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Abstract 

Simple approximat.ions t,o conventional transverse wiggler spectra int,egrat.ed over finit.e 
apertures in t,he wigg 1 e plane are derived. Account is t,aken of bhe departure of t,he wiggler’s 
on-axis field profile from an idealized sinusoidal shape. By int,roducing a generalization of 
t.he conventional I( paramet,er, it, is shown t,hat. t,he approximations can be fornmlat,ed from 
a Fourier decomposit.ion of the wiggler’s dominant field profile in the direct.ion of part,icle 
motion wit,hout, explicit reference to the particle beam traject,ory. Use of the generalized K 
paramet.er for estimat,ing the first harmonic out.put energies of unduladors and t.he critical 
energies of wigglers is examined. 
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1. Introduction 

Conventional studies of 'transverse insertion devices, in 

particular undulators and wigglers, rely heavily on the so-called 

"deflection parameter" K (K-0.934BM[T]hw[cm], where BM is the peak 

on-axis field and Aw is the device period) to arrive at simplified 

expressions for their basic spectral output parameters [1,21. As 

will be shown below, however, this practice is strictly justified 

only when the transverse (i.e., dominant) field component in the 

direction of motion is purely sinusoidal. Thus, when calculating 

the spectral performance of structures in which the field can be 

appreciably non-sinusoidal, care must be taken to reassess the 

validity of K. 

In this note our primary focus will be on deriving 

approximations to selected spectral properties of transverse 

wigglers, devices which, in conventional parlance, have a "high" 

value of K (conventionally, KLlO 121). Specifically, we will be 

interested in the spectral intensity distribution of wiggler 

radiation fully integrated in a direction perpendicular to the 

wiggle plane and integrated over a finite angular aperture in the 

wiggle plane. As will be shown, the departure of a wiggler's field 

profile from a purely sinusoidal shape can be an important 

determinant of its spectral properties, and a suitable 

generalization of K will be required to help parametrize 

expressions describing the integrated angular and spectral 

characteristics of its radiation. To minimize complications, we 

will restrict our analysis to field profiles that: 1) are 
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symmetric and have a single maximum (or minimum) within each 

half-period; 2) attain their maximum slopes at points where the 

field changes sign; and 3) increase or decrease monotonically 

between zero and the extremum within each half period. 

2. Fully angle-integrated wiggler spectra 

A schematic of the geometric parameters relevant to our study 

is shown in Fig. 1. The wiggler structure is taken to consist of N 

periods (2N poles), and the K parameter is assumed to be large 

enough to inhibit coherence effects among the individual poles. In 

this regime, the radiation generated by an incremental arc of 

trajectory can be approximated by the radiation along an 

instantaneously circular arc with a matching radius of curvature. 

The total spectral-angular intensity distribution of this 

radiation, expressions for which are derived in Jackson [31, can 

consequently be obtained by linearly adding the incremental 

spectral-angular distributions associated with each arc over the 

entire length of wiggler. For N substantially large, all the 

periods substantially similar, and the point of observation 

sufficiently far away, the additions need be performed over only 

one half period and the result multiplied by 2N. We note that the 

wiggler trajectory (and particle energy) naturally defines the 

angular limits of its radiation (viz., to within an angular 

interval of +2/v I where y=E/mc2, m is the particle mass, c is the 

velocity of light, and E is the particle energy). For y 
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sufficiently large, the full angular interval in the far field 

associated with the depicted trajectory is seen to be 

approximately 2eM, where 

OM” 2 II 1 I (z=O,*AJ2,. . .I * 
(1) 

The quantity in absolute value brackets is the slope of the 

trajectory at its intersection points with the z axis. 

Our starting point will be the angle-integrated expression for 

the spectral radiated-energy distribution of an electron on a 

circular trajectory derived in 131, viz., 

[ergs/electron,revolution,unit frequency interval] = 

- 

(y')dy'. (2) 

The constants in eq. (2) are in CGS units, with o'= c wc/2, where o 
C’ 

the "critical frequency," is given by 3y3c/p [31, and P, expressed 

as 

p [cm1 -335E[GeVl/B [Tl, (3) 

is the radius of curvature. B is the field seen by the elecron, 

and am is a modified Bessel function of the second kind. 



