
I 
: 

SLAGPUB-6166 
April 1993 
(1) 

AMS: Area Message Service for SLC 

M. Crane, R. Mackenzie, D. Millsom, M. Zelazny 

Stanford Linear Accelerator Center, Stanford University, Stanford CA 94305 * 

Abstract 

The Area Message Service (AMS) is a TCP/IP based mes- 
saging service currently in use at SLAG. A number of 
projects under development here at SLAC require an ap- 
plication level interface to the 4.3BSD UNIX socket level 
communications functions using TCP/IP over ethernet. 
AMS provides connection management, solicited message 
transfer, unsolicited message transfer, and asynchronous 
notification of pending messages. AMS is written com- 
pletely in ANSI ‘C’ and is currently portable over three 
hardware/operating system/network manager platforms, 
VAX/VMS1/Multinet2, PC/MS-DOS3/Pathworks4, VME 
68K/pSOS/pNA5. The basic architecture is a client-server 
tonne&on where-either end of the interface may be the 
server. This allows for connections and data flow to be 
initiated from either end of the interface. Included in the 
p&per are details concerning the connection management, 
thkxandiing of the multi-platform code, and the imple- 
mentation process. 

1. Introduction 

-The principal reason for developing the AMS was to prG 
vide network services to hardware and software which was 
not already supported by the Stanford Linear Collider 
(SLC) control system. The initial demand for AMS came 
from a specific project, the Machine Protection System 
(MPS) and was soon followed by projects being developed 
off-line and off-site by various collaborators. In attempting 
to satisfy the need to access the SLC control system and 
database by diverse projects, the following requirements 
were specified. 

1. The message service shall be able to be implemented 
on a variety of hardware and software platforms and should 
be easy to port to new configurations when needed. The 
platforms to be supported initially were VAX/VMS, MC+ 
torola 68OXO/pSOS, PC/MS-DOS. 

2. The message service shall rely on readily available 
hardware, software and protocol support. This was seen 
to have the following advantages: new implementations 

*Work supported by the Department of Energy, contract DE 
AC03-76SF00515 

’ VAX and VMS are trademarks of Digital Equipment Corporation 
‘Multinet is a trademark of TGV, Inc 
3MS-DOS is a trademark of Microsoft Corp. 
‘Pathworks is a trademark of Digital Equipment Corporat.ion 
5pSOS and pNA are trademarks of IS1 

would be easier to generate, projects being developed at 
other sites would get easier access to the appropriate hard- 
ware and software, using widely used protocols would al- 
low off-site developers to connect to the control system re- 
motely for testing purposes and developers would be able 
to test their software off-site in the same network environ- 
ment as the production environment. 

3. The network services must be able to be integrated 
into the existing SLC network software. 

4. The services shall not impose a particular paradigm: 
for example, server-client, master-slave. Applications shall 
select which ever paradigm was appropriate for them. 

5. The services shall provide a flexible naming scheme 
which was suitable in a real-time environment. 

6. AMS shall not issue error messages. Instead it shall 
simply return status to the caller. 

2. Overview 

It was decided that Ethernet and TCP/IP would provide 
the underlying physical, network and transport layers and 
that the package would rely specifically on TCP as the 
transport layer. Thus AMS consists of a layer between the 
application program and TCP/IP: calls made by the ap- 
plication to send and receive data to other tasks are trans- 
lated into the appropriate TCP calls to set up connections 
and send or receive data. The application is oblivious to 
the connection management being undertaken on its be- 
half. 

AMS provides two types of transfers, synchronized and 
unsynchronized. A synchronized message expects a reply 
which is bound specifically to that message. An unsyn- 
chronized request is like a reliable datagram. No reply or 
acknowledgement is expected at the application level al- 
though the TCP protocol provides reliable delivery. 

AMS provides asynchronous notification of arrival of a 
message or a reply to a message. At present it is only im- 
plemented on the VAX platform. Other implementations 
can provide this if the operating system allows and it is 
required by the applications. 

AMS provides peer to peer services. That is, any process 
can initiate or receive a data transfer at any time. If a pro- 
cess attempts to send data to a process to which a connec- 
tion has not yet been established, AMS transparently sets 
up the connection. If a connection crashes, AMS attempts 
to re-establish the connection when the next message is 
sent. Thus, AMS provides the appearance of connection- 

Presented at the Particle Accelerator Conference (PAC 93), Washington, DC, May 17-20, 1993 



less network services by hiding the connection management 
from the application. 

