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1. Introduction 

Azimuthally periodic multipole field generators, in particular 

the quadrupole and sextupole, find a wide range of application as 

focussing and aberration-correcting elements in accelerator and 

storage ring design [1,2,31. Conventional structures are typically 

configured as current-excited axisymmetric permeable yokes with 

specially contoured salient pole surfaces (e.g., poles shaped as 

hyperbolic cylinder sections are shown schematized in Fig. 1). 

Although multipole structures composed of permeable material 

(hereafter referred to as iron) are well understood and offer the 

advantages of effective field delivery and tunability, there are, 

nonetheless, instances in which the use of iron can exacerbate the 
-_ - 
complexity and cost of implementing a desired field configuration. 

For example, in recent work a 60 m long pure-PM undulator with a 

superimposed iron-based quadrupole focussing/defocussing (FODO) 

lattice has been designed for Free-Electron Laser (FEL) 

applications at SLAC [4l (see Figure 2). Analytical studies have 

shown iSI that the quadrupole yoke facets need to be kept 

significantly far away from the PM lattice surrounding the 

undulator axis in order to prevent undesirable modifications of 

the on-axis field amplitude. Furthermore, at the minimum full 

aperture (12 cm) ,. a significantly large power consumption by the 

quadrupoles is necessary in order to attain the required focussing 

gradients (~15 T/m). In view of these complications, a special 

planar "edge-field" permanent magnet (PM) structure has been 

proposed as a substitute for the iron quads depicted in Fig. 2. 
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This structure, a generalized form  of which is schematized in the 

top left side of Fig. 3, can generate focussing gradients in 

excess of 100 T/m with, e.g., four 0.3cmx2cmx4cm blocks of 

commercially available P M  material. W ith suitable development, the 

indicated approach could lead to significantly more effective and 

.econom ical insertion device designs for synchrotron radiation (SR) 

and FEL applications 163. 

In the present paper, the prospects of extending the planar P M  

quadrupole design to sextupole and higher order multipole 

structures are systematically explored. Our approach, a 

generalization of the cited P M  quadrupole study, will be based on 

analyzing the potential functions associated with the general 

quadrupole and sextupole configurations of Fig. 3, and extending 
. .-, -_ - 

the results to higher order multipoles. Restricting our analysis 

to P M  materials whose magnetization remains unmodified by 

externally applied fields [7,81, we can simulate the P M  field 

properties by equivalent charge sheets located on the faces 

perpendicular to the easy axis [91. Since it is anticipated that 

the predom inant implementations of P M  multipoles will consist of 

materials for which the assumed restriction is true, this should 

not seriously impair the practical generality of our results. 

As may be inferred from  the figures, the primary motivation 

for this investigation is provided by: 1) the evident simplicity, 

.design flexibility, and utility of employing focussing elements 

with -plane-parallel geometries, a wide range of selectable sizes, 

and fully-open gaps; and 2) the prospect of fabricating such 

structures both simply and economically. 
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2. The planar PM quadrupole 

Assuming the quadrupole to be centered on z-0 and its length 

to be sufficiently great for the approximation L+ to be employed, 

a close approximation to the potential $Q in the (x,y) plane is 

easily derived: 

-Br (x-x) 
4*(X,Y) = - 

II 
[ c 

2+ (g ' -y) x-x 
(X-x)ln 

2+ (g' +y) 4 2 2(g '-y)tan-l c 3 
+ - 

2Jr (x-x) g'-Y 

xa- ; 
0 (x-x) 2+ (g'-y) 

.-- 
-1 x-x 

- 

2(g'-+y)tan 
c 31 - g'+y 

x--w- 
0 
5 -[ c (X-x)ln ai 

(x-x) 2+ (g'+y) 2 

x-x 
+ 2(g '-y)tan-l - 

I 3 
- 2(g'+y)tan 

-1 x-x 
- 

g'-Y i 3 g'+y 

’ 

; (1) 

To investigate the behavior of this potential in the vicinity 

of the axis, we perform a Taylor expansion about (x-O,y-0). The 

general form, including all the dominant terms of interest for 

investigating the quadrupole and sextupole structures, can be 

expressed as 
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where ie{Q,S,O,...), and the grouped terms of total order 

0,1,2,... have been designated by A,B,C,... 

Taking the quadrupole expansion out to terms of total order 

4, we find for the configuration of Fig. 3 that the potential 

terms with non-zero coefficients are represented by 

dQ(X,Y) = Cllxy + E13{xy3 - x3y} + . . . , 
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In formulating eq. (31, the subscripts on the capital 

coefficients have been arranged to correspond to the terms with 

the same (ordered) powers of x and y. Clearly, E31=-E13. 