Converting (in MKS) from ergs per electron to photons per 

second, from frequency to photon energy (in keV), and converting 

to "per horizontal milliradian" units in the wiggle plane, we 

arrive at the following expression 121 for the spectral-angular 

distribution of @, the photon flux per 0.1% bandwidth per second, 

generated by a circular trajectory, viz., 

c 1 g Eph/s,mr,O.l%BWl = 2.457~1010E[GeV]I[mAl (4) 

Here Ed, the "critical energy," is given by 10 -3w;h[J-sl/2Kq[Cl; h 

and 4 are, respectively, Planck's constant and electronic charge; 

and I is the particle beam current. 

To obtain the total- distribution angle-integrated in the 

wiggle plane over one wiggler pole, we can now evaluate eq. (3) at 

each point on the trajectory (viz., as a function of z) and 

multiply it by the local angular arc de. Due to the smallness of 

the trajectory excursion for ultrarelativistic electrons and 

realistic wiggler parameters, the arc length of the trajectory 

over one half period will, to second order, be equal to Aw/2, and 

we can consequently utilize the approximation dO=dz/p(z). Thus, 

Aw/2 O” 
<Q(E)>~~ [ph/s,O.l%BWl = l.l~lO~~.$ dz I I K5,3 (y')dY'. (5) 

M 
0 t /e A (z) 
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As is evident, the total angle-integrated flux is now an 

implicit function of the profile of the dominant field component 

B(z) (via cc(z)-0.665E2B(z)) in the lower limit on the rightmost 

integral in eq. (5) - The complete flux distribution in the far 

field, integrated over the above limits, is then given by 

a((~) [ph/s,O.l%BWl = 
2N<@(e)'2eM. 

(6) 

We can now examine the effect of the field profile B(z) on a(~). 

For maximum contrast we will compare the effect of a 

sinusoidal-field half-period vs. a constant-field half-period. The 

former profile is typical of many existing insertion devices, 

while a physical approximation to the latter could be generated 

by, e.g., full periods composed of two contiguous and alternating 

permanent -magnet pairs with a gap a hw. For both structures we 

assume the parameters of the Beam Line 10 wiggler on SPEAR, viz., 

I-100 mA, E-3 GeV, N-15, hw-12.85cm, and B0=1.45T. Thus, the field 

in the first case can be expressed as B(z)=1.45sin(2Jfz/hw), and by 

B(zjm1.45 in the second case. We note that in both cases the 

conventional definition of the deflection parameter yields a K 

value of approximately 17.4. 

The results of both calculations are plotted on log-log and 

log-lin axes in Fig. 2. As is intuitively plausible, the 

constant-field half-period is seen to generate substantially more 

power relative to the sinusoidal half-period, particularly in the 

regions at and to the right of the curves' maxima. The effective 

critical energy of the sinusoidal half-period is also seen to be 
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effectively shifted to a lower value than the constant-field 

device. The depicted curves clearly underscore the conditional 

utility of K for determining the spectral properties of 

arbitrarily-defined insertion devices. 

3. Wiggler spectra integrated over finite wiggler-plane apertures 

We now turn to the calculation of wiggler spectra integrated 

over finite apertures in the wiggle plane. Referring to Fig. 1, it 

is evident that every aperture bounded by 2tlM will define two 

tangent points (L,R) on the wiggler trajectory. These two points 

in turn define an interval [Z L,ZRl along z which is seen to lie 

between the end-point of the wiggler's half-period interval 

[0,hw/21. To calculate"the contribution from each wiggler pole to 

the flux collected by the aperture, the procedure is, evidently, 

to change the integration limits in the outside integral on the 

right hand side of eq. (5) from [0,hw/21 to [Z,,Z,l. 

To perform the indicated procedure, it is apparent that the 

slope of the trajectory vs. z is required to find the two tangent 

points associated with a selected aperture and to identify the 

corresponding points ZR and ZL. For the limiting cases ZR-0 and 

ZL’hw/2, it is evident from eq. (1) that the slope is also 

required to define the maximum aperture 2eM. To find the desired 

expression for the trajectory slope, then, we first turn to the 

equations of motion of an (ultrarelativistic) electron in the 

wiggler field. 
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Assuming a sufficiently long wiggler with sufficiently wide 

pole faces, we first approximate the dominant field component 

(taken parallel to the y axis) in the vicinity of the z axis by 

its Fourier series expansion, viz., 

B(z) = 
>> 

Bnsin(2Jlz/An) , 
n-0 

with 

'n = Aw/(l+n). 

