since T depends on six arbitrary

parameters it is difficult to give a full analysis of its value. We will focus on the

contribution to T from a maximally CP-violating Higgs sector. This occurs when
7

OOO11 ' OOO21 ' OOO31 '
√

3
3 . (12)

Maximal CP violation also requires a large splitting between the neutral Higgs

masses
3,21

. Since it may be more natural for the Higgs boson mass splitting to be

of the order of their masses, i.e.,

∆m2
H ∼ m2

H , (13)

we will also consider the case where both Eqs. (12) and (13) hold. To give an

idea of the orders of magnitude, we have plotted in Fig. 1 the parameter T as a

function of the charged Higgs mass for two different sets of neutral Higgs masses. In

fig. 1a we have considered a large mass splitting. We have chosen (mH1,mH2,mH3)

= (60, 500, 1000) GeV and (60, 1000, 1100) GeV. In Fig. 1b we have followed the

natural condition of Eq. (13) and chosen mH1 = 1
2mH2 = mH3 = 3

2mH+ and mH1 =

1
2mH2 = 3

2mH+ = 2mH3. Following Ref. [22], we have taken mHref = mt = mZ as

the reference point. From Fig. 1a one can see that a large mass splitting results in

a large contribution to T . This was expected as we noted before. When the Higgs

mass splitting is on the order of their masses, the contribution is only relevant for
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a large Higgs mass scale (Fig. 1b). The experimental limits on T (dotted line) have

been taken from Ref. [22],

−0.93 < T < 0.33 . (14)

This experimental bound can be used to rule out a region of parameter space of

the Higgs sector. However, since the top quark mass is still unknown there is a

large uncertainty in this excluded region (a large negative contribution to T from

a CP-violating Higgs sector may be canceled by the positive contribution from the

top quark). Nevertheless, it is likely that the top quark will be discovered in the

near future. If it were found and its mass measured to an accuracy of ∆mt ' ±5

GeV, it would be possible
23

, using the “Ultimate LEP” configuration, to improve

the experimental uncertainty of T to

∆T ' ±0.1 . (15)

In this case, if the central value of T remained close to zero (after subtracting

the top quark contribution), any custodial-breaking term in the Higgs potential

would be tightly constrained.
#5

Of course, we could fine-tune the parameters of

the Higgs potential in order to make the contribution to T small without requir-

ing an approximate custodial symmetry. We will not consider such an unnatural

possibility.

3. CP and Custodial Symmetry in the Higgs Potential

In this section we study the CP symmetry in the limit where the Higgs po-

tential is custodial SU(2) invariant. The custodial symmetry is actually violated

#5 Actually, due to the first term in Eq. (7), a small experimental value for T would be required
even in models with a custodial-invariant scalar potential.
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by the gauge factor U(1)Y and infinite radiative corrections
24

are induced in a

custodial-invariant Higgs potential (unless the gauge group is enlarged –see for ex-

ample Ref. [25]). Thus, the custodial symmetry can at best be only considered an

approximate symmetry.

We need to enlarge the global symmetry of the Higgs potential so that after

the ESB there remains a residual SU(2) symmetry. If only three Goldstone bosons

are allowed, the symmetry-breaking pattern is

SU(2)L × SU(2)R → SU(2)V . (16)

In the THDM there are two possible ways of defining the global SU(2)L×SU(2)R

symmetry
26

:

Case I: Following the SM case
10

, we define a matrix field

Mi = (iτ2Φ∗i Φi) ≡
(
φ0∗
i φ+

i

−φ−i φ0
i

)
i = 1, 2 , (17)

which transforms under the SU(2)L × SU(2)R symmetry as

Mi → LMiR
† . (18)

In order that the symmetry is broken down to SU(2)V , we need

〈Mi〉 = vi1 ⇒
〈
φ0
i

〉
=
〈
φ0∗
i

〉
= vi ∈ R . (19)

Case II: We define a unique matrix field M21 = (iτ2Φ∗2 Φ1) which transforms
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under SU(2)L × SU(2)R as

M21 → LM21R
† . (20)

In this case, the symmetry is broken down to SU(2)V when

〈M21〉 ∝ 1 ⇒
〈
φ0

1

〉
=
〈
φ0∗

2

〉
∈ C . (21)

It can be shown that, in the absence of fermions, transformation (20) is a more

restrictive case of transformation (18) . However, since we will be considering the

Higgs-fermion interactions we need to consider both cases separately.