It is of interest to examine the dependence of the on-axis 

---field- gradients a Bx/a Y and dBy/ax on the lateral dimensions of 

the constituent magnet pieces. In the vicinity of the axis 

.-F -, (1x1, IYI * g/2), s-0, and for w sufficiently large, both 

gradients can be approximated from the above formulas by (cf. 

Reference [61) 

aBy(x’Y, 0) 
0 

ay ax 

As is intuitively clear, the Bx component increases in the y 

direction (viz., toward the PM material) and decreases in the x 

direction, while the B 
Y component varies in the opposite fashion. 
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We note that the off-axis x vs. y variations in both gradients 

are quadratic and symmetric (in terms of gradient strength) about 

their on-axis values. We can mention here that in the cited prior 

work [61, it has been shown that rearranging the four PM pieces 

from the planar quad of Fig. 3 into an orthogonally symmetrized 

rectangular structure reduces the on-axis field gradients to 

about 50% of those attainable by the planar configuration. 

For s-0 and wag, both gradients can be approximated in the 

vicinity of the axis by 

aBx(x,Y, 0) aBy(x.Y.O) 
I;i .-- 

a Y- ax 

For a given w and hag, we note that gradient strengths in the 

cited limit will vary more rapidly with the gap than the 

gradients of eq. (6) by the inverse square of the gap size. The 

off-axis deviation of the gradients from those of an ideal 

quadrupole (quad).is evidently also significantly more rapid for 

.w*g. From simple analytical arguments, we can infer that by 

~continuous variation of the PM quad dimensions (including s) we 

should be able to design gradient structures that can vary with 

the inverse square to the inverse fourth power of the gapsize in 
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a continuously selectable fashion. 

3. The planar P M  sextupole 

As shown in Fig. 3, the planar sextupole structure to be 

analyzed explicitly allows for a number of degrees of freedom  in 

its implementation. Specifically, the remanent magnetization of 

the two central pieces can differ by a factor P  from  that of the 

four side pieces, there can be a space of (al-b) between the 

center and each pair of side pieces, and the side piece thickness 
.-- 

hl can differ from  the center piece thickness h. Under the same 

.analytic assumptions as utilized in the preceeding investigation . .-, -_ . 
of the P M  quadrupole, an analogous expression for the sextupole 

potential incorporating all the indicated dimensional and 

magnetic degrees of freedom  is straightforwardly derived: 

-Br 4&Y) = - 
2Jl 

- 2(g'+y)tan 
-1 x-x c 31 

X--al (x-x) 2+ (g' -Y) 
m  + 
g'+y x--a (x-x) 2+ (g ' +y) 4 

2 

'I 
x-x X-a 

+ 2(g '-Y ) tan-l - .- 
I 3 

x-x g 0 s 
2(g'+y)tan -1 

g'-Y I 3 g'+y 1 X-al 

1 
g'=hl+ 0 5 

8 



(x-x) 2+ (g ’ -y) 

(X-x) 3 

x-x 
-P (X-x)ln I c 2+ (g ' +y) 2 + 2(g '-y)tan-,l - 

I 3 g'-Y 

x-x + 2(g '-y)tan-l c - 3 - 2(g'+y)tan 
9*-y -1E]];;yb];;:;(9 1; t8) 

2 

Expanding this potential in compliance with eq. (2), out to 

terms of total order 5, we find for the general configuration of 

Fig. 3 that the retained coefficients are associated with the 

terms of the following expression: .-- 

.4s (X,Y) = BolY + D2113x2Y-Y3} + F41{5~4y-10x2y3+y5] + --- . (9) .-, A. . 

Evidently, the expansion retains terms of dipole, sextupole, and 

decapole order, with D21=-D03 and F41=-F23=F05. 

To derive highly simplified expressions for the above 

coefficients which, nonetheless, can represent configurations of 

practical interest, we set h-h1 and al-b. Then, 
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It is evident that the primary requirement for reducing the 

potential of eq. (9) to an approximate sextupole distribution is 

the cancellation of the dipole term  coefficient Bol. For a given 

gap g and P M  thickness h(-hl), setting eq. (10) equal to 0 will 

yield all the pairs (a,b) that elim inate the dipole component. 