Then, the desired equations of motion are: 

yti' = -qi 

and 

ymi' = qx 

Bnsin(211z/An), 
n-0 

00 

>> 

Bnsin(2Jlz/hn). 
n-0 

(9) 

(10) 

The solutions for the x and z components of velocity (assuming 

standard initial conditions) can be written down by inspection, 

viz., 

q jE m- 

ym2Jr 
L 

' A,B,cos(2Ez/h& 
n-0 

and 

B- 
I 

2 2 pc - [i%Q AnBncos(2Jrz/hn) 

(7) 

(8) 

(11) 

2% 

II 

I (12) 
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where PC is the particle's speed outside of the wiggler, and 

p2-1-y -2. 

We now introduce a generalized deflection parameter Kn, 

where 

'n = 
"nBn 
2nmSc 

= 0.934An[cmlBn[Tl, 

and a generalized "deflection angle" 61, where 

6:: = K,/Y - 

Associated with these will be the total deflection and total 

deflection angle parameters KT and a;, where 

KT = >> Kn' 
n-0 

and 
- 

W  KT 

6T = 7 

(13) 

(14) 

(15) 

(16) 

Using equs. (11) and (121, we can now straightforwardly express 

the desired trajectory slope dx/dz as a function of z and the 

generalized deflection angles Bz, 

dx 
- P f 
dz '2'?4' 

61 - 

(17) 

Clearly, eq. (17) defines the desired trajectory slope vs. z 

without explicit reference to the trajectory. All that is 

required is a Fourier decomposition of the wiggler field profile 
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vs. 2. 

Setting z-0 in eq. (17), we can now simply express the 

maximum trajectory angle eM of eq. (1) by 

eM = y (1 - [y)2j: (18) 

Of interest for many calculations is the average velocity of 

progression of the particle in the z direction through the wiggler 

field. Assuming 6;*1, we can expand and average eq. (12) over the 

interval [O,Awl to obtain 

. 
-WIGGLER = p*c = pc 1 - + 5 [fy2+ . . . ) . (19) 

For a purely sinusoidal field, i.e., B,=O (i-1,2,3,...), both 

equs. (18) and (19) (together with (9) and (10)) can be seen to - 
assume interpretations consistent with the conventional definition 

of K. 

4. General computational procedure 

For practical purposes, it will be convenient to summarize the 

assumptions and steps associated with calculating a realistic 

wiggler spectrum for a given aperture. In addition to the 

restriction that y -1 be sufficiently smaller than the angular 

aperture in question, a similar constraint will be applicable to 

the component of angular divergence in the wiggle plane 

contributed by the particle beam emittance 1 and the lattice beta 
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function p, at the wiggler location. Thus, apart from the 

underlying assumption that the insertion device in question is 

operating substantially in the wiggler regime, the basic 

conditions for applying the computational scheme outlined in this 

note can be summarized as follows: 

a) ( (c/B,) +Y -2P43 L-8R) ; 

b) the entire wiggler radiation fan is assumed to be collected by 

the aperture in the direction perpendicular to the wiggle 

plane; 

c) N is assumed to be sufficiently large for a sufficiently 

accurate representation of the wiggler field by a Fourier 

series expansion. If N is too small (as might be the case, for 

example, for a wavelength shifter), decomposition of the field 

by Fourier transforms must be employed, and the series 

expansions in equs . (71, (g-121, (151, (171, and (19) must be 

generalized to the appropriate integral forms. 

The following sequence of computational steps can be followed: 

1) obtain the functional profile of the wiggler field (this can be 

extracted from field measurement data, or from approximate 

calculations based on fitting structural and magnetic-parameter 

information to suitable simulation models. 

2) perform a Fourier series decomposition of the field choosing 

the point in the center of the wiggler where the field changes 

sign as origin. 
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3) using a sufficient number of the derived Fourier coefficients, 

calculate KT via equs. (13) and (15) and the trajectory slope 

vs. z via eq. (17). 