We begin with case I and define in the usual way the transformation of the

scalar fields under CP:

Φ1(~x, t)→ Φ†1(−~x, t) ,

Φ2(~x, t)→ Φ†2(−~x, t) .
(22)

Note, that from Eq. (4) and Eq. (19), the above transformation is equivalent to

defining h0 and H0 as CP-even states and A0 as a CP-odd state. The transforma-

tion (22) can be written in the form

Mi(~x, t)→ τ2Mi(−~x, t) τ2 i = 1, 2 . (23)

Clearly, a Higgs potential that is invariant under (18) (with L = R) is also invari-

ant under (23). Therefore, a Higgs potential that is invariant under SU(2)V will

automatically conserve CP.

For the case II, we define the CP transformation as

Φ1(~x, t)→ Φ†2(−~x, t) ,

Φ2(~x, t)→ Φ†1(−~x, t) .
(24)

Again this transformation can be written in the form M21(~x, t)→ τ2M21(−~x, t) τ2.
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It corresponds (using Eq. (4) and Eq. (21)) to defining h0 and A0 as CP-even

states, and H0 as CP-odd.

In the appendix we derive the constraints on the most general THDM potential

[Eq. (2)] imposed by the SU(2)L×SU(2)R symmetry. We also show explicitly that

CP is conserved in a THDM with custodial invariance.

The kinetic term for the Higgs bosons is invariant under the SU(2)L×SU(2)R

symmetry only if g′ = 0. However, for g′ 6= 0 the transformation M → τ2M τ2

(M = Mi or M21) leaves the kinetic term invariant if the gauge boson Bµ associated

with the U(1)Y factor transforms as Bµ → −Bµ. We conclude then that CP is

conserved by the gauge-Higgs sector if the Higgs potential has a custodial SU(2)

symmetry.

Let us now consider the Higgs-fermion interactions. The most general Yukawa

sector induces flavor changing neutral currents (FCNC). The usual way of sup-

pressing these is by means of a discrete symmetry
27

that can be softly broken. CP

conservation in the Yukawa interactions requires h0 and H0 to be CP-even and

A0 to be CP-odd. Such assignments of CP quantum numbers are compatible with

the assignments of case I, but incompatible with those of case II. Therefore, case

II allows for the possibility of having an approximate custodial SU(2) invariance

in the Higgs potential and maximal CP violation in Higgs-fermion interactions.

Such a possibility, however, leads to a tightly constrained model (see Eq. (21) and

appendix):

tanβ ' 1 , mH0 ' mH+ . (25)

If the discrete symmetries
27

are exact symmetries of the lagrangian, the minimal

model with CP violation is the Weinberg three Higgs doublet model
28

. If an
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SU(2)L × SU(2)R symmetry is imposed on the Higgs potential of this model, all

the parameters are real. Thus, CP is conserved by the full lagrangian.

4. Constraining CP violation from the experimental bounds on T

Let us consider case I. Custodial SU(2) symmetry requires the CP-odd state

A0 to be a mass eigenstate of mass equal to the charged Higgs mass (see appendix).

Therefore, the custodial limit is given by


OOO31 → 0 ,

OOO32 → 0 ,

∆m2
+3 ≡ m2

H+ −m2
H3
→ 0 .

(26)

The limit OOO31,OOO32 → 0 corresponds to H3 → A0, i.e., CP-conserving limit. In the

limit (26), the contribution to T (including only terms with quadratic dependence

on the Higgs mass) can be written as

αT = g2

64π2m2
W

2∑
i,j=1
i6=j

OOO2
i1

[
1
2 +

m2
Hj

m2
Hj
−m2

H+
+

(
m2
Hj

m2
Hj
−m2

H+

)2

ln
m2
H+

m2
Hj

]
∆m2

+3

+ g2

64π2m2
W

[
F (m2

H1
,m2

H+) + F (m2
H2
,m2

H+)− F (m2
H1
,m2

H2
)
]
OOO2

31 .

(27)

Note that when ∆m2
+3 = 0 (custodial limit of a CP-conserving THDM

14,29
), there

are still terms that grow quadratically with the heavy Higgs masses. Explicitly, we

have for mH+ = mH3 � mH1, mH2,

αT ' g2m2
H+

64π2m2
W
OOO2

31 . (28)

The experimental bounds on T can be used to constrain OOO31 and limit the magni-

tude of CP violation in the Higgs-gauge sector. Notice that in fact only two (∆m2
+3
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and OOO31) of the three custodial-breaking parameters in (26) can be constrained (see

Eq. (27)). Nevertheless, it seems unnatural for the parameterOOO32 to be large while

∆m2
+3 and OOO31 are suppressed. Thus one expects that in constraining OOO31 one is

actually constraining CP violation in the full Higgs sector.