Due to the practical utility of using pieces each with the same 

remanent field, we herewith derive the desired relation between a 

.--and b for P -l: 

. .-, -_ - 

($iJ2- (&J + (13) 

A  graph of (a/Kg) vs (b/Kg) curves derived for (h/Kg) values 

of 0.5, 1, and 2 from  the above equation is shown in Fig. 4. As 

may be deduced from  the coefficients of eq. (13), the dimensions 

b and a cannot exceed lim its determ ined by the choice of (h/Xg). 

Physically, we can interpret this by recognizing that if the 

dimension 2b/g is too wide, then the outer pieces (which we have 

constrained to have the same remanent magnetization) will be too 

.-far . away to cancel the on-axis dipole component generated by the 

center pieces. Analyzing the roots of eq. (13), we derive the 

exact constraint on the maximum size of (b/Kg), valid in free 
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space, to be 

3 

K 
. (14) 

4. Comparisons with idealized iron quadrupoles and sextupoles 

We can now systematically compare selected practical 

.--performance characteristics of the PM quadrupole and sextupole 

with the conventional iron structures of Fig. 1. Of primary 

.----.interest to our present study are: 1) the maximum near-axis field 

strength (or gradient) vis-a-vis an iron structure of comparable 

dimensions, and 2) the radial distance from the z-axis over 

which the deviation of the PM field from that of an idealized 

quadrupole or sextupole structure remains sufficiently small. To 

maximize the attainable PM fields we will take s-0 (quad) and 

retain al-b (sextupole). 

First, taking the idealized iron quad potential to be given 

by [31 

BO 

@Q = s- xy’ (15) 

the effective field-strength (and field-gradient) ratios of the 

PM vs iron quads can be expressed by qQ, where 
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Next, we postulate the conditions 

and 
BO = Br 

a' = Kg. 
(I) 

We justify the first equality by the fact that currently 

---available hard PM materials can attain B values r of up to 

approximately 1.3T 1101, and at comparable levels of B 0 iron 

.----'yokes typically start requiring significantly increased levels of 

excitation to attain marginally higher increments of field 

strength. Similarly qualitative justification for the second 

equality may be inferred from Figs. 1 and 3. Issues in 

contrasting the radial distances (r-a') in Fig. 1 with the PM 

thicknesses h (and hl) in Fig. 3 are inessential to the following 

analysis, and will be commented on later. 

Under the given assumptions, then, we can tabulate rl Q for 

selected practical PM thickness/gap (h/g) and width/gap (w/g) 

ratios, as shown in Table 1. We note that for roughly comparable 

internal and external dimensions the PM quad can be made about as 

effective as an iron quad (in the vicinity of its axis), while 

even for rather thin PM segments, the comparable effectiveness is 

reduced by only about one half. 
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To estimate the deviation of the actual PM quad field 

strength from that of an idealized field distribution, we can 

express the fractional variations in, respectively, the Bx and B 
Y 

components of the two structures (via eq. (3)) as 

ABX (C11y+E13 
3 2 

1 (Y -3x Y))-cllY) E13(y2-3x2) 

Q = 

I 
I (17) 

B x(IDEAL) clly c11 
and 

2 3 

1 (C11X+E13 (3xy -x WCllX I E13(3y2-x2) 

Q = 
. (18) 

cllx c11 

Primarily, we are interested in the % deviation of Bx in the y 

. -~- -. direction for x-0, and of B Y in the x direction for y-0. These 

can consequently be expressed as, respectively, Cwh Q (Y/d2. and 

-c$, tx/g) 2 I with CQ wh-100g2E13/Cll. Q Calculated values of Cwh for 

selected ranges of practical PM h/g and w/g ratios are shown in 

Table 2. 

Turning to the sextupole, let us now assume that the 

coefficient BO1 has been cancelled, and (again to maximize the 

attainable field strengths) that hl-h and P-l. Then, analogously 

to the quadrupole, we can, referring to the idealized iron 

sextupole potential 131 

BO as = 3a,2 2 3 (3x Y-Y 1, (19) 
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denote the ratio of the field strength of the PM to the field 

strength of the iron structure by qs, where 

(20) 

Next, assuming that the postulated conditions (I) for 

.----.performing the PM/iron quadrupole comparison remain valid for the 

sextupole, ranges of variation of rls as functions of the 

gap-normalized dimensions a/s and b/g can be straightforwardly 

calculated for selected practical h/g ratios, as is done in Table 

3. As in the case of the PM quad, we note that the field-delivery 

effectiveness of the PM sextupole can be made approximately equal 

to that of the corresponding azimuthally periodic iron structure 

for comparable internal and external dimensions. It is, 

furthermore, remarkable that this effectiveness gets reduced by 

only about a half for the appreciably small values tabulated for 

(h/Kg) . 