4) determine the maximal angular aperture 28M via eq. (18). 

5) define the desired observation aperture in the far field by 

selecting BL and OR, verifying that the angular aperture 

(eL-eR) falls within 28 M' Subject to this constraint, it should 

be noted that the selected aperture need not be centered on the 

Z axis, but can be asymmetrically located, including entirely 

off the wiggler axis. 

6) using the calculated trajectory slope vs. z, find the 

z-locations (i.e., zL and z,) of the tangent points L and R 

defined by the limit angles eL and OR of the selected aperture. 

7) perform the desired calculation using equs. (5) and (6) with 

suitably modified integration limits. 

Should the aperture be too close to the wiggler for the 

straightforward application of equs . (5) and (6) to apply, an 

evident modification of the above procedure would be to first use 

the aperture dimensions and distance from the wiggler to identify 

the correct trajectory tangent points for each individual pole, 

and then integrate with eq. (5) betw een the corresponding limits 

along the z axis for each pole. 

5. Discussion 
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We have developed a computational procedure, based on a 

generalization of the conventional deflection parameter K, for 

calculating wiggler spectra integrated over finite apertures in 

the wiggle plane. The significant difference found between typical 

spectra generated by a sinusoidal vs. flat field profiles raises 

the general question of how higher field harmonics can influence 

the standard spectral parameters of insertion devices with 

arbitrary values of K, and whether the generalized K introduced in 

this paper could be used to account for this influence. 

To w=ry this, we will briefly consider a generalized 

definition of a wiggler's critical energy, cc, and the standard 

definition of an undulator's first harmonic photon energy, cl. 

Appealing to arguments used in deriving eq. (5), &C can be defined 

for a given field profile as 

/diw'2 [;I;') 

.665E2 

1 :$:J2dz 

t - 
C 

I 

AW/2 
hw/2 - 

p (z) -'dz. 
0 I 

B(z)dz. 
0 

(20) 

The maximum &C evidently occurs for a flat-field trajectory, 

which can be used as a convenient referent. 

For the undulator, E~ in the forward direction can be 

expressed as [41 

"1 = 0.949E2/hu(l-6*), (21) 

where p*c is the average forward velocity of the particle beam 

through the undulator field. 
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To investigate these two parameters numerically, we will 

utilize the two trajectories shown in Fig. 3. The Fourier series 

representation of the rightmost one is simply Bosin(2Jlz/ho), with 

BO-BM. Clearly, KT=K.The coefficients in the expansion of the 

leftmost trajectory are straightforwardly derived to be 

Bn = 
2hwBM 

(n+112JT2e sin 
; n-0,2,4,... (21) 

Choosing e-Aw(uI/8, we find KT=l.18K. To determine &l for an 

undulator, we insert the result of eq. (19) into eq. (21) to yield 

-1 

"1 = 0.949(E2/Aw(uI) 1 + + f Kn2+ -a. . 
n-0 I 

(22) 

Clearly, for the sinusoidal trajectory the expression in brackets 

on the right hand side becomes the familiar (1+0.5K2). For the 

trapezoidal trajectory, performing the indicated summation yields 

the increased value (1+0.658K2). 

To derive &C for the trajectories in the high-K (wiggler) 

case, we first note that the numerator, by Parseval's identity, is 

just equal to one half of the infinite summation of the squares of 

the coefficients Bn, while each term of the integrated series in 

the denominator is given simply by 

k 1 lirsin (2"'r+wl'z) dz p Ntl+l, Bn* (23) 
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Thus, for the sinusoidal trajectory we have n-0, BO=BM, and the 

critical energy for the sine-field wiggler will be given by 

"c(sine)-"c(flat) /4 (see Fig. 2). For the trapezoidal trajectory 

(with e=hw/8), the corresponding calculations lead to 

'c(trap.1 =0S8gEc(flat)' 

In Table 1. we plot these results for three different devices 

spanning a typical range of field strengths and periods. It is 

evident that in both the wiggler and undulator regimes serious 

mis-estimates of the 1st harmonic energy of an undulator or the 

critical energy of a wiggler can result if the detailed harmonic 

composition of the insertion device field is not taken into 

account. 

Before concluding our note, we can pause to evaluate some of 

the physical and mathematical implications of our analysis. 