A name translation service is provided so that local name 
table maintenance is not necessary. This service can be 
provided from more than one source, to avoid having a 
single point of failure, and it allows for dynamic address 
assignment so that in the event of a system failure the 
translation for a name, ‘ONLINE’ for example, can be re- 
assigned to the address of the current online host. This 
name server currently runs only under VMS. 

A naming convention is used to allow the application 
program to send and receive messages to AMS peers using 
ASCII node and task names. In this convention the node 
name corresponds to the IP address and task name corre- 
sponds to the TCP port number. The translation of these 
node and task names to IP addresses and port numbers is 
provided by the name server. 

3. Connection Management 

One design goal of AMS is to hide connection management 
from the user providing peer to peer networking in keeping 
with thecurrent SLC control system message service. Each 
AMS peer which uses AMS has a server spcket to passively 
accept connection requests and a client socket to actively 
connect. a client socket to a target AMS peer. AMS initial- 
izdtian-is-performed by calling AMSJNIT with a number 
of configuration arguments such as the maximum size of 
the messages to be sent/received, the maximum number 
of nodes to connect to, lists of AMS peer names to send 
or receive from, etc. The initialization routine: allocates 
memory space to use at run time; sets up a linked list of 

-records which track the status of each connection; sets up 
the local server socket to accept incoming connections; al- 
locates a client socket for each possible remote connection; 
tries to connect to each possible remote peer; registers the 
peer with the name server; and then returns to the user. 
To remove AMS from a process the AM%KILL routine is 
used which closes all allocated socket structures including 
the server socket, frees the AMS allocated memory space 
and removes the AMS peer from the name server. 

During runtime the code checks to see if there are any 
outstanding incoming connection requests at the server 
port and connects them as required. If a data send is 
required and there are no connections to the peer, AMS 

_ tries to set up a connection to the peer, and complete the 
data transfer. 

4. -Message Transfer 

The calling interface provides two modes for sending mes- 
sages, “synchronized” and “unsynchronized”. Syn- 
chronized mode provides a mechanism by which a sending 
task can bind an outbound message with a specific reply. 
If a reply to a synchronized message is not received within 
a specified timeout. but is later generated by the receiver, 

because, for example, the receiver’s host is slow or the func- 
tion requested takes a long time, it will be discarded. Thus, 
an application can be sure that a synchronized reply really 
“belongs” to the message last sent. It also ensures that 
the reply comes from the instantiation of the task which 
received the message. Unsynchronized mode provides a 
simple message transfer without regard to synchronization 
and without regard to the current instantiation of the re- 
ceiving task. Thus two unsynchronized messages could be 
received by different sequential executions of the same task. 

Synchronized messages are supported by the services 
AMSSENDSYNCH, AMS-SEND-REPLY, AMS-GET-- 
REPLY and AM%RECEIVE. Synchronized messages are 
sent by calling the routine AMSSENDSYNCH. This al- 
lows the caller to send multiple synchronized messages in 
the one call and primes the message service to expect 
replies. Message destinations are identified uniquely by 
the triplet (node, task, command) and only one oustand-. 
ing message to a specific triplet is allowed at any time. 

Once a synchronized message has been sent, it can be 
“cancelled” by receipt of a reply from the target or a time- 
out where the timeout period for a reply starts after AM%- 
GET-REPLY has been called. After sending a synchro- 
nized message, the sender can receive a reply by calling 
AM%GET-REPLY. This service allows the caller to spec- 
ify a list of messages sent using one or more previous calls 
to AMSSENDSYNCH. In AMS-GET-REPLY a timeout 
can be specified after which any replies to the messages 
specified are discarded. In addition, for each message in 
the list, a status is returned which specifies the fate of the 
reply. Once a timeout has expired, a new message can be 
sent to the same triplet. In this case it is possible that 
the receiver is still holding onto messages from a previous 
“send”. In fact, messages can “stack up” in the receiver 
and will be presented to the application in the order re- 
ceived. If a receiver replies to messages which have been 
timed-out, the replies are discarded by AMS at the sender 
end. 

Replies are sent using the service AMSSEND-REPLY. 
AMS checks that replies correspond with synchronized 
messages previously received and for given node/task, it 
always generates replies to the earliest synchronized mes- 
sage received. 

Unsynchronized messages are supported by the ser- 
vices AMSSEND, AMS-RECEIVE and AMS-RECEIVE-- 
NOWAIT. To send an unsynchronized message, the routine 
AMSSEND is called. 

To receive the next available message, AMS-RECEIVE 
or AM!%RECEIVE-NOWAIT is called. These routines re- 
turn both synchronized and unsynchronized messages. It 
is up to the application to decide which type of message it 
has received. The “nowait”version provides a mechanism 
for asynchronous notification under VMS. 