To assess the departure of the actual PM sextupole field 

strength components Bx and B Y from those of the idealized field 

distribution, we can use eq. (9) to express their fractional 
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deviations vs. x and y as 

(D21E6x~1+F41 3 3 
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We first note that the Bx component vanishes to both 

sextupole and decapole orders along the x and y axes. 

Consequently, we can choose some alternative convenient direction 

represented by, say, y-ax, to assess the behavior of Bx. 

Regarding B y, we are interested in its deviations from the 

corresponding ideal sextupole component both along x (for y-0) 

and y (for x-0). Choosing a=35.26O, all three relative deviations 

can be conveniently expressed as: 1) cih(x/g)2 (for Bx along 

y-x/2%; 2) -+h (y/g) 2 (for By along the y axis; and 3) 

CEh (x/g) 2 (for By along the x axis); where C~h=500g2F41/3D21. 

Calculated S values of Cbh for selected ranges of practical PM h/g 

and -b/g ratios are given in Table 4. Of particular interest is 

the change of sign evident in the tabulated values for parameters 
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corresponding to significantly effective field delivery (i.e., 

for 0.5 I qs 51). This indicates that practically useful values 

of (h/Kg) , (a/Kg), and (b/Kg) can be sought that will not only 

zero the coefficient B01t but that can also reduce Fql to 

substantially small values, leading to a nearly ideal sextupole 

field in the vicinity of the axis. A convenient polynomial 

equation (for P-l) for helping to numerically identify these 

values may be expressed as Bol 2 +Fql 2-o. 

5. Higher order multipoles 

Higher order multipoles can be designed either by heuristic 
. .-, -_ - 

extensions of the basic planar quadrupole and sextupole 

structures, or by the more rigorous application of the analytical 

method utilized in this paper to each case of interest. 

Heuristically, the quadrupole and sextupole configurations of 

Fig. 3 may be perceived as the basic elements out of which 

multipoles of progressively higher multiples of four can be 

constructed. Thus, a repetition of the quadrupole structure can 

be used to generate octupoles, dodecapoles, hexadecapoles, etc.; 

while a repetition of the sextupole structure can be used to 

generate decapoles, tetradecapoles, octodecapoles, etc. As 

indicated in Fig. 5, the configurational possibilities and 

degrees of freedom can grow rapidly for planar structures with 

,constant gaps. A systematic way to assess the alternatives can be 

based on realizing that the primary function of each additional 
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structure is to cancel the lowest order multipole field that the 

already existing structure is generating without cancelling the 

next higher multipole order. Thus, the outside four pieces in the 

top left configuration of Fig. 5, having different (specifically, 

higher) remanent fields than the inside four pieces, can be 

designed to cancel the quadrupole gradients generated by the 

inside pieces; but, as may be verified from direct parameter 

substitution, the coefficients El3 for each set of pieces will 

not in general cancel, leaving a first-order octupole potential 

in the vicinity of the axis. The same tme of quadrupole 

cancellation can obviously be made to occur with the planar 

configuration in the lower left hand side of Fig. 5. To cancel 

the octupole components, an additional structure consisting of 2 
. .-, -_ - 

superimposed quadrupoles (eight additional pieces) would 

evidently have to be added to the depicted structures. The 

general resulting rule is that with this approach at most 2~2~ 

pieces would be required to synthesize a 4N-pole potential. 

As depicted on the right side of Fig. 5, essentially the same 

method can be utilized with the sextupole. For the top right 

configuration, the two central pieces associated with the outside 

four pieces do not have to be physically placed, but can be 

effected by suitably modifying the magnetization across the faces 

of the existing central pieces. For the configurational approach 

on the bottom right, at most 3~2~ pieces would evidently be 

required to generate successively higher (2+4N)-pole potentials. 