We first -note that in -our generalization of K we have in fact 

invoked more than one new parameter. Thus, we have utilized the 

indexed K n (and Bn) as well as functions (such as the sums of Kn 

and K2 over n n) defined on them. Physically, this corresponds to 

the circumstance that an arbitrary periodic field and its effect 

on the radiated spectrum does, in general, require a parameter set 

containing more than one element for a physically complete 

description. In the present analysis we have chosen this set to be 

the coefficients associated either with the Fourier expansions of 

B(z) or the x-component of the particle velocity. We have also 

demonstrated that more than one function useful for parametrizing 

spectral parameters can be associated with the coefficient sets. 

For each field profile B(z), then, the generalized K introduced in 
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this note can be conveniently viewed as the pair of sets 

{K-(K~,K~,......I,K~I, where ICY is the set of applicable functions 

defined on K. Similarly, the same association can be made for for 

the set of field coefficients Bn. From this perspective the status 

of the conventional definition and usage of K, viz., for arbitrary 

transverse insertion devices, can be seen to be physically 

justified only when the Fourier coefficient sets contain the 

single elements KO (and Bo). The same analytical criteria and 

comments are also applicable to insertion device structures (e.g., 

helical) for which the Fourier decomposition of more than one 

field component is required. 

Together with the extension of the single parameters K and BM 

to multi-element sets, it appears evident that additional 

interesting directions for further work are suggested by the 

present study. For example, the identification of additional 

functions composed from the coefficient sets that could be used to 

describe the physical and spectral properties of arbitrary 

insertion devices more economically would be important. For 

example, the conventional distinction drawn between an undulator 

and a wiggler implies that for intermediate values of K a 

description based solely on &C or &I will be incomplete. A second 

related issue, appropriate to on-axis apertures, is the emission 

of undulator-like radiation by a wiggler from the low-field 

portions of its trajectory. For an intermediate-K device, the 

undulator portion would still constitute a significant portion of 

the total radiation, and would be important in determining not 

only the angle-integrated, but the angle-dependent spectral 
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distributions in the observation plane. For addressing these 

issues, especially for devices with harmonically complex periodic 

fields, it seems apparent that analysis based on the Fourier 

components of the field, applied both in the laboratory and moving 

electron frames 151, is an appropriate direction for further 

investigations. 
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Table 1. 

Selected spectral parameters of undulators and wigglers calculated 

with the conventional vs. generalized deflection parameters for 

sinusoidal (sine) vs. trapezoidal (trap.) field profiles. 

E-3GeV.The slopes of the trapezoid inclines are f8BM/AwtuI. The 

conventional criterion (KLlO) for defining a wiggler is utilized. 

BM -0.3T; Au-6cm BM -lT; AU-3cm BM-1.5T; hw-16cm 

(undulator) (undulator) (wiggler) 

sine trap. sine trap. sine trap. 

K 1.68 1.68 2.8 2.8 22.4 22.4 
- 

KT 1.68 1.98 2.8 3.3 22.4 26.4 

E (K) 1 0.59 0.59 0.58 0.58 

t (KT) 1 0.59 0.50 0.58 0.46 

s&K) - 9 9 

sc(KT) - 7.07 8 
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Figure Captions 

Figure 1. Schematic top views of a wiggler particle trajectory in 

the wiggle plane. The limiting angle of observation, 

2e,, is defined by the trajectory slope at its crossing 

points with the z axis. The arbitrary angle of 

observation (0 R-eL) defines the z-axis points ZL and ZR 

via the tangent points L and R on the trajectory. It is 

assumed that the natural divergence angle y -1 associated 

with each source point of the trajectory fulfills the 

condition y -1 a (e R-eL) . Observation distances and angles 

are not to scale. 

Figure 2. Wiggler spectra for two devices with the same nominal 

parameters but with flat vs. sinusoidal field 

distributions within each half-period. Both log-log 

(top) and log-lin (bottom) representations are shown. 

Figure 3. Two field profiles for assessing the use of the 

generalized deflection parameter for describing the 

spectral properties of emitted radiation. The rightmost 

field profile is purely sinusoidal. The leftmost 

profile, while non-physical, can be viewed as a 

simplified limit to which real insertion devices with 

small gap/period ratios can approximate. 
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