To get an idea of the magnitude of such bounds, we parameterize the custodial

limit (26) in terms of only one parameter, OOO31. In a first case (Fig. 2a), we consider:

OOO32 = OOO31 ,

mH3
=
(

1 + 1
2
OOO31

OOO
max

31

)
mH+ ,

(29)

where OOOmax31 ≡
√

3/3 is the value of OOO31 for maximal CP violation
7
. In a second

case (Fig. 2b) we again consider, OOO32 = OOO31 and in addition saturate the third

limit in (26) (mH+ = mH3). In both cases we also assume OOO21 ' OOO11 and mH1 =

1
2mH2

= 3
2mH+.

When we study Fig. 2 we see that unfortunately the actual constraints are

very sensitive to the different parameters of the model. The results are also very

sensitive to how the custodial limit is taken. If we fix the ratio ∆m2
+3/OOO31 in the

custodial limit (26), the dependence of T on OOO31 is linear and then the bounds are

tight (Fig. 2a). However, if ∆m2
+3/OOO31 goes to zero in the custodial limit (26),

then T depends quadratically on OOO31 and the bounds are less restrictive (Fig. 2b).

5. Conclusions

We have shown that in a THDM with maximal CP violation in the Higgs

sector, there are large contributions to ∆ρ coming from the scalar sector. We have

seen that this is due to the fact that any term in the Higgs potential that breaks

CP also breaks the custodial SU(2) symmetry and, therefore, contributes to ∆ρ at
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one-loop. This is true in the Higgs-gauge sector and can be generalized to models

with a more extended Higgs sector.

We have used the experimental bounds on the parameter T to constrain CP

violation in the THDM Higgs sector. These constraints (Fig. 2) are found to be very

dependent on the parameters of the model. At present, they are the only bounds

on CP nonconservation in the Higgs sector. When the limits on T improve
23

(∆T = ±0.1), the region of parameter space in the Higgs potential that allows for

CP violation will be further constrained.

It is important to remark that when the Higgs masses are large the constraints

on CP nonconservation are stronger. Note that this is opposite to the case where

CP nonconservation is constrained using the electric dipole moment.

When Higgs-fermion interactions are considered, we have shown that it is pos-

sible to find a definition of the custodial symmetry which allows for CP violation.

Such a possibility leads to other interesting constraints (Eq. (25)).
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APPENDIX

In this appendix we derive the restrictions that the SU(2)L×SU(2)R symmetry

places on the most general THDM potential of Eq. (2).

For case I, the most general SU(2)L×SU(2)R symmetric potential is given by

V (M1, M2) = 1
2m

2
1Tr{M†1M1}+ 1

2m
2
2Tr{M†2M2} −m2

12Tr{M†1M2}

+ 1
4λ1Tr2{M†1M1}+ 1

4λ2Tr2{M†2M2}

+ 1
4λ3Tr{M†1M1}Tr{M†2M2}+ 1

2λTr2{M†1M2}

+ 1
4Tr{M†1M2}

[
λ6Tr{M†1M1}+ λ7Tr{M†2M2}

]
.

(A.1)

Using Eq. (17), it is easy to see that the above potential corresponds to Eq. (2)

with

m2
12 , λ6 , λ7 ∈ R , λ = λ4 = λ5 ∈ R . (A.2)

Thus, all parameters of the Higgs sector are real (see Eq. (19) and Eq. (A.2)),

and CP is conserved. Explicitly, we find that A0 is a mass eigenstate with mA0 =

mH+. As we expected, Eq. (11) holds and, then the contribution to T that grows

quadratically with the Higgs masses vanishes.

For case II, the most general potential that is invariant under SU(2)L×SU(2)R

is given by

V (M21) = m2Tr{M†21M21} − (m2
12 detM†21 + h.c.)

+ λTr2{M†21M21}+ λ4 det{M†21M21}+ 1
2

[
λ5 det{M†21}

2 + h.c.
]

+ 1
2

[
λ′ detM†21 Tr{M†21M21}+ h.c.

]
.

(A.3)

This potential corresponds to Eq. (2) with

m2 = m2
1 = m2

2 , λ = λ1 = λ2 = 1
2λ3 , λ′ = λ6 = λ7 . (A.4)
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It seems that in this case we can have explicit and spontaneous CP violation,

because the scalar self-couplings and the VEVs can be complex. Nevertheless,

using Eqs. (21) and (A.4) in Eq. (2), one can see that H0 is a mass eigenstate

(with mH0 = mH+). Therefore, considering only the Higgs-gauge sector, we can

define
7
H0 to be CP-odd and the other neutral Higgs to be CP-even.
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FIGURE CAPTIONS

1) Extra contribution to T from a THDM with maximal CP violation (OOOi1 =
√

3
3 ). The experimental allowed region corresponds to the region inside the

dotted lines.

2) Extra contribution to T from a THDM where CP violation is parametrized

by OOO31 (OOOmax31 =
√

3/3). The experimental allowed region corresponds to the

region inside the dotted lines.
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