Apart from these intuitively systematic approaches to 

multipole synthesis, it is also analytically evident that it 
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should be possible to generate higher order multipoles more 

economically with either 4N pieces for integral multiples of the 

quadrupole, or with 6~ pieces for the "4N+2" extensions of the 

sextupole. In both cases, it is required that there be enough 

degrees of freedom in the magnet piece dimensions and remanent 

fields to simultaneously null the undesired lower multipole 

component coefficients while retaining the desired one. This 

approach, while analytically more taxing, represents a more 

efficient use of material. For N not too large, each approach may 

be queried with regard to the field quality and amplitude desired 

for a given application. 
.-- 

. .-, -_ - 
6. Tolerances 

From the evident dependence of the quadrupole, sextupole, and 

higher-order PM multipole fields on the dimensional, positional, 

and field symmetries of the individual permanent magnets that 

constitute them (as follows from the explicit forms of equs. (1) 

and (811, it should be evident that the sensitivity of the 

attained field profile to the errors associated with these 

symmetries can become significant, especially for structures in 

which increasingly large numbers of magnet pieces need to be 

deployed (e.g., Fig. 5). To assist us in examining this issue 

quantitatively, we will appeal to the notion of the differential 

sensitivity of a system parameter x to a system variable y on 

which it depends. This can be expressed as 
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sx - x ax 
0 

a (In(x) 1 
Y  X ay - a(ln(y)) ' (22) 

and can be interpreted as the fractional change in x induced by a 

fractional change in y. If all the (say, M ) variables affecting x 

are designated by an index, viz., yi, and if each variable is 

assumed to vary independently with a normal distribution, the net 

rms fractional variation in x can be expressed as 

(23) 

For equal sensitivities, this expression varies as M T  For 
. .-, -_ - 

interdependent yi, the linear sum of the sensitivities can be 

used to assess the desired fractional change in x. 

A  comprehensive discussion and analysis of the specific types 

of errors and tolerances associated with the general multipole 

structures introduced in the preceding sections is not within the 

scope of this paper. For both practical and illustrative 

purposes, however, we will briefly discuss the specific 

dependence of the net dipole term  Bol of the sextupole structure 

in Fig. 3 on a selected set of tolerances of its constituent 
_ pieces. 

A  realistic simplifying assumption that can be made is that 

the . four end magnets of Fig. 3 would ordinarily be prepared from  

a single machined and magnetized piece, as would the two m iddle 

magnets. Under this assumption, any deviations in the the 
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parameters P, b, and a of eq. (1) can be assumed to be the same 

for the relevant magnet groups. Under the cited conditions, then, 

we get: 

for a-b, 

SBOl - p aBOl -- E 1 ; 
P BO1 ap 

(24) 

for a-b, 

.-- SBOl b aBOl *_- - E 
b BO1 ab 

; (25) 

. .-, -_ - 

and, for P-O, 

SBol- a aBOl --- 
a BO1 aa 

Choosing P-l, Br-lT, a-0.5282cm, b-O.l75cm, g-lcm, and h-0.5cm 

(cf. Table 31, the sensitivities of equs. (25) and (26) become 

1.74 and -0.22, respectively. Thus, for example, for a 0.7% 

tolerance in b .(*O.O25mm), the corresponding tolerance on the 

dipole field component appearing on the axis would be f 25gauss. 

Regarding the general impact of tolerances on the field 

quality of planar PM multipoles, it is important to note that not 

only does the minimal number of independent variables vary 
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relative ly  proportionately to the minimal number of magnet pieces  

(v iz ., 4N for quads and 6N for sextupoles), but that the number 

of s y s tem parameters contributing to the var ious  possible field 

abberations can also grow proportionately to N (for N not too 

large). This  can be ascertained direc tly  from assess ing the 

number of indiv idual terms of the Tay lor expansion of a general 

multipole potential as extrapolated from eq. (2). Specifically, 

if any of the tolerances of the const ituent magnet pieces  induce 

the appropriate asymmetr ies  in the field potential, many of the 

disp layed differential coefficients will disp lay  non-zero va lues . 

Thus, the overall number of contributions to field imperfections 
.-- 

will grow proportionately with N2. 

To estimate their net effec t on a multipole field, we can 
. .-, -_ - 

make the following worst-case assumptions : 1) most of the s y s tem 

dimensional and magnetization parameters are independent; 2) each 

of the multipole magnet pieces  disp lay s  errors in a s ignificant 

number of such parameters (nominally , the 2 lateral PM bloc k  

dimensions, the 5 relevant var iables  of position and inc lination, 

and the 4 var iables  assoc iated with field s trength and 

direc tion); and 3) the corresponding sensitiv ity  of Bol to each 

of these is  of the order of 1. Then, quadratically compounding 

the sensitiv ity  of a s ingle field parameter to the M 

configuration var iables  (see expression (23) above) with the 

number of such parameters (proportional to N) y ields  the result 

that. the overall rms sensitiv ity  of the field quality  to the 

magnet tolerances will be proportional to fN, where f is  some 

number s ignificantly larger than 1. From the above calcu lated 

21 



.-. 
-- r. - .- 

example, this result clearly indicates that tolerance issues will 

rapidly start becoming problematical for conventionally-machined 

planar P M  structures that feature small dimensions and that are 

significantly more complicated than the quadrupole or sextupole. 