AMS-RECEIVE-NOWAIT will set up an Asynchronous 
System Trap (AST) for when a message a,rrives unless t,here 
is already a message waiting. When a message arrives, 
the AST set up by AM%RECEIVE-NOWAIT will copy 

2 



the message into the user’s buffer, remove its own internal 
copy, set the user’s event flag and call the user’s AST. 

5. Name Server 

The name server process currently runs on the VAX plat- 
form only. It has a hardcoded, well known IP port and 
IP address but future plans include the ability to move 
the server from node to node. TCP/IP was chosen for the 
server connection protocol since there was already a base 
of TCP code implemented for AMS. This will eventually 
change to UDP to allow less network overhead, quicker 
response, and the ability to use multicast features. The 
server simply loops accepting new connections from AMS 
clients, servicing name translation requests and closing the 
connections. Utilities to support server diagnostics and 
routine shutdown and startup procedures are in develop- 
ment now. 

The AMS name server client code resides along with the 
rest of the AMS code in each platform’s libraries. The 
client connects to the name server, sends a name transla- 
tion request to the name server, and returns. There are no 
special-features in these client operations. 

. .- -_ - 6. Security 

Security is required to protect an AMS peer from receiving 
connections from unauthorized clients. Extra connections 
including accidental and malicious attempts to talk to an 
peer are not allowed. Each peer provides a list of permitted 
peers to AMS at initialization time. This list is checked 
at connect time to ensure that the incoming peer is valid 
and permitted. The notion of a ALL* (or total wildcard) 
is used to tell AMS that any peer may be connected and 
received/sent to. The use of ALL* bypasses the use of the 
permitted peer list, but does check the name server to val- 
idate the peer name. The name server is the central place 
where security is checked. Before a peer is recognized it 
must register with the name server. After it has registered, 
other peers may attempt connections to it. When AMS no 
longer exists for a particular node, the peer can be removed 
from the name server by calling AMS-KILL. 

7. Implementation 

All of the AMS source code is stored on the VAX/VMS sys- 
tem using the Digital Equipment Corporation Code Man- 
agement System (CMS) as the code management tool. 
This allows multiple programmers to work on the same 
bits of code with a minimum of conflicts. The code is 
shared amongst the differing platforms by using a special 
include file, one for each platform. This include file pro 
vides a meaus to translate file names, differing function re- 
turn codes and differing function call names. Very few ‘C’ 

’ language #ifdef statements are actually used in the code 
which makes maintainence and readability much easier. 

The first goal in the implementation process was to get a 
simple connect and data passing skeleton up and working. 
The requirement was to implement the basic connection 
philosophy as the foundation for the send/receive portions 
of the code. AMSJNIT was the first routine to be coded 
along with the multi-platform include files. VAX to VAX 
were the first connections, followed by the 68K to VAX. 
The MS-DOS port followed soon after to ensure that the 
multi-platform coding philosophy was correct. After con- 
nections were established, the passing of data was the next 
step. The send routines were simple since it is an active 
type of transaction. Receive was more difficult because of 
the polling nature of time independent data receives. The 
TCP socket select call was implemented along with buffer 
allocation routines to allow receiving data with a minimum 
of CPU overhead. Studies of CPU and network perfor- 
mance were done soon after the intial releases of AMS. It 
was found that each VAX process using AMS consumed 
substantial CPU time calling the TCP select call to see if 
any new data was available. The no-wait receive routines 
were then coded specifically for the VAX platform to cut 
this CPU time down. The name server was the last part of 
the project to be implemented. Previous to this time, all 
AMS peer names were stored in hard coded tables internal 
to AMS. 

8. Future Plans 
There are plans to improve AMS as the user base grows. 
The most important plan is to change the name server 
communications from TCP to UDP. This will reduce net- 
work traffic and server node CPU usage. There also needs 
to be failover procedures in software to gracefully handle 
the transfer of the SLC control system from on VAX to an- 
other with the AMS impact being the node location of the 
name server and the translation of the node names “PRO- 
DUCTION” and “DEVELOPMENT” which are used by 
the AMS peers to distinguish between the SLC VAX’es. 
There are also a number of diagnostic tools to support the 
name server which need development. 

AMS is currently being used by a number of develop- 
ment projects here at SLAC and has had nearly a year of 
satisfactory service. It has proven itself to be a reliable 
messaging service and has met all of it’s design goals. The 
first production release of projects using AMS are due in 
the very near future. 

3 