7. Discussion 

We have described a systematic method for designing and 

configuring planar P M  multipoles, in particular the quadrupole 

and sextupole. To assess the expected performance of the latter 
.-- 

structures, we have systematically compared their attainable 

field strength to iron structures of similar dimensions. This 
. .-, -_ - 

comparison, based on a heuristic set of simplifying assumptions, 

was nominal, and should be used as only one factor when assessing 

the specific advantages or disadvantages of the P M  vs. iron 

structures for any given application of interest. For example, 

when gaps at the level of 1 cm or less are involved, the P M  

multipole can be expected to attain higher fields with smaller 

outside dimensions than the iron devices of Fig. 1, since the 

outside diameter r of the latter structures would need to be made 

_ 
large enough to accomodate the ampere-turns necessary for 

generating comparable fields. Alternatively, the iron devices may 

display both economical and field quality advantages at larger 

scales of size due to the larger quantities of P M  material that 

would be required to fabricate multipole structures of comparable 

field quality and homogeneity. Nevertheless, it is noteworthy 
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that insofar as the practical attainment of maximum field 

gradients vs. aperture size is concerned, both the iron vs. 

planar P M  quad and iron vs. planar P M  sextupole appear to be 

about equally effective. 

To establish the extent of the region about the planar P M  

axis over which usable (i.e., substantially pure) quadrupole and 

sextupole fields exist, we have also systematically analyzed the 

deviation of the actual P M  quadrupole and P M  sextupole fields 

from  the corresponding idealized fields vs. distance from  the 

axis. For operation at either small or large gaps, the essential 

result is that it should be, in principle, possible to design 

either quadrupoles or sextupoles for which this deviation is 

lim ited to only a few percent over an axis-centered diameter of 
. .-, -_ - 

about one fifth the gap size. 

A  basic question addressed by the present study concerns the 

possible applications of the planar P M  multipoles. Referring to 

their iron counterparts, perhaps the most obvious potential use 

is as lattice or stand-alone optical elements on linear and 

circular particle accelerators 163. In this respect, the compact 

profile, open gap, and comparable field-delivery effectiveness of 

the P M  elements imply superior convenience for installation and 

access, potential advantages for particle-beam  research 

applications. On the other hand, both the asymmetry and lim ited 

extent of the vertical vs. horizontal field homogeneity could 

poteptially lim it planar P M  optics to either linear single-pass 

machines or to recirculating machines with substantially small 

dynamic apertures. Another potential drawback is the apparently 
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limited range of field tunability, which could restrict the use 

of planar PM optics to machines with limited ranges of operating 

and injection energies. Regardless of these potential 

limitations, however, it can be expected that further development 

and study of the field characteristics of planar PM multipoles 

(including their asymmetries) should establish selected areas of 

particle accelerator design and operation for which the 

dimensional and geometric parameters of such elements are 

optimally suited. 

Other, more specific areas of application suggested by the 

relatively high gradients, open gaps, and compact sizes of the PM 
._- 

elements could include: 1) the development of 4th generation 

compact storage ring lattices 1111, 2) development of mini-beta 
. .-, -_ - 

sections on conventional linear or circular machines for 

micropole undulator applications [121, 3) the implementation of 

focussing and transport lattices for slow neutrons (quadrupoles) 

1131, 4) the development of specialized focussing lattices 

composed of quadrupoles or sextupoles, or both, for enhancing the 

gain of FELs [61, and 5) the development of electric motor 

structures with planar field-generating configurations (4N or 

2+4N poles). 

Considerations for tuning the fields of planar PM multipoles 

can, in general, differ with respect to the multipole order. In a 

prior note [61, for example, a number of possible methods of 

tuning a PM quadrupole were noted. These included: 1) varying 

the vertical gap g and horizontal gap s; 2) superimposing the 

field from a current-controlled "cos20 tl coil (when small 
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fieldvariations about a fixed value are desired); and 3) varying 

the proxim ity of permeable planes placed symmetrically above and 

below the quad elements (tuning by images). It was also shown 

that P M  quad elements could be installed between the (suitably 

symmetric) iron pole faces in an undulator gap without having 

their first-order focussing properties seriously altered by the 

induced image fields. Unfortunately, simple considerations 

indicate that for sextupoles and higher 4N or 2+4N poles, the 1st 

and 3rd tuning methods (based, in essence, on variation of the 

single parameter g) will not be, in general, applicable. This 

follows from  the observation that if all the lateral dimensions 
.-- 

are fixed, the gap in the higher order P M  elements needs to 

.remain constant in order to maintain the cancellation of the 
. .-, -_ - 

undesired lower-order field components. Thus, to employ 

mechanical tuning that would maintain the desired cancellation, 

more degrees of freedom , viz., provisions for independent 

mechanical x-y motion of the individual elements of the multipole 

would evidently be required. In spite of this, we may note that 

for certain applications this complication can be m inim ized or 

even avoided for the planar P M  sextupole. Thus, for example, if a 

sextupole focussing lattice is installed in a P M  undulator gap, 

and the lattice period is an integral multiple of the undulator 

period, tuning by images from  outside the undulator lattice will 

activate the Bol (dipole) component of the sextupole field, but 

this. will just add in phase with the undulator dipole field, 

leading to typically inessential changes in the undulator 

radiation characteristics. Similarly, when planning a focussing 
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sextupole lattice for the gap of an undulator with iron poles 

(see Fig. 61, the sextupole design can be 'pre-corrected" for the 

BO1 contributions from the expected image fields, so that upon 

installation the net dipole contributions from the actual and 

image elements will in fact cancel. Clearly, analogous mitigating 

strategies based on single-parameter (viz., gap) tuning for 

higher order multipoles will tend to become significantly more 

difficult to implement under general circumstances. Thus, for all 

practical purposes, optimal approaches to the simple tuning of 

planar PM 4N and 2+4N poles with N>l would appear to imply the 

utilization of external fields from non-permeable multipole 
.-- 

current distributions. 

Selected analytical aspects of tolerances in the constituent 
. -, -_ - 

magnets of the planar PM multipoles were discussed in a prior 

section. A number of related practical issues deserve attention. 

From the basic sensitivity relation (eq. (22)) it is evident that 

multipole size is a primary factor in the attainable field 

quality. This follows from the fact that attainable machining 

tolerances are typically fixed, and will thereby constitute a 

smaller fractional deviation in a magnet's dimensions for a 

larger work piece. Second, at smaller scales of size the field 

quality of a magnet will no longer remain fully independent of 
_ dimensional and .mechanical errors, but will start becoming 

influenced by them. Thus, the bigger the multipole, the more 

forgiving the dimensional and positional tolerances. Regarding 

the inherent field quality of the magnet pieces in general (as 

measured, say, by its constancy of strength and direction over 
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the surface of a given magnet), it is well known that the best 

commercially available materials can exhibit fractional field 

variations of the order of 10 -3 . Should this level of field 

tolerance need to be reduced even further, recent strategies 

(developed for undulator construction) based on fabricating the 

chosen magnet out of a population of smaller, precisely 

characterized and sorted, magnets could be employed [14,15,16]. 

Another, still largely-unexplored approach would be to 

investigate the development of alternative magnet fabrication 

techniques that could incorporate this type of statistical 

control of field quality at the materials or block preparation 
.-- 

stage: 

Finally, a number of additional issues meriting further . .-, -_ - 
systematic investigation appear to be suggested by the present 

study. First, the effect of deviations from the assumed physical 

model of the PM material on the analytical forms derived in this 

paper should be explored. Although it is anticipated that the 

appropriate control of such deviations by use of symmetry 

cancellations (for sufficiently small deviations) should help to 

maintain the first-order applicability of the present formalism, 

it should be of value to explicitly verify which additional 

classes of PM materials could be employed for fabricating 

high-quality planar PM multipoles. Another useful analytical 

extension of the present study would be to rederive expressions, 

or computational algorithms, for planar multipole magnet pieces 

of finite length. This will evidently be necessary, for example, 

for: 1) the accurate calculation of the fields of short 
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structures with large gaps, 2) the synthesis of long multipoles 

out of shorter ones to attain a non-constant field amplitude 

variation along the z direction, and 3) the calculation of 

contributions to the on-axis field from higher-order image fields 

when the multipole is operated between iron pole surfaces. 

Finally, a systematic study of the focussing and 

aberration-correcting properties of planar multipoles in 

particle-beam optical systems would appear to be of value. In 

particular, their vertical vs. horizontal asymmetries make them 

essentially different, in a global sense, from the more 

thoroughly understood azimuthally symmetric structures of Fig. 1, 
.-- 

raising the possibility that these differences could lead to 

.applications of practical interest. 
. .-, -_ - 
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Table 1. 

Selected field strength ratios rlQ of planar PM vs. azimuthally 

periodic iron quadrupoles for selected PM widths w 

and thicknesses h.* 

h/g = 0.25 h/g = 0.5 h/g - 1 

0.05 I w/g I 1 0.05 I w/g I1 0.05 5 w/g I 1 

.-- 
0.009 I q* 5 0.475 0.011 5 q Q I 0.7 0.012 5 qQ 5 0.89 

. .-, -_ - 

* Pole-face field B. of the iron quad assumed equal to the PM 

remanent field Br. Iron quad aperture radius a' assumed equal 

to the PM quad half-gap size g/2. 



Table 2. 

Q Coefficients Cwh for calculating the percentage deviation of the 

planar PM quad field components from those of an ideal quadrupole 

field distribution in the vicinity of the symmetry axis. 

1 h*/g- + 0.125 0.25 0.5 

CQ wh CQ wh CQ wh 

1004 903 
789 720 
448 416 
297 261 
305 262 

812 757 
650 604 
380 352 
225 200 
215 177 

. .-, -_ - 

1 

CQ wh 

* thickness of all the PM segments 
** width of all the PM segments 
A full quadrupole gap size 
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Table 3. 

Selected field strength ratios qs of planar P M  vs. azimuthally 

periodic iron sextupole structures for selected P M  segment 

widths: a-b (ends) and 2b (center). *  All segment thicknesses - h. 

h/g - 0.25 ’ 

0.05 I b/g F  0.16 

0.1022 la/gl 0.5247 

. .-, -_ - 

0.0152 I r+ F  0.55 0.0183 5. qs IO.78 0.0184 I qs 1. 0.96 

h/g = 0.5 h/g = 1 

0.05 5 b/g I 0.175 0.05 5 b/g I 0.2 

0.1018 la/g< 0.5282 0.1015 <a/g< 0.6015 

* Pole-face field B. of the iron sextupole assumed equal to the 

P M  remanent field B,. Iron sextupole aperture radius a' assumed 

equal to the P M  sextupole half-gap size g/2. 
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Table 4. 

S Coefficients Cbh for calculating the percentage deviation of the 

planar PM sextupole field components from those of an ideal 

sextupole field distribution in the vicinity of the symmetry 

axis. 

n*/g^ + 

b**/g 
4 

0.04 
0.08 
0.12 
0.16 
0.20 

0.125 0.25 
S 

'bh 
S 

'bh 
.J 3 

-631 -581 
-513 -479 
-298 -325 

175 97 
- - 

0.5 1 
S 

'bh 
S 

'bh 
5 J 

-546 -534 
-453 -444 
-306 -307 

-79 -127 
- 172 

* thickness of all the PM segments 
** half-width of the center PM segments 
A full sextupole gap size 
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Figure Captions 

Figure 1. Schematic midplane front views of an iron-yoke 

quadrupole (left) and sextupole (right). Coil structures 

for exciting the salient pole fields are not shown. The 

indicated pole face contours are hyperbolic segments. 

Figure 2. Pure PM undulator design prototype for the Stanford 

Linear Accelerator Linac Coherent Light Source with a 

superimposed quadrupole lattice field generated by 

iron-based quadrupoles. 

Figure 3. Schematic midplane front views of the planar permanent 
. .-, -_ - 

magnet edge-field quadrupole (left) and sextupole 

(right). 

Figure 4. Values of a/Kg vs. selected values of b/Kg and h/Kg for 

nulling the on-axis dipole component of the planar PM 

sextupole. With reference to Fig. 3, P-l, h-hl, and al-b 

are assumed. 

Figure 5. Alternative heuristic schemes for extending planar 

_ multipole construction beyond the quadrupole and 

sextupole. The left figures show alternative approaches 

for implementing octupoles, dodecapoles, etc. The right 

figures indicate possible approaches for implementing 

decapoles, tetradecapoles, etc. 
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Figure 6. A rrangement of an edge-field sextupole lattice in the 

gap of an insertion device with permeable poles. By 

centering the P M  pieces over the iron pole faces and 

keeping the same periodicity as the undulator structure 

(or some multiple of it), virtually identical modulation 

of both the sextupole fields and the undulator's dipole 

field by the proxim ity effects of the iron poles is 

ensured. 

. .-, -_ - 